Известия ТСХА, выпуск 4, 1988 год

УДК 633.2.03:631.552

ПРОДУКТИВНОСТЬ ЧИСТЫХ ПОСЕВОВ МНОГОЛЕТНИХ ТРАВ В ЗАВИСИМОСТИ ОТ КРАТНОСТИ СКАШИВАНИЯ

А. Д. ПРУДНИКОВ, А. С. ИГНАТЕНКОВ

(Кафедра луговодства)

В опытах, проведенных в колхозе «Заря» Смоленской области на хорошо окультуренных дерново-подзолистых почвах, в течение 5 лет проводилось сравнительное изучение чистых посевов 8 видов многолетних трав: клевера лугового, люцерны посевной, костреца безостого, двукисточника тростникового, овсяницы тростниковой и луговой, ежи сборной, тимофеевки луговой при 2- и 3-укосном режимах использования. Наибольший выход кормовых единиц с 1 га получен при 2-кратном скашивании в вариантах с клевером луговым, овсяницей луговой и двукисточником тростниковым (соответственно 57,6; 60,1; 59,8 ц); при 3-кратном — в вариантах с кострецом безостым, двукисточником тростниковым и овсяницей луговой (65,4; 61,5; 61,4 ц). Установлено, что в западных районах Нечерноземной зоны РСФСР при 2-кратном скашивании целесообразно высевать клевер луговой и его смеси со злаками (продолжительность использования травостовен при этом должна быть не более 2 лет); при 3-кратном — двукисточник тростниковый, овсяницу луговую и кострец безостый (не менее 3—4 лет).

В настоящее время все большее распространение получает многоукосное использование трав, при котором обычно получают корм более высокого качества. Когда растения не испытывают недостатка в
питательных веществах и влаге, интенсивность кущения многолетних
злаковых трав при увеличении числа укосов обычно возрастает [11,
17, 18]. Различные виды трав неодинаково реагируют на частоту скашивания. При 2-укосном использовании в смешанных травостоях начинают преобладать верховые злаки: кострец безостый, двукисточник
тростниковый, тимофеевка луговая; при 3—4-укосном — ежа сборная, овсяница луговая, мятлик луговой [5, 10, 21]. Число скашиваний
и сроки проведения І укоса оказывают большое влияние и на продуктивность трав. Оптимальное число скашиваний для видов и сортов
определяется их биологическими особенностями, условиями возделывания и продолжительностью вегетационного периода [2, 4, 6,
13, 14, 20].

На основании результатов многочисленных исследований для различных районов Нечерноземной зоны европейской части СССР обоснована целесообразность 3-кратного скашивания травостоев [3, 8, 9, 12, 13, 16, 19]. Однако в практику сельскохозяйственного производства интенсивное скашивание многолетних сеяных травостоев внедряется крайне медленно не только из-за организационных трудностей, но также вследствие того, что многие хозяйства не в состоянии обеспечить внесение высоких норм минеральных удобрений, необходимых при данной технологии. Следовательно, важно установить наиболее эффективный способ не только для каждого вида и сорта трав, но и для конкретных почвенно-экологических условий.

Методика

Опыт заложен в 1979 г. в колхозе «Заря» Смоленской области на хорошо окультуренных дерново-слабоподзолистых почвах. Мощность гумусового горизонта A_1 составляет 23-24 см, подзолистого — 3-5 см. Слой почвы 0-30 см характеризуется следующими показателями: pH_{CO} 5,1, содержание гумуса — 2,13 %, подвижного фосфора — 11,8, обменного калия — 11,5 мг, сумма поглощенных оснований — 12,2, гидролитическая кислотность — 3,73 мэкв на 100 г. Сложение пахотного слоя среднеплотное, плотность почвы в естественном сложении 1,34, удельная — 2,64 г/см³, общая скважность 49,2 %, наименьшая влагоемкость — 26,8 %.

В опыте испытывали чистые посевы 8 видов многолетних трав: 1—клевер луговой сорта Московский 1; 2 — люцерна Северная гибридная 69; 3 — кострец безостый Моршанский 760; 4 — двукисточник тростниковый Первенец; 5 — овсяница тростниковая Балтика; 6 — овсяница луговая Шокинская; 7 — ежа сборная ВИК 61; 8 — тимофеевка луговая Ленинградская 204. Норма высева 8 млн. всхожих семян I класса на 1 га.

Опыт заложен методом рендомизированных повторений в 4-кратной повторности путем летнего беспокровного посева трав. В год посева для борьбы с сорняками проведено одно подкашивание.

Рост и развитие многолетних трав изучали в 1980—1983 гг. при двух режимах скашивания (2- и 3-кратное) на фоне внесения минеральных удобрений в норме 180N60P90K. Половину нормы фосфорных (двойной суперфосфат) и калийных удобрений (40 % калийная соль) вносили весной, а остальное — осенью. Азотные удобрения (аммиачная селитра) при 2-кратном скашивании вносили равными частями

весной и под II укос, при 3-кратном — равными частями под каждый укос. Под бобовые травы азотные удобрения вносили с 3-го года пользования.

Метеорологические условия в годы исследований сильно различались. Вегетационный период 1980 г. характеризовался повышенным количеством осадков. Особенно много их выпало в третьей декаде июня и в июле. Температурный режим был близок к среднему многолетнему. В 1981 г. стояла теплая сухая погода, в июле выпало всего 7 % осадков к норме. В 1982 г. первая половина вегетации была холоднее обычного, вторая несколько теплее, осадки распределялись довольно равномерно в течение сезона, их количество составляло 81 % нормы. В 1983 г. жаркая погода в апреле и мае сменилась дождливой в июне и июле, в августе ощущался недостаток влаги.

Варьирование погодных условий приводило к значительным колебаниям влажности почвы. Наиболее благоприятные условия увлажнения складывались в 1980 г., когда влажность почвы не опускалась ниже 75 % НВ. В 1981 г. ее динамика была иной. Начиная со второй половины мая наблюдалось уменьшение запасов влаги в верхних слоях почвы, в июне влажность почвы повышалась до 70 % НВ, во второй половине июня снижалась до ВЗ — 5,2 % к сухой массе — и в дальнейшем не превышала 11,5 %. В 1982 г. колебания влажности почвы были не столь резкими, отмечено снижение ее до 9,4 % к середине июня, однако в течение большей части вегетационного периода она находилась в пределах, обеспечивающих оптимальный рост и развитие растений. В середине июля и в сентябре 1983 г. влажность почвы опускалась ниже 70 % НВ.

Результаты

Изучаемые виды многолетних трав различались не только по числу образовавшихся, но и отмерших, а также погибших в ходе зимовки побегов (табл. 1).

Густота травостоя зависела от вида трав, условий года и интенсивности их использования. Наиболее плотный травостой в первые годы формировался у овсяницы луговой и овсяницы тростниковой, а к 4-му году пользования — у ежи сборной и двукисточника тростникового. Клевер луговой сохранялся в травостое 3 года, однако при 3-кратном скашивании он заметно изреживался уже на 2-й год пользования; на 3-й год число побегов уменьшилось более чем в 4 раза, а к

Густота стояния побегов у сеяных трав (шт/м²)

Вари- ант	1980 г.		1981 г.		1982 г.		1983 г.	
	весна	осень	весна	осень	весна	осень	весна	осень
			2-	укосное исп	ользование			
TC-	860	(02				53 0	_	_
Кл		692	818	293	414	528	500	604
Лп	1340	776	433	232	243	369	528	604
Кб	1016	803	690	640	763	752	1032	968
Дт	1120	844	523	876	832	864	1548	1392
От	1232	629	666	728	744	644	1584	988
Ол	992	816	1153	944	793	1216	1212	736
Ec	2144	872	1362	1136	1703	808	1632	1852
Тл	888	668	720	972	902	704	1040	772
			3-укос	сиое исполь	зование			
Кл	800	732	414	392	192	186	92	40
Лп	1036	404	441	72	128	107	99	19
Кб	780	768	813	1104	829	924	1272	464
Дт	716	792	516	928	744	792	1468	728
От	1028	792	868	992	882	648	1732	1192
Ол	1236	908	750	1264	897	1368	1608	844
Ec	1356	720	1032	1244	1427	1480	1568	1904
Тл	512	476	822	1144	1089	1364	856	388

Примечание. Здесь и в последующих таблицах Кл — клевер луговой; Лп — люцерна посевная; Кб — кострец безостый; Дт — двукисточник тростниковый; От — овсяница тростниковая; Ол — овсяница луговая; Ес — ежа сборная; Тл — тимофеевка луговая.

4-му сохранилось всего 92 побега на 1 $\rm m^2$. При 2-кратном скашивании изреживание травостоя клевера лугового было более медленным, однако на 4-й год пользования и в этом случае отмечено полное его выпаление.

В год посева и в 1-й год пользования у люцерны формировался более плотный травостой, чем у клевера лугового. Однако процесс ее изреживания начался уже с 1-го года пользования. При 3-кратном скашивании этот процесс шел значительно быстрее и к 4-му году люцерна практически выпала из травостоя, в то время как при 2-кратном скашивании число ее побегов составляло 604 шт/м². Причиной выпадения клевера лугового являются его биологические особенности, выпадение люцерны в первые годы жизни в значительной мере обусловлено неблагоприятной кислотностью почвы. С 3-го года пользования при 2-кратном скашивании ее участие в травостое повысилось.

Содержание в травостое костреца безостого слабо варьировало по годам. Несколько более интенсивное кущение у него отмечено при 3-укосном использовании, однако на 4-й год использования при таком режиме скашивания отмечено уменьшение густоты стояния почти в 3 раза, в то время как при 2-кратном скашивании осенью 1983 г. она была выше, чем в 1982 г.

Двукисточник тростниковый меньше реагировал на повышение интенсивности скашивания. Количество побегов на единицу площади у него возрастало к 4-му году пользования, однако при 3-кратном скашивании в 1983 г. этот показатель был почти в 2 раза ниже, чем у костреца безостого. Варьирование числа побегов по годам связано с изменением погодных условий. Уменьшение числа побегов в 1981 г. было вызвано значительной почвенной засухой.

Овсяница тростниковая положительно реагировала на увеличение интенсивности использования травостоя. При 3-кратном скашивании количество побегов овсяницы тростниковой было во все годы выше, чем при 2-кратном.

Овсяница луговая сорта Шокинская интенсивно кустилась в течение 3 лет пользования. Однако на 4-й год количество ее побегов

заметно уменьшилось, особенно при 3-кратном скашивании. В периоды продолжительной засухи (1981 г.) побегообразовательная способность у этого вида снижалась сильнее, чем у корневищевых трав — костреца безостого, двукисточника тростникового и рыхлокустовых — овсяницы тростниковой, ежи сборной.

Густота стояния побегов ежи сборной также зависела от погодных условий. Резкое снижение числа побегов ежи сборной к осени 1980 г. связано с сильным поражением листьев ржавчиной, которое отмечалось и в 1982 г. Следует заметить, что при 2-кратном скашивании степень поражения листьев ржавчиной была в 2,5—3 раза выше, чем при 3-кратном.

Тимофеевка луговая устойчиво сохранялась в травостое при 2-укосном использовании, при 3-укосном она выпадала на 4-й год.

Изучаемые виды многолетних трав характеризовались неодинаковой скоростью роста по периодам вегетации и по-разному реагировали на частоту скашивания. Наиболее быстро отрастали весной двукисточник тростниковый, а также ежа сборная и овсяница тростниковая. В третьей декаде мая заметно ускорялся рост у костреца безостого. Перед I укосом самый высокий травостой сформировался у двукисточника тростникового (1980 и 1983 гг.) и костреца безостого (1981—1982 гг.). Высота растений этих видов при 2-кратном скашивании составляла 100—111 см. Наименьшей высотой среди злаковых перед I укосом отличались овсяница луговая и тимофеевка луговая — соответственно 68—92 и 56—94 см. При 2-кратном скашивании клевер луговой формировал травостой высотой 31—45 см, люцерна — 47—62 см.

При увеличении числа скашиваний скорость роста трав несколько замедлялась, особенно в начале отрастания. Рост после скашивания зависел не только от вида трав, но и от условий увлажнения. Наиболее быстро отрастали ежа сборная и двукисточник тростниковый. Кострец безостый начинал интенсивно расти примерно через неделю после скашивания. В засушливые периоды овсяница тростниковая превосходила все изучаемые виды по скорости роста. Она характеризовалась быстрым восстановлением листового аппарата после скашивания, но в дальнейшем темпы отрастания у нее были сравнительно низкие. Тимофеевка луговая медленно отрастала после скашивания, затем рост ее усиливался при наличии в почве достаточного количества влаги. Бобовые травы — клевер луговой и люцерна посевная — отличались низкой скоростью роста после скашивания, которая заметно возрастала в фазу бутонизации.

Оптимальный индекс листовой поверхности трав заметно выше, чем у полевых культур (6—10 м 2 на 1 м 2 поверхности почвы), так как листья у первых составляют значительную, а часто и большую часть урожая [1].

Урожайность многолетних трав сильно зависела от скорости формирования и размеров ассимиляционного аппарата (табл. 2). В засушливом 1981 г. наибольший ассимиляционный аппарат формировался у овсяницы тростниковой и двукисточника тростникового, наименьший — у клевера лугового и люцерны посевной. Недостаток влаги во второй половине вегетации привел к замедлению роста листьев, особенно у видов с невысокой засухоустойчивостью. Так, у тимофеевки и овсяницы луговой площадь листьев в III укосе составила соответственно 1,6 и 1,9 м²/м². В 1982 г. злаковые травы формировали более мощный листовой аппарат как в I, так и во II укосе. При 2-кратном скашивании наибольшая площадь листьев отмечалась у костреца безостого $(10,48 \text{ м}^2/\text{м}^2)$, при 3-кратном — у ежи сборной $(10,94 \text{ м}^2/\text{м}^2)$. В благоприятных условиях для роста и развития многолетних трав листовая поверхность после скашивания быстро восстанавливалась. При 3-кратном скашивании индекс листовой поверхности перед укосами был несколько ниже, чем при 2-кратном, из-за сокращения времени на восстановление листового аппарата.

Вари-	1981 г.		1 982 г.		1 983 г.				
ант	I	II	III	I	II	ill	I	II	III
				2-укосное	е использ	ование			
Кл	3,47	2,45	_	1,30	2,92	_	_	_	
Лп	3,47	2,43	_	3,50	5,89	_	2,51	3,37	_
Кб	6,25	3,05	_	10,48	5,44	_	8,20	5,14	_
Дт	5,35	3,75	_	8,49	8,95	_	8,29	8,92	_
OT	6,25	4,50	_	7,08	7,20		7,87	6,98	_
Ол	5,85	2,75	_	8,08	4,94		7,05	4,04	_
Ec	4,25	3,25	_	7,46	6,96	·	7,36	7,02	_
Тл	4,00	2,25	_	6,41	5,08		6,53	4,73	_
				3-укосное	использ	ование			
Кл	3,07	2,11	2,04	1,01	2,06	0,21	0,27	0,32	0,14
Лп	3,04	1,97	1,03	0,47	0,42	0,04			
Кб	4,27	2,25	2,51	8,26	4,88	6,94	4,44	5,02	2,66
Дт	4,80	2,53	3,26	7,32	6,49	6,68	6,35	6,47	5,13
O _T	5,40	3,75	3,50	4,46	5,57	5,32	5,59	5,70	4,24
Ол	4,80	2,75	1,9	5,57	5,28	3,92	4,87	4,09	3,06
Ec	3,80	2,50	4,0	10,94	4,52	4,68	6,36	5,47	3,84
Тл	3,61	2,75	1,6	5,23	5,15	3,79	5,85	4,17	3,38

В 1983 г. отмечено уменьшение площади листьев костреца безостого, овсяницы луговой и тимофеевки луговой во II и III укосе в связи с изреживанием травостоев. В этом году практически выпали из травостоя клевер луговой при 2-укосном режиме использования и люцерна посевная при 3-укосном. Среди злаковых трав наибольший ассимиляционный аппарат формировался у двукисточника тростникового, ежи сборной и овсяницы тростниковой. Темпы восстановления листовой поверхности у них в меньшей степени зависели от погодных условий и числа скашиваний, чем у других изучаемых видов.

Основная масса корней многолетних луговых трав сосредоточена в гумусовом горизонте почвы [1, 18].

Изучаемые виды трав заметно различались по скорости формирования корневой системы и распределению корневой массы в верхних слоях почвы. Наиболее быстрое нарастание корневой массы в слое 0—20 см наблюдался в 1-й и 2-й годы жизни трав. К осени 1980 г. при 2-кратном скашивании наименьшая воздушно-сухая масса корней была у клевера лугового (114,8 ц/га), наибольшая — у овсяницы тростниковой (163,6 ц/га), при 3-кратном скашивании — соответственно у люцерны посевной (77,1 ц/га) и у костреца безостого (141,4 ц/га).

Увеличение запасов корневой массы наблюдалось в течение пяти лет опыта, но по мере старения травостоя темпы прироста корней снижались. Вследствие выпадения сеяных бобовых трав и замены их в травостое несеяными злаками и разнотравьем масса корней на 3-й и 4-й годы использования уменьшалась при 2-кратном скашивании; в варианте с клевером луговым это наблюдалось лишь на 4-й год использования.

Наиболее интенсивное формирование корневой системы наблюдалось у корневищных трав костреца безостого и двукисточника тростникового и у рыхлокустового злака овсяницы тростниковой. Медленнее этот процесс протекал у других злаков: ежи сборной, овсяницы луговой и тимофеевки луговой.

Распределение корней по слоям почвы зависело от вида трав, способа их использования и возраста (табл. 3). На 2-й год жизни трав наибольшая доля корней в слое 10—20 см отмечена у люцерны (29,6 %) и овсяницы тростниковой (18,8), наименьшая — у двукисточника тростникового (5,8) и костреца безостого (8,6 %). Более поверхностное расположение корневой системы у названных видов связано с

тем, что при избытке влаги в подпахотном горизонте почвы у корневищевых трав большая часть корней формировалась в верхнем слое почвы, корневищ образовалось мало. В последующие годы доля корней, расположенных в более глубоких слоях почвы, заметно возрастала: у костреца безостого — почти в 3,5 раза, двукисточника — в 4,4, овсяницы тростниковой — в 2,3 раза. В определенной степени этому способствовала сильная почвенная засуха в 1981 г. после избытка влаги в 1980 г.

Засухоустойчивость изучаемых трав в значительной степени зависела от распределения корней по слоям почвы. Она была довольно высокой у корневищевых видов костреца безостого и двукисточника тростникового, а также у овсяницы тростниковой и люцерны посевной.

Увеличение кратности скашивания трав заметно влияло на массу корней и ее распределение в верхних слоях почвы. При 3-укосном использовании масса корней была меньше, чем при 2-укосном, на 5—

Таблица 3
Накопление корней у многолетних трав
(ц воздушно-сухой массы на 1 га)
в слоях 0—10 см (числитель) и 10—20 см
(знаменатель)

Вари- ант	1980 г.	1981 r.	1982 г.	1983 r.				
2-укосное использование								
W -	99,4	151,2	149,0	126,3				
Кл	15,4	24,6	28,8	19,7				
π_	94,0	180,4	171,5	176,5				
Лп	39,6	38,0	48,9	52,4				
Vć	149,2	146,5	179,5	187,4				
Қб	14,0	48,5	$\overline{40,5}$	46,2				
Π_	137,2	173,5	185,4	195,4				
Дт	8,5	37,5	37,7	41,8				
От	132,8	155,0	196,1	200,3				
От	$\overline{31,8}$	73,0	43,8	48,6				
Ол	121,2	158,6	163,4	166,4				
ОЛ	26,4	52,4	36,7	37,2				
Ec	121,2	158,6	163,4	166,4				
EC	26,4	52,4	36,7	37,2				
т_	129,8	153,2	144,3	155,2				
Тл	19,3	68,4	37,0	41,0				

3-укосное использование

17 -	90,8	127,3	108,7	96,4
Кл	13,1	16,1	16,5	13,2
Лп	61,2	101,4	97,9	76,3
J111	15,9	17,2	15,5	11,4
Кб	116,8	122,0	143,3	151,2
ΚO	$\overline{24,6}$	37,4	28,6	29,2
π_	108,0	150,0	131,5	149,7
Дт	22,4	41,1	23,9	39,7
От	119,6	112,0	124,0	131,2
Or	18,9	40,0	$\overline{30,5}$	40,3
Ол	107,3	124,3	147,1	121,6
On	8,0	39,1	24,8	22,0
Ec	75,9	130,0	124,3	127,2
EC	13,5	34,2	$\overline{27,2}$	29,2
Тл	75,5	137,0	150,0	129,6
1 /1	4,3	38,0	$\overline{21,1}$	20,4

25 %. Такие различия наблюдались во все годы опыта. С возрастанием числа укосов у большинства видов трав отмечалась тенденция к более поверхностному расположению корневой системы.

Изучаемые виды многолетних трав в неодинаковой степени использовали экологические факторы и формировали неодинаковый урожай (табл. 4). Наибольший урожай сухой массы при 2-кратном скашивании (110 ц/га) получен в вариантах с двукисточником тростниковым и овсяницей тростниковой.

Заметно ниже он был при выращивании костреца безостого (96.8)овсяницы И луговой (92,7 ц/га). Сравнительно невысокая продуктивность ежи связана с сильно выраженным поражением этого вида ржавчиной в I укосе в 1980, 1981 и 1982 гг. Caмой низкой продуктивностью отличались клевер луговой (77,9 ц/га), тимофеевка луговая (78,1) и люцерна посевная (79,6 ц/га). При 3-кратном скашивании урожайность была на 10—25 ц/га ниже. Наибольшей продуктивностью характеризовались овсяница тростниковая (97,3)ц/га), кострец безостый (86.0)овсяница луговая И (83,0 ц/га), наименьшей — люцерна посевная (57,0 ц/га), овсяница луговая (65,7) и клевер луговой (66,1 ц/га).

Колебания сбора сухой массы трав по годам были следующими. Бобовые травы формировали максимальный урожай в 1-й год пользования. Со 2-го года началось их изреживание, что привело к заметному снижению урожайности. Максимальная продуктивность у костреца безостого отмечена на 3-й год

пользования. У двукисточника тростникового она возрастала к 4-му году жизни; некоторое ее снижение в 1983 г. обусловлено недостатком почвенной влаги.

Овсяница тростниковая при 2-укосном использовании сохраняла высокую продуктивность в течение 4 лет опыта; при 3-укосном использовании наибольшим этот показатель был в 1983 г. Анализ данных об урожае позволяет отметить, что овсяница тростниковая обладала самой высокой засухоустойчивостью и лучше других изучаемых видов многолетних трав отрастала в условиях недостаточного увлажнения.

Овсяница луговая при 2-укосном использовании сохраняла высокую продуктивность в течение 3 лет использования; при 3-кратном скашивании этот вид сильнее реагировал на недостаточное увлажнение, что при-

Урожайность сухого вещества (ц/га)

Варнант	1980 r.	1981 r.	1982 r.	1983 г.	Среднее за 1980—1983 гг.
2-укс	сное и	спольз	ование		
Кл Лп Кб Дт От Ол Ес Тл	89,8	56,2 92,6 106,8 108,3 96,5	109,8 100,2 97,4	65,9 78,8 116,2 105,1 73,5 82,0	79,6 96,8 110,3 110,4 92,7 88,4
3-уко	сное и	пол ь зо	вание		
Кл Лп Кб Дт От Ол Ес Тл НСР ₀₆ :	79,1 74,4 91,6 81,8 84,7 88,0 81,1 80,8	73,7 83,3 67,8 56,0	59,0 109,3 102,9 99,3 106,6 86,8	121,9 69,4 73,0	57,0 86,0 87,9 97,3 83,0 74,2
для частных различий для видов	13,4	11,8	15,2	7,2	
трав для режимов использования		8,3 4,2	10,7 5,4	•	

вело к заметному снижению урожайности в 1981 г. На 4-и год пользования овеяница луговая сорта Шокинская начинала выпадать из травостоя.

Урожайность ежи сборной слабо варьировала по годам, что в значительной мере связано с тем, что в более благоприятные для роста трав годы она поражалась ржавчиной.

Таблица 5

Колебания продуктивности тимофеевки луговой по годам обусловлено метеорологическими условиями. Наиболее высокая продуктивность у нее была в 1980 и 1982 гг. при 2-кратном скашивании и в 1980 г. при 3-кратном. Тимофеевка луговая медленно отрастала в периоды недостаточного увлажнения в 1981, 1982 и 1983 гг. На 4-й год использования снижение ее продуктивности в значительной мере обусловлено изреживанием травостоя.

Питательная ценность полученного корма зависела от вида многолетних трав и интенсивности использования травостоя (табл. Содержание ЭКЕкрс, рассчитанное по химическому составу с учетом коэффициентов переваримости корма [15], при 2-кратном скашивании колебалось от 0,47 в овсянице тростниковой до 0,74 в клевере луговом. Содержание кормовых единиц в 1 кг сена находилось в пре-0.40—0.63. При 3-кратном скашивании питательность 1 кг су-

Сбор кормовых единиц, обменной энергии и сырого протеина

и сырого протеина								
	га ргия,		н, кг/га	Обеспечен- ность перева- римым про- теином, г				
Вари- ант	Корм. ед., ц/га	Обменная энергия тыс. МДж/га	Сырой протени, кг/га	1 корм. ед.	10 МДж			
2-укосное использование								
Кл	57,6	79,2	1239	135	98			
Лп	57,3	79,8	1499	196	141			
Кб	50,3		914	130	74			
Дт	59,8	98,0	1246	119	75			
От	51,9	96,7	1208	97	52			
Ол	60,1	88,3	1090	99	69			
Ec	52,2	79,3	1099	113	74			
Тл	47,6	72,6	948	101	66			
	3-ун	сосное и	спользо	вание				
Кл	56,0	75,1	1116	139	104			
Лп	45,0	57,6	1063	184	144			
Кб	65,4	80,3	1035	101	82			
Дт	61,5	80,2	1115	116	89			
От	57,4	87,5	1075	101	66			
Ол	61,4	78,9	1149	117	95			
Ec	56,9	70,1	1019	116	94			
Тл	42,7	62,9	978	133	90			

хого корма заметно возрастала и варьировала от 0,59 корм. ед. у овсяницы тростниковой до 0,85 у клевера лугового.

Содержание обменной энергии в корме рассчитывали по методике, изложенной в работе [7]. При 2-кратном скашивании оно составляло 8,76—10,16 МДж на 1 кг сухого корма, при 3-кратном — 8,99—11.36 МДж.

Сбор кормовых единиц с 1 га при 2-кратном использовании был наибольшим у овсяницы луговой (60,1 ц), двукисточника тростникового (59,8), клевера лугового (57,6) и люцерны посевной (57,3 ц). Заметно уступали указанным видам по этому показателю тимофеевка луговая (47,6 ц), кострец безостый (50,3), овсяница тростниковая (51,9) и ежа сборная (52,2 ц). При 3-укосном использовании данный показатель оказался выше, чем при 2-укосном, в вариантах с кострецом безостым, овсяницей тростниковой и овсяницей луговой и ежой сборной. Лишь у клевера лугового, люцерны посевной и тимофеевки луговой при увеличении числа укосов выход кормовых единиц уменьшался вследствие заметного снижения продуктивности травостоев.

Количество обменной энергии в расчете на 1 га в основном определяется сбором сухого вещества и долей сырой клетчатки в корме. Больший выход обменной энергии получен при 2-кратном скашивании травостоя — в пределах 72,6—98,0 тыс. МДж, при 3-кратном — соответственно 62,9—87,5 тыс. МДж.

Наибольший сбор сырого протеина обеспечивали из бобовых трав люцерна посевная (1499 кг/га), а из злаковых — двукисточник тростниковый и овсяница тростниковая (соответственно 1246 и 1208 кг/га). Увеличение числа укосов приводило к некоторому снижению сбора сырого протеина у большинства вида трав. Однако у костреца безостого, овсяницы луговой и тимофеевки луговой он несколько возрастал.

Следовательно, в западных районах Нечерноземной зоны РСФСР при 2-кратном скашивании целесообразно возделывание клевера лугового или бобово-злаковых смесей с преобладанием клевера лугового. При создании травостоев для 3-кратного скашивания следует высевать двукисточник тростниковый, овсяницу луговую, кострец безостый в чистом виде или в составе травосмесей. Продолжительность использования клевера лугового и его смесей должна составлять не более 2 лет, а указанных злаковых трав — не менее 3—4 лет.

ЛИТЕРАТУРА

1. Алексеенко Л. Н. Водный режим луговых растений в связи с условиями среды.— Л.: Изд-во ЛГУ, 1979. — 2. Андреев Н. Г., Лазарев Н. Н., Гиленко В. А. Многократное скашивание двукисточника тростникового. — Кормопроизводство, 1987, № 6, с. 33—35. — **3.** Ахламова Н. М., Герасимова Н. И. Продуктивность злакового травостоя и его качество в зависимости от частоты скашивания и доз азотного удобрения. — Кормопроизводство. М.: ВНИИ кормов, 1977, вып. 16, с. 41—46. — 4. Ахламова Н. М., Щербаков М. Ф., Я к у ш е в Д. В. Исследование по интенсификации использования сенокосов в Нечерноземной зоне Европейской части страны.— Кормопроизводство. М.: ВНИИ кормов, 1977, вып. 17, с. 72—79. — **5.** Горина Э. Д., Слепичев С. И. Продуктивность многолетних злаковых трав и качество корма в зависимости от режима использования сенокосов. — Изв. ТСХА, 1982, вып. 2, с. 54—61. — **6.** ГорошкоВ. М. идр. Максимум продукции с польдерного гектара. — Кормопроизводство, 1983, № 2, с. 33—34. — 7. Григорьев А. Г., Волков Н. П. Новая система оценки энергетической питатрль-

ности кормов для жвачных. — Кормопроизводство, 1984, Л» 6, с. 14—17. — 8. Д е м ид а с Н. Г. Сравнительная оценка различных видов многолетних трав и травосмесей при интенсивном сенокосном использовании в условиях орошения. — Автореф. канд. дис. Пушкин, 1984, — 9. Дроздов И. Многоукосное использование луговых травостоев. — Науч. тр. Ленингр. СХИ. Пушкин, 1977, с. 3—8. — **10.** И в а н о в а А. М. Интенсивное использование сенокосов на польдерных землях Калининградской области. Создание и улучшение сенокосов и пастбищ, на мелиорируемых кормовых угодьях Нечерноземной зоны РСФСР. Л., 1977, с. 100— 164.— **11.** Лебедев П. В. Особенности развития побегов разных поколений у луговый злаков. — Зап. Свердл. бот. о-ва, 1970, вып. 5, с. 90—98.— 12. Лепкович И., Магаз Ф. Условия, обеспечивающие интенсивное использование сенокосных злаковых травостоев в Ленинградской области. — Науч. тр. Ленингр. СХИ. Пушкин, 1977, т. 326, с. 18—24. — 13. Мерзлая Г. Е., Гончар Л. А. Освоение торфяно-болотных почв под интенсивные сенокосы. — Вестн. № 6, c. 101 —105. с.-х. науки, 1985,

14. Мерзлая Г. Е. и др. Урожай и качество корма со злаковых многоукосных лугов в зависимости от режима использования. — Кормопроизводство, 1984, N27, с. 32—33. — 15. Методические рекомендации по определению энергетической питательности кормов для жвачных. — М.: ВАСХНИЛ, 1984. — 16. Попов А. А. Многократное использование многолетних трав. — Кормопроизводство, 198 N26, с. 30—32.— 17. Серебрякова Т. И. Морфогенез побегов и эволюция жизненных форм злаков. — М.:

Наука, 1971.— 18. Смелов С. П. Теоретические основы луговодства. — М.: Колос, 1966.— 19. Стариков Х. Н., Бублик В. М. Сенокосы и пастбища в зоне осущения. — М.: Агропромиздат, 1985. — 20. Якушев Д. В., К обыльчен кошевания на продуктивное долголетие овсяницы луговой. — Кормопроизводство, 1980, № 7, с. 24—25. — 21. Вашег U. Acker-Pflanzenbau: Bodenk, 1982, Bd. 26, H. 12, 8.779—787

Статья поступила 4 марта 1988 г.

SUMMARY

In experiments conducted on the collective farm "Zarya" (Smolensk region) for 5 years on well cultivated soddy-podzolic soils pure stands of 8 species of perennial grassesred clover, lucerne, smooth bromegrass, reed canary grass, reed fescue, meadow fescue, orchard grass, timothy used under two-cutting and three-cutting regimes — were compared. The highest amount of fodder units from 1 ha with double cutting was obtained in variants with red clover, meadow fescue, and reed canary grass (57.6; 60.1; 59.8 centners respectively); with thrice-repeated cutting — in variants with smooth bromegrass, reed canary grass, and meadow fescue (65.4; 61.5; 61.4 centners). It has been found that in western regions of Non-chernozem zone of Russian Federation under double cutting it is desirable to sow red clover and its mixtures with cereals (the grass stands should be used not longer than 2 years); under thrice-repeated cutting — reed canary grass, meadow fescue, and smooth bromegrass (not less than 3—4 years).