ИЗМЕНЕНИЕ АГРОЭКОЛОГИЧЕСКИХ ПАРАМЕТРОВ ДЕРНОВО-ПОДЗОЛИСТОЙ ПОЧВЫ ПРИ ПРИМЕНЕНИИ ОРГАНО-РАСТИТЕЛЬНОГО КОМПОСТА НА ОСНОВЕ ОСАДКОВ СТОЧНЫХ ВОЛ

ЧЖОУ ДУНСИН, В.А. КАСАТИКОВ*, В.А. РАСКАТОВ

(Кафедра экологии)

В полевом опыте изучалось влияние осадков сточных вод (ОСВ) и органорастительного компоста (ОРК) на агрохимические свойства почвы. Исследования показали высокую эффективность ОРК по сравнению с ОСВ, их положительное влияние на уровень доступных форм питательных элементов в почве. Действие и последействие ОРК и ОСВ имеют качественно различное влияние на кислотноосновные свойства дерново-подзолистой супесчаной почвы, обусловленные агрохимическими свойствами удобрений.

При решении задач по очистке городских сточных вод неизбежно возникает проблема в утилизации образующихся осадков сточных вод (ОСВ). В составе ОСВ содержится большое количество органического вещества и питательных элементов, легко переходящих в доступные для растений формы, что является ценным сырьем для получения органических удобрений. Из существующих методов утилизации осадков наиболее надежным и экологически выгодным является использование ОСВ в качестве органического удобрения. Выявлено, что 10 млн т осадков сточных вод по содержанию сухого вещества, основных элементов питания и удобрительной ценности равноценны примерно 50 млн т навоза. Использование части ОСВ на удобрения позволит сохранить значительное количество минеральных туков, уменьшит дефицит гумуса [6].

ОСВ обладают высокими запасами углерода, азота и фосфора, обогащены полезной микрофлорой, положительно влияют на физические свойства почв. Различные виды осадков содержат 20-30% углерода и 2-5% гуминовых веществ, при внесении ОСВ в почву отмечено накопление общего углерода и гуминовых веществ, преимущественно фульватного характера [9, 5, 7]. Это обуславливает целесообразность их широкого использования в качестве нетрадиционных органических удобрений в сельском хозяйстве, городском озеленении и т. д. Одновременно решается и задача устранения больших объемов загрязняющих веществ [6]. Поэтому использование ОСВ в качестве местных удобрений является также эффективным способом ликвидации этого отхода, хотя применение его требует определенной осторожности, поскольку некоторые виды ОСВ содержат повышенное количество тяжелых металлов и органических поллютантов [7].

В то же время для объективной оценки действия конкретного удоб-

^{*} ВНИПТИОУ.

рения, произведенного на основе тех или иных отходов, необходимы его испытание в системе агроэкологического мониторинга и разработка технологий по экологически безопасному, экономически выгодному его применению в менее ущербных звеньях экосистемы агроландшафтов [2].

В настоящий период применение традиционных минеральных и органических удобрений резко сократилось, в связи с этим растет интерес к использованию местных агроруд, а также отходов промышленности и коммунального хозяйства, среди них существенную долю занимают ОСВ. Наряду с ОСВ в сельском хозяйстве могут использоваться различные виды органических удобрений на их основе, производимые путем компостирования осадков с различными органическими наполнителями [1].

Отмечено, что внесение осадка улучшает физические свойства почв: повышается их водоудерживающая способность, уменьщается объемная масса, предотвращается образование поверхностной корки. В результате уменьшается опасность почвенной эрозии и снижаются потери питательных веществ с поверхностным стоком. Под влиянием осадка улучшается агрегатное состояние почв, подверженных выдуванию, вследствие чего снижается опасность ветровой эрозии. Противоэрозионное действие осадка и компостов, приготовленных на его основе, объясняется присутствием в нем органического вещества, повышающего оструктуренность, и также наличием грубых частиц и кальция, улучшающих водно-физические свойства почвы.

В настоящее время необходимость переработки ОСВ на удобрение не вызывает сомнений. Однако неясных и нерешенных вопросов еще много. Прежде всего это поиски способов переработки, удовлетворительных и в экономическом, в экологическом отношениях и пригодных для разнообразных местных условий и разных масштабов переработки. В экологическом направлении усилия концентрируются на исследовании долговременных последствий внесения осадка в почву, что позволит установить, возможно ли длительное и безопасное для окружающей среды ведение с.-х. производства с применением удобрений из осадка сточных вод [8].

Цель исследований — изучить влияние органо-растительного компоста (ОРК) на основе ОСВ в составе органической и органоминеральной систем удобрений на агрохимические свойства дерново-подзолистой супесчаной почве и агрохимические свойства почвы по действию и последействию органических и органоминеральных систем удобрений на основе органо-растительного компоста и ОСВ.

Методика исследований

Полевые исследования проводятся на дерново-подзолистой супесчаной почве в полевых стационарных опытах Всероссийского научно-исследовательского, конструкторского и проектно-технологического института органических удобрений и торфа (ВНИПТИОУ) (Владимирская обл., п. Вяткино) в 2002-2003 (опыт 1) и 2003-2004 гг. (опыт 2). Почва опытных участков дерново-подзолистая супесчаная, подстилаемая суглинистой мореной. Пахотный горизонт находится в толще супесчаного отложения. Рельеф участка выровненный. Выращивание проводится для кормовой цели. Реакция среды пахотного слоя слабокислая, сумма поглощенных оснований — 6,92 мгэкв/100 г, содержание $P_2O_{506\mu}$ — 8,5, $K_2O_{06\mu}$ — 4,1 мг/100г почвы.

ОРК приготовлен в 2002 г. из безреагентного ОСВ г. Владимира и викоовсяной смеси. Соотношение компонентов 1:1 (по сухому веществу).

В образцах почвы, отобранных после вегетации растений, проводили анализ основных агрохимических показателей: рН солевой вытяжки — потенциометрически, Нг. — по Каппену, сумму поглощенных оснований — по Каппену-Гильковицу, фосфор в вытяжке 0,2 М НСІ — колориметрически по Дениже, калий в этой же вытяжке — методом пламенной фотометрии.

Схема опыта 1: 1 — контроль (без удобрений); 2 — ОСВ 30 т/га; 3 — ОРК (экв. ОСВ 30 т/га по Р₂О₅).

Схема опыта 2: 1 — контроль (без удобрений); 2 — ОРК 15 т/га; 3 — ОРК 30 т/га; 4 — ОРК 15 т/га + известь 3 т/га; 5 — ОРК 30 т/га + известь 3 т/га; 6 — ОРК 15 т/га + $N_{60}K_{60}$; 7 — NРК (эквивалент ОРК 15 т/га).

Дозы ОСВ и компоста приведены к 50% влажности и выравнены по P_2O_5 . Размещение делянок рендомизированное, повторность опыта 5-кратная, площадь делянки 3 м², вокруг опыта защитная полоса шириной 0,5 м. Органические удобрения внесены весной 2003 г. под основную обработку почвы. Чередование культур: ячмень — овес — клевер. Все агротехнические приемы в опыте выполняют вручную.

Результаты и их обсуждение

Влияние ОСВ и ОРК на их основе на агрохимические свойства почвы определяется качественным и количественным составом органического вещества, зольной части осадка, а также свойствами ингредиентов, используемых при их производстве [4]. Физико-химические

свойства ОРК способствуют изменению агрохимических свойств почвы [3].

Агрохимические свойства ОСВ и ОРК приведены в табл. 1.

Таблица 1 Агрохимическая характеристика органических удобрений

Показатель	ОСВ	ОРК
рН _{сол.} Влажность, % Зольность, % Общие формы, % сухого вещества:	7,0 52,0 60,5	6,6 31,2 70,4
N P ₂ O ₅ K ₂ O Углерод, %	1,78 2,05 0,36 20,1	1,25 1,81 0,56 17,4

В процессе компостирования ОСВ с растительной биомассой возрастает валовое содержание калия и подвижных форм азота, фосфора и калия. При этом общее содержание азота, фосфора и углерода в ОРК снижается в сравнении с ОСВ, что обусловлено процессами смешивания компонентов компостной массы и их компостированием. Наблюдаемое снижение содержания общего азота обусловлено развитием и активной жизнедеятельностью целлюлозоразлагающих микроорганизмов.

Внесение ОРК в дозах от 15 т/га по сухому веществу заметно повышает концентрацию фосфора в почве. В условиях применения органической и органоминеральной систем удобрений на основе ОСВ и ОРК требуется детальное рассмотрение характера и направленности их влияния на агрохимические свойства почвы.

В опыте 1 проводили исследования по сравнительному изучению действия ОСВ и ОРК на агрохимические свойства почвы в условиях «незагрязненного» внесением органических удобрений на основе ОСВ почвенного фона (табл. 2).

Таблица 2 Влияние ОСВ и ОРК на агрохимическую характеристику почвы, 0–20 см

Вариант	pH _{con.}	Hr, мгэкв/100 г	S, мгэкв/100 г	Т, мгэкв/100 г	V, %	P ₂ O ₅ , мг/100 г	К₂О, мг/100 г	
Действие								
1	4,90	2,22	4,96	7,18	69,1	5,14	4,2	
2	5,15	2,10	5,38	7,48	71,9	15,1	4,1	
2 3	5,18	2,03	5,33	7,36	72,4	19,6	3,6	
HCP ₀₅	0,18	0,1	0,25	0,11	0,31	0,71	0,29	
Последействие								
1	4,90	2,31	4,60	6,91	66,7	3,65	3,64	
2	5,13	2,18	5,63	7,81	72,1	9,08	4,05	
3	5,08	2,16	5,77	7,93	72,8	16,3	4,05	
HCP ₀₅	0,12	0,09	0,35	0,47	1,07	1,13	0,29	

При исследовании их действий в соответствии с полученными данными в слое почвы 0-20 см произощло изменение агрохимических свойств как при внесении ОСВ в дозе 30 т/га, так и ОРК, эквивалентного ОСВ по содержанию P₂O₅. В частности, достоверно снизились величины обменной и гидролитической кислотностей. Уровень Нг. снизился соответственно на 5,4 и 8,5%, что обусловлено действием 2- и 3-валентных катионов, попадающих в почвенный раствор в процессе разложения осадков сточных вод и органо-растительного компоста. При этом ОСВ и ОРК оказывают положительное влияние на сумму поглощенных катионов. Ее величина выросла соответственно на 8,5-7,5%.

При внесении ОСВ и ОРК содержание подвижного фосфора в пахотном слое почвы возрастает соответственно в 2,93 и 3,82 раза. Данная зависимость определяется, с одной стороны, содержанием фосфора в ОСВ и ОРК, с другой — скоростью разложения удобрений в пахотном слое почвы. В то же время содержание обменного калия в почве после внесения ОСВ и ОРК снижалось. Это объясняется, с одной стороны, низким исходным содержанием калия в ОСВ и ОРК, а с

другой — повышенным выносом калия возросшей биомассой ячменя.

Таким образом, ОСВ и ОРК на основе ОСВ и викоовсяной смеси в условиях «незагрязненного» почвенного фона эффективнее влияют на агрохимические свойства почвы.

Последействие ОСВ и ОРК положительно сказывается на агрохимических свойствах пахотного слоя почвы (Апах). В условиях низкой буферной емкости A_{nax} как и по действию происходит заметное изменение кислотно-основных свойств почвы. При этом по сравнению с действием выявлено увеличение обменной и гидролитической кислотностей почвы. Данная зависимость может быть обусловлена различием в климатических условиях 2002 и 2003 гг. При этом сумма поглошенных катионов повысилась соответственно на 22 и 25%.

Уровень фосфатно-калийного режима пахотного слоя почвы по последействию ОСВ и ОРК определяется, с одной стороны, интенсивностью процессов разложения органических удобрений в почве, а с другой — выносом фосфора биомассой растений. В связи с этим выявлено увеличение $P_2O_{5 подв.}$ по последействию ОРК в сравнении с контролем в 4,46 раза. В то время как для вариантов с ОСВ уровень $P_2O_{5 подв.}$

увеличился только в 2,5 раза, что ниже данных, полученных при изучении действия этих видов. В условиях «незагрязненного» почвенного фона положительное влияние последействия ОРК на основе ОСВ и викоовсяной смеси на динамику $P_2O_{5 \text{подв.}}$ существенно выше, чем последействие ОСВ. При этом в отличие от действия данных удобрений выявлено положительное влияние их последействия также и на динамику $K_2O_{6 \text{обм.}}$

В опыте 2, согласно полученным данным, выявлено неоднозначное влияние рассматриваемых систем удобрений на агрохимические свойства почвы (табл. 3).

В вариантах 2, 3 внесение ОРК оказывает положительное действие на кислотно-основные свойства почвенного поглощающего комплекса в пахотном слое почвы (0-20 см). В то же время известкование по фону ОРК способствует дальнейшему снижению обменной и гидролитической кислотностей и увеличению суммы поглощенных оснований в пахотном слое почвы, что обусловлено действием 2-валентных катионов. поставляемых известью в почвенный раствор. В вариантах 6, 7 при внесении минеральных азотно-калийных удобрений в почве происходит незначительное повышение обменной и гидролитической кислотностей и снижение суммы поглощенных оснований в сравнении с фоном ОРК 15 т/га.

В соответствии с полученными данными внесение органо-растительного компоста в вариантах 2—3 приводит к увеличению концентрации подвижного фосфора в пахотном слое почвы на 48—76%. В тоже время внесение извести способствует снижению концентрации подвижного фосфора в вариантах 4—5 на 10—12% по сравнению с фоновыми вариантами за счет образования Са-фосфатов.

Динамика калийного и фосфатного режимов почвы при внесении ОРК как отдельно, так и в сочетании с известью одинакова. При внесении ОРК в почву происходит увеличение содержания калия в ней по всем вариантам опыта на 39–50%. В то же время известкование почвы приводит к снижению концентрации обменного калия на 2–3%. Это свидетельствует о недостаточном уровне воздействия известкования на кислотно-основные свойства почвы и на степень изменения калийного режима почвы.

Таким образом, действие ОРК отдельно и в сочетании с известью оказывает неоднозначное влияние на фосфатно-калийный режим почвы. Оно обусловлено действием извести на обменные свойства почвенного поглощающего комплекса и интенсивностью процессов био-

Таблица З Действие органо-растительного компоста на агрохимическую характеристику почвы, 0–20 см

Вариант	рН _{сол.}	Нг, мгэкв/100 г	S, мгэкв/100 г	Т, мгэкв/100 г	V, %	Р₂О₅, мг/100 г	К₂О, мг/100 г
1	5,74	1,28	10.6	11,9	89.2	6.89	6,51
2	5,83	1,06	11,3	12,4	91,4	11.4	9,24
3	5,87	1,02	11,4	12,4	91,8	12,2	9,77
4	5,98	0,93	11,5	12,5	92,5	10,2	9,08
5	6,04	0,89	11,7	12,6	92,9	12,0	9,46
6	5,80	1,16	10,9	12,1	90,4	10,8	11,0
7	5,63	1,23	9,85	11,1	88,9	8,05	9,24
HCP ₀₅	0,08	0,06	0,65	0,42	0,54	0,72	0,54

логического разложения ОРК в почве.

В целом же действие ОРК как отдельно, так и в сочетании с известкованием и минеральными удобрениями оказывает существенное влияние на агрохимические свойства почвы. В ходе исследования выявлено наиболее эффективное влияние на агрохимические свойства почвы действия ОРК в дозах 15-30 т/га в сочетании с известкованием.

В опыте 2 по последействию ОРК, минеральных удобрений и известкования почвы выявлено неоднозначное влияние данных удобрений на агрохимические свойства почвы (табл. 4). В частности, в вариантах 2, 3 по последействию ОРК сохраняется их положительное влияние на кислотно-основные свойства почвенного поглощающего комплекса в пахотном слое почвы (0-20 см), выявленное по действию удобрений. В то же время известкование по фону ОРК способствует дальнейшему снижению обменной и гидролитической кислотностей и увеличению суммы поглощенных оснований в пахотном слое почвы, что обусловлено влиянием катионов Ca²⁺, Mg²⁺ в составе доломитовой муки, используемой для известкования почвы. В вариантах 6, 7 по последействию минеральных азотно-калийных удобрений в почве происходит повышение обменной и гидролитической кислотностей и снижение суммы поглощенных оснований в сравнении с фоном ОРК 15 т/га.

По последействию ОРК в вариантах 2-3 сохраняется его положительное влияние на концентрацию подвижного фосфора в пахотном слое почвы, выражающееся в ее увеличении на 74-88%. При этом последействие известкования приводит к дальнейшему росту концентрации подвижного фосфора в вариантах 4-5 в сравнении с фоновыми вариантами за счет очевидного распада Са-фосфатов, образовавшихся в почве при совместном внесении ОРК и доломитовой муки и интенсификации деструкции ОРК в почве по последействию доломитовой муки.

Динамика калийного режима почвы по последействию ОРК отдельно и в сочетании с известкованием однотипна фосфатному. И действительно, если по последействию ОРК в почве, как и по действию выявлено увеличение содержания калия в вариантах 2–3 на 24–37%, то при сочетании с известкованием рост концентрации обменного калия составил 52–86%.

Таким образом, ОРК отдельно и в сочетании с известью по действию и последействию оказывает неоднозначное влияние на фосфатно-калийный режим почвы. Оно обус-

Таблица 4
Последействие органо-растительного компоста на агрохимическую характеристику
почвы, 0–20 см

Вариант	рН _{сол.}	Hг, мгэкв/100 г	S, мгэкв/100 г	Т, мгэкв/100 г	V, %	Р₂О₅, мг/100 г	К₂О, мг/100 г
1	5,54	1,19	5.94	7.13	83.3	5,37	5,12
2	5,90	1,03	5,88	6,91	85.1	11,1	7,60
3	5,84	1,01	6,99	8,00	87,4	12,0	8,39
. 4	6.16	0,75	6,73	7,48	90,0	11,9	9,31
5	6,20	0,77	7,52	8,29	90,7	13,0	11,4
6	5,85	1,13	6,37	7,50	84,9	9,58	7,22
7	5,63	1,15	6,37	6,52	97,7	7,02	7,60
HCP _{0.5}	0,21	0,08	0,46	0,20	1,34	1,10	0,54

ловлено действием известкования на обменные свойства почвенного поглощающего комплекса и интенсивность процессов биологического разложения ОРК в почве во времени.

В целом же последействие ОРК как отдельно, так и в сочетании с известкованием и минеральными удобрениями оказывает существенное влияние на агрохимические свойства почвы. В ходе исследования выявлено наиболее эффективное влияние на агрохимические свойства почвы последействия ОРК в дозах 15-30 т/га в сочетании с известкованием. Данная зависимость соответствует выводу, полученному при изучении действия ОРК в сочетании с известкованием почвы.

Таким образом, органическая и органоминеральная системы удобрений как по действию, так и по последействию в зависимости от вида органического удобрения оказывает неоднозначное влияние на агрохимические свойства почвы, в частности, на кислотно-основные свойства, содержание подвижного фосфора и обменного калия. При этом они прямо или косвенно влияют на уровень доступности растениям макро- и микроэлементов, качество и продуктивность с.-х. культур.

Заключение

Результаты исследований позволяют обосновать агроэкологическую целесообразность широкого использования ОРК на основе ОСВ. Проведенные исследования показали высокую эффективность ОРК по сравнению с ОСВ и их положительное влияние на уровень доступных форм питательных элементов в почве: возрастает содержание P_2O_5 — в 1,2-4,5; K_2O — в 1,1-2,2 раз.

Действие и последействие ОРК и ОСВ оказывают различное влияние на кислотно-основные свойства дерново-подзолистой супесчаной почвы в зависимос-

ти от агрохимических свойств удобрений. При этом ОРК в сравнении с ОСВ способствует значительно большему снижению Hr. Аналогичная зависимость выявлена при рассмотрении действия ОСВ и ОРК на емкость катионного обмена.

Различия в действии и последействии ОРК и ОСВ на фосфатный режим почвы определяются более высоким содержанием $P_2O_{5подв.}$ в ОСВ. В то же время содержание $K_2O_{06м.}$ не зависит от вида удобрения, находясь в пропорциональной зависимости от их доз. Для органоминеральных систем удобрений характер изменения фосфорного режима почвы определяется, с одной стороны, его повышенной концентрацией в органическом удобрении, с другой — действием фосфорных удобрений.

В то же время калийный режим почвы при органоминеральной системе определяется в основном внесением минерального калия. Известкование почвы по фону ОРК снижает концентрацию $P_2O_{5{\rm подв.}}$ в $A_{{\rm пах.}}$ на $10{-}12\%$ за счет образования Са-фосфатов. По последействию известкования происходит рост концентрации $P_2O_{5{\rm подв.}}$ в $A_{{\rm паx.}}$ в сравнении с неизвесткованным фоном за счет минерализации ОРК.

ЛИТЕРАТУРА

1. Дорошкевич С.Г., Убугунов Л.Л., Мангатаве Ц.Д. и др. Продуктивность и качество картофеля при использовании органоминеральных удобрительных смесей на основе осадков сточных вод и цеолитов // Агрохимия, 2002. № 8. С. 41-48. — 2. Захаренко А.В. Использование органогенных бытовых и промышленных отходов в современном земледелии // Материалы международного симпозиума «экологические и технологические вопросы производства и использования органических и органоминеральных удобрений на основе осадков городских сточных вод и твердых бытовых отходов». Владимир, 2004. С. 3-5. — 3. Касатиков В.А. Агроэкологические особенности и оптимизация применения систем удобрений на основе торфа и осадков городских сточных вод в

Нечерноземной зоне РСФСР. Автореф. докт. дисс. Владимир. 1988. — **4.** *Касати*ков В.А., Еськов А.И., Черников В.А. и др. Влияние мелиорантов и осадков городских сточных вод на миграцию тяжелых металлов в дерново-подзолистой супесчаной почве // Изв. ТСХА, 2003. № 1. С. 33-43. — **5.** Касатиков В.А., Орлов Д.С., Амосова Я.М. Действие осадков городских сточных вод на структурные свойства гумусовых кислот дерново-подзолистой супесчаной почвы // Почвы среднего Поволжья и Урала. Теория и практика их использования и охраны. Тезисы докл. XII конф. почвоведов, агрохимиков... Казань, 1991. С. 209-212. — 6. Мохаммед А.Т. Агроэкологическая оценка влияния осадков городских сточных вод и мелиорантов на биогеохимические показатели полевого агроценоза. Автореф. канд. дис. М., 2001. — 7. Отаббонг Э., Якименко О.С., Садовникова Л.К. Влияние городских осадков сточных вод на доступность биогенных элементов в вегетационном эксперименте // Агрохимия, 2001. № 2. С. 55-60. — 8. Покровская С.Ф., Касатиков В.А. Использование осадка городских сточных вод в сельском хозяйстве. М.: Агрпромиздат., 1987. — 9. Deiana S., Gersa C., Manunza B. et al. // Soil Science, 1990. Vol. 150, № 1. P. 14-18.

SUMMARY

In the field experiment aiming to evaluate the impact of sewages (S) and organic — plant (OPC) compost on the agrochemical properties of soil was studied. The researches showed high efficiency the OPC in comparison with S also their positive influence on the level of nutritious elements in soil. Affect of OPC and S have quality a different influence on the acid-basic properties of sod-podzol soil, conditioned by agrochemical properties of fertilizes.