ГЕНЕТИКА, БИОТЕХНОЛОГИЯ, СЕЛЕКЦИЯ И СЕМЕНОВОДСТВО

УДК 633.111.1; 631.524.85

Известия ТСХА, выпуск 1, 2023

DOI: 10.26897/0021-342X-2023-1-36-43

ПОСЕВНЫЕ КАЧЕСТВА СЕМЯН И РОСТОВЫЕ ПРОЦЕССЫ НА РАННИХ ЭТАПАХ ОРГАНОГЕНЕЗА ОЗИМОЙ ПШЕНИЦЫ В ЗАВИСИМОСТИ ОТ ОБРАБОТКИ ИХ БИОПРЕПАРАТАМИ

О.В. ПАВЛОВА₁, Л.А. МАРЧЕНКОВА₁, Р.Ф. ЧАВДАРЫ, Т.Г. ОРЛОВА₁, Н.Ю. ГАРМАШ₁, С.И. ЧЕБАНЕНКО₂, О.А. САВОСЬКИНА₂

(1 ФГБНУ Федеральный исследовательский центр «Немчиновка» 2 Российский государственный аграрный университет – МСХА имени К.А. Тимирязева)

Приведены результаты лабораторных исследований по влиянию биопрепаратов Гумат 7+, Матрица роста, Экорост, Азотовит и Фосфатовит на посевные качества и ростовые параметры наземных и подземных органов растений сорта озимой пшеницы Немчи-новская 57. В процессе исследований выявлено стимулирующее влияние изучаемых биологи-ческих соединений на начальные ростовые процессы проростков. Отмечено существенное ростостимулирующее воздействие на развитие корневой системы. Превышение по длине корешков в сравнении с контролем составило 0,7–21,0 мм (102–145%). Эффективность пре-паратов на увеличение линейных размеров наземных органов растений была ниже. Различия по длине ростков по сравнению с контрольным вариантом составили 0,9–3,5 мм (91–118%). Прибавка к контролю по массе 100 ростков составила 0–1,1 г. с максимальными показате-лями на вариантах Азотовит и Гумат 7+. Максимальный индекс эффективности отмечен у препарата Гумат 7+.

Ключевые слова: пшеница, биопрепараты, ростовые процессы, энергия прорастания, всхожесть, длина ростков, длина корневых волосков (корешков), масса ростков, масса корневых волосков (корешков)

Введение

Впоследние годы во всех странах мира проблемы органического земледелия привлекают к себе большое внимание исследователей ввиду перспектив получения экологически чистых продуктов питания и охраны окружающей среды. Такой интерес обусловлен стремительным развитием сельскохозяйственного производства и негативными экологическими последствиями применения химических веществ.

На фоне привлекательности решения данной проблемы ее практическая реализация в нашей стране происходит крайне медленно несмотря на то, что Россия имеет огромный потенциал для внедрения и использования органического сельского хозяйства. С его внедрением страна может выйти на качественно новый уровень, который позволит обеспечивать внутренние потребности в органической продукции и значительно увеличить возможности ее экспорта.

Всистеме органического земледелия особая роль отводится комплексной органической системе защиты растений и новым агротехнологиям, альтернативным применению химических препаратов, негативно влияющих на экосистему. Основными

элементами в таких технологиях являются биологические препараты, обладающие ростостимулирующим действием и положительно влияющие на рост и развитие рас-тений. Их внедрение в производство позволяет получать высококачественную эко-логически чистую сельскохозяйственную продукцию и способствует снижению за-грязнения окружающей среды [1, 7].

Почвенная структура изменяется со временем. Ее состояние зависит от разных факторов, которыми необходимо управлять должным образом для поддержания поч-вы в правильном структурном состоянии [11].

Для повышения урожайности выращиваемых культур необходимо поддерживать почвенную структуру в оптимальном состоянии, применять органические удобрения, снижать воздействие на почву сельскохозяйственных орудий труда [9, 10].

На протяжении последних лет создано и внедрено в производство большое количество эффективных биологических средств. Наиболее известно их влияние на продуктивность, урожайность и подавление развития болезней, вредителей и сорняков [2, 3]. Исследования на семенном материале проводятся в меньшем объеме, хотя выявлено положительное действие биопрепаратов на всхожесть, жизнеспособность и некоторые ростовые процессы проростков [4, 8].

Выявление препаратов, стимулирующих прорастание семян и ростовые процессы растений, является актуальной и весьма важной частью селекционно-семеноводческого процесса, так как до сих пор значительные площади в стране засеваются низкокачественным семенным материалом, существенно влияющим на формиро-вание урожайности сельскохозяйственных культур [5, 6]. Изучение данных вопро-сов должно осуществляться с учетом районированных сортов и местных условий выращивания.

Материал и методика исследований

Работа проведена в ФГБНУ ФИЦ «Немчиновка» в лаборатории семеноведения и сертификации семян. Объект изучения — растения сорта озимой пшеницы Немчиновская 57. В качестве биопрепаратов использовали водные растворы 5 разных биологических соединений Гумат 7+ и Экорост, полученные на основе калиевых и натриевых солей гуминовых кислот, биоудобрения с живыми культурами бактерий: Азотовит — с Azotobacter chroососсит, Фосфатовит — с Bacillus mucilaginosus, а также биологически активное полифункциональное полимерное соединение Матрица роста.

Работу осуществляли путем замачивания семян в течение 24 ч в водных растворах препаратов с нормами применения, рекомендованными производителями: Азотовит - 2,0 л/т; Фосфатовит - по 2,0 л/т; Гумат 7+- 1,0 л/т; Экорост - 10 л/т; Матрица роста - 0,3 л/т.

После обработки семена проращивали в рулонах фильтровальной бумаги в тер-мостате при температуре $+20^{\circ}\mathrm{C}$ в течение 3 сут.

Посевные показатели определяли по ГОСТу 12038–84, морфометрические – по общепринятым методикам. В качестве контроля использовали обработку дистил-лированной водой.

Для изучения ростостимулирующего действия препаратов применяли биологические показатели: энергию прорастания, всхожесть, длину ростков, корешков и массу 100 зеленых ростков.

Определение суммарного эффекта от воздействия биопрепаратов на процессы роста наземных и подземных органов проростков озимой пшеницы сорта Немчинов-ская 57 проводили по сумме всех показателей, приведенных к единице.

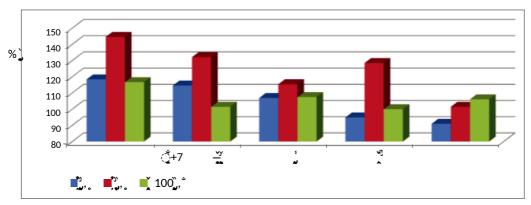
Результаты и их обсуждение

Впроцессе работы выявлено стимулирующее влияние изучаемых биологических соединений на начальные ростовые процессы проростков: более существенное на энергию прорастания и слабое – на всхожесть (табл. 1). Прибавка к контролю по первому показателю составила 6—19%, по второму — 0—2%.

Установлено, что изучаемые препараты в разной степени влияли на развитие проростков, ускоряя начальные ростовые процессы в одних вариантах — наземных органов растений, в других — подземных. Наиболее существенное ростостимулирующее воздействие биопрепараты оказали на развитие корневой системы озимой пшеницы. На всех вариантах отмечено превышение над контролем в пределах 0,7–21,0 мм. Существенное увеличение длины корешков (в среднем на 16,2 мм) по сравнению с контролем отмечено при обработке семян препаратами Гумат 7+, Матрица роста и Азотовит при наиболее высокой интенсивности роста на варианте Гумат 7+ (на 20,6 мм, или на 44,7%) (табл. 2).

Воздействие на длину ростков оказалось менее эффективным. Различия с контрольным вариантом составили от -0.9 до +3.5 мм, что составило 91-118% соответственно. Наибольшая прибавка на 3.5 и 2.8 мм отмечена на вариантах Гумат 7+ и Матрица роста.

Существенные различия по накоплению биомассы ростков не выявлены. Этот показатель варьировал в пределах от 6,5 г на препарате Азотовит до 7,6 г на варианте Гумат 7+.


На вариантах Матрица роста и Экорост отмечено более существенное превышение над контролем по длине ростков. Вариант Азотовит обеспечил ускорение роста корней за счет азотфиксирующих бактерий, снабжающих растения дополнитель-ным количеством легкоусвояемого невысокое азота, а Фосфатовит показал самые низкие результаты.

На рисунке показана эффективность биопрепаратов по отношению к контролю. Максимальный индекс эффективности отмечен у препарата Гумат 7+.

Внастоящее время, в связи с нарастающим дефицитом экологически безопасных продуктов питания в Российской Федерации, вопросы развития органического сельского хозяйства являются весьма актуальными.

Таблица 1 Влияние биопрепаратов на энергию прорастания и всхожесть сорта озимой пшеницы Немчиновская 57

Варианты	Энергия прорастания, %	% к контролю	Всхожесть, %	% к контролю	
Контроль	78	-	97	-	
Гумат 7+	93	+19,2	98	+1,0	
Матрица роста	89	+14,1	98	+1,0	
Экорост	83	+6,4	99	+2,1	
Азотовит	86	+10,3	97	-	
Фосфатовит	86	+10,3	99	+2,1	

Рис. Влияние биопрепаратов на изменение ростовых процессов по сравнению с контролем (гистограмма по таблице 1)

Таблица 2 Влияние биопрепаратов на ростовые процессы наземных и подземных органов растений сорта Немчиновская 57

Варианты	Длина ростков, мм	% к кон- тролю	Длина корешков, мм	% к кон- тролю	Масса 100 рост- ков, г	% к кон- тролю	Индекс эффек- тивности
Контроль	18,8	-	46,1	-	6,5	-	0,72
Гумат 7+	22,3	+18,6	66,7	+44,7	7,6	+16,9	0,97
Матрица роста	21,6	+14,9	60,9	+32,1	6,6	+1,5	0,89
Экорост	20,1	+6,9	53,2	+15,4	7,0	+7,7	0,80
Азотовит	17,9	-4,8	59,3	+28,6	6,5	0	0,84
Фосфатовит	17,1	-9,0	46,8	+1,5	6,9	+6,2	0,71
HCP ₀₅	2,3		9,2		0,4		

Методы ведения органического сельского хозяйства должны быть разработа-ны с учетом местных условий выращивания с ограничением использования химиче-ских средств защиты растений, минеральных удобрений, негативно воздействующих на окружающую среду. Для производства экологически чистых сельскохозяйствен-ных продуктов на раннем этапе развития применяются органические биостимулято-ры, которые способствуют повышению иммунитета, ускорению времени цветения и созревания, увеличению урожайности и продуктивности сельскохозяйственных культур.

Влаборатории семеноведения и сертификации семян ФГБНУ ФИЦ «Немчиновка» изучено влияние биостимуляторов на ростовые процессы и накопление биомассы.

Выводы

На основании результатов лабораторных исследований выявлено, что физиологическая активность используемых биологических соединений зависит от действующих веществ. Установлено, что изучаемые препараты в разной степени влияли на развитие проростков, ускоряя начальные ростовые процессы в одних вариантах — наземных органов растений, в других — подземных.

Выявлено положительное влияние биопрепаратов на начальные ростовые процессыпроростков:болеесущественноенаэнергиюпрорастанияислабое–навсхожесть.

Наиболее существенное ростостимулирующее воздействие биопрепараты оказали на развитие корневой системы озимой пшеницы. Более слабый стимулирующий эффект препараты оказали на увеличение высоты проростков, и особенно — на накопление вегетативной массы. Стимулирующее воздействие на посевные качества: энергию прорастания и всхожесть — не выявлено. Максимальный индекс эффективности отмечен у препарата Гумат 7+. Полученные данные свидетельствуют о возможности его использования для предпосевной обработки семян с целью улучшения ростовых процессов растений озимой пшеницы.

Библиографический список

- 1. *Биктимирова 3.3*. Качество жизни: продовольственная безопасность // Экономист. -2004. -№ 2. -C. 81.
- 2. *Завалин А.А.* Биопрепараты, удобрения и урожай: М. М.: Изд-во ВНИИА, 2005. С. 33.
- 3. *Кирсанова Е.В.* Изучение эффективности использования биопрепаратов на зерновых, зернобобовых и крупяных культурах // Вестник Орел-ГАУ. 2011. № 5. С. 111.
- 4. *Корягин Ю.В.* Влияние применения биопрепаратов и микроэлементов на посевные качества семян яровой пшеницы // Достижения науки и техники АПК. − 2014. № 10. C. 29–30.
- 5. Мамсиров Н.И., Благополучная О.А., Мамсиров Н.А. // Эффективность применения биопрепаратов при возделывании зерновых культур // Земледелие. 2014. $N_{\rm D}$ 5. С. 24.
- 6. Марченкова Л.А., Павлова О.В., Чавдарь Р.Ф., Орлова Т.Г. О посевных качествах семян в Центральном федеральном округе России и Федеральном исследовательском центре «Немчиновка» // АгроЭкоИнфо. -2018. -№ 4. -C. 1-13.
- 7. *Оказова 3.П*. Биопрепараты в современном земледелии // Научное обозрение. Сельскохозяйственные науки. -2014. -№ 1. -C. 27–28.
- 8. Сергеев В.С., Дмитриев А.М. Влияние гуминовых препаратов и пестицидов на урожайность яровой пшеницы // Живые и биокосные системы. -2015. -№ 11.
- 9. Реакция линий яровой пшеницы с чужеродным генетическим материалом на воздействие искусственно создаваемых стрессов / О.В. Павлова, Л.А. Марченкова, Р.Ф. Чавдарь, С.И. Чебаненко, О.А. Савоськина, Т.Г. Орлова // Сборник трудов агробиотехнология-2021. М., 2021. С. 193–198. DOI: 10.22124/cjes.2021.5263.
- 10. Optimization of the phytosanitary condition of agrocenoses in the non-chernozem zone of the russian federation / O.A. Savoskina, N.A. Kudryavtsev, S.I. Chebanenko, A.V. Shitikova, Z.K. Kurbanova // IOP Conference Series: Earth and Environmental Scien-ce. «Earth Sciences: History, Contemporary Issues and Prospects»: International Sympo-sium. -2020. -C. 012055.
- 11. *Tisdall J.M.* & J.M. Oades. Organic matter and water-stable aggregates in so-ils // Journal of Soil Science. 1982. № 33. Pp. 141–163.

SEED QUALITY AND GROWTH PROCESSES AT EARLY STAGES OF WINTER WHEAT ORGANOGENESIS DEPENDING ON THEIR BIOLOGICAL TREATMENT

O.V. PAVLOVA₁, L.A. MARCHENKOVA₁, R.F. CHAVDAR'₁, T.G. ORLOVA₁, N YU. GARMASH₁, S.I. CHEBANENKO₂, O.A. SAVOS'KINA₂

(1 Federal Research Center "Nemchinovka", 2 Russian State Agrarian University – Moscow Timiryazev Agricultural Academy)

The article presents the results of laboratory studies on the effect of biopreparations Humate 7+, Growth Matrix, Ecorost, Azotovite and Phosphatovite on the sowing qualities and growth parameters of terrestrial and underground plant organs of the winter wheat variety Nemchinovs-kaya 57. The work revealed the stimulating effect of the studied biological compounds on the initial growth processes of seedlings. A significant growth-stimulating effect on root system development was observed. The excess in the root length compared to the control was 0.7–21.0 mm (102–145%). The effectiveness of the biopreparations on increase of the linear size of terrestrial plant or-gans was lower. The differences in the sprout length compared to the control were 0.9–3.5 mm (91–118%). The increase in weight of 100 sprouts compared to the control was 0–1.1 g, with maxi-mum values in the variants Azotovit and Humate 7+. The maximum efficiency index was observed for the biopreparation Humate 7+.

Key words: wheat, biopreparations, growth processes, germination energy, germination, sprout length, root length, sprout mass, root mass.

References

- 1. *Biktimirova Z.Z.* Kachestvo zhizni: prodovol'stvennaya bezopasnost' [Quality of life: food security]. Economist. 2004; 2: 81. (In Rus.)
- 2. Zavalin A.A. Biopreparaty, udobrenia i urozhay [Biopreparations, fertilizers and crops]. M.: Izd-vo VNIIA, 2005: 33. (In Rus.)
- 3. *Kirsanova E.V.* Izuchenie effektivnosti ispol'zovania biopreparatov na zernovy-kh, zernobobovykh i krupyanykh κul'turakh [Studying the effectiveness of biopreparations on cereals, legumes and cereal crops]. Vestnik Orel-GAU. 2011; 5: 111. (In Rus.)
- 4. *Koryagin Yu.V.* Vliyanie primeneniya biopreparatov i mikroelementov na posevnie kachestva semyan yarovoy pshenitsy [Effect of biopreparations and micronutrients application on sowing qualities of spring wheat seeds]. Dostizheniya nauki i tehniki APK. 2014; 10: 29–30. (In Rus.)
- 5. Mamsirov N.I., Blagopoluchnaya O.A., Mamsirov N.A. Effertivnost' primeneniya biopreparatov pri vozdelyvanii zernovikh kul'tur [Effectiveness of biopreparations in the cultivation of crops]. Zemledelie. 2014; 5: 24. (In Rus.)
- 6. Marchenkova L.A., Pavlova O.V., Chavdar' R.F., Orlova T.G. O posevnykh kachestvah semyan v Tsentral'nom federal'nom okruge Rossii i Federal'nom isslrdovatel'skom tsentre "Nemchinovka" [On seed quality in the Central Federal District of Russia and the Federal Research Centre "Nemchinovka"]. AgroEkoInfo. 2018; 4: 1–13. (In Rus.)
- 7. *Oκazova Z.P.* Biopreparaty v sovremennom zemledelii [Biopreparations in modern farming]. Nauchnoe obozrenie. Sel'skokhozyaystvennye nauki. 2014; 1: 27–28. (In Rus.)
- 8. Sergeev V.S., Dmitriev A.M. Vliyanie guminovykh preparatov i pestitsidov na urozhaynost' yarovoy pshenitsi [Effect of humic preparations and pesticides on spring wheat yields]. Zhivye i biokosnye sistemy. 2015; 11. (In Rus.)

- 9. Pavlova O.V. Marchenkova L.A., Chavdar' R.F., Chebanenko S.I., Savos'ki-na O.A., Orlova T.G. Reaktsiya liniy yarovoy pshenitsy s chuzherodnym geneticheskim materialom na vozdeystvie iskusstvenno sozdavaemykh stressov [Reaction of spring wheat lines with alien genetic material to the impact of artificially created stresses]. Agrobiote-khnologiya-2021. Sbornik statey mezhdunarodnoy nauchnoy konferentsii. Moskva. 2021: 193–198. (In Rus.)
- 10. Savoskina O.A., Kudryavtsev N.A., Chebanenko S.I., Shitikova A.V. Kurbanova, Z.K. Optimization of the phytosanitary condition of agrocenoses in the non-chernozem zone of the russian federation. IOP Conference. Series: Earth and Environmental Science. "International Symposium "Earth Sciences: History, Contemporary Issues and Prospects"". 2020: 012055.
- 11. *Tisdall J.M., Oades J.M.* Organic matter and water-stable aggregates in soils. Journal of Soil Science. 1982; 33: 141–163.

Павлова Ольга Викторовна, ведущий научный сотрудник, канд. с.-х. наук, Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Немчиновка»; 143026, Российская Федерация, Московская область, г. Одинцово, р.п. Новоивановское, ул. Агрохимиков, 6; e-mail: silyanova69@mail.ru; тел.: (495) 107–40–00

Марченкова Людмила Александровна, ведущий научный сотруд-ник, канд. с.-х. наук, Федеральное государственное бюджетное научное уч-реждение «Федеральный исследовательский центр «Немчиновка»; 143026, Российская Федерация, Московская область, г. Одинцово, р.п. Новоивановское, ул. Агрохимиков, 6; e-mail: ludmila.marchenkova@yandex.ru; тел.: (495) 107–40–00

Чавдарь Раиса Федоровна, старший научный сотрудник, Федеральное государственное бюджетное научное учреждение «Федеральный исследователь-ский центр «Немчиновка»; 143026, Российская Федерация, Московская область, г. Одинцово, рп. Новоивановское, ул. Агрохимиков, 6; тел.: (495) 107–40–00

Орлова Татьяна Григорьевна, старший научный сотрудник, Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Немчиновка»; 143026, Российская Федерация, Московская область, г. Одинцово, р.п. Новоивановское, ул. Агрохимиков, 6; тел.: (495) 107–40–00

Гармаш Нина Юрьевна, д-р биол. наук, Федеральное государствен-ное бюджетное научное учреждение «Федеральный исследовательский центр «Немчиновка»; 143026, Российская Федерация, Московская область, г. Одинцово, р.п. Ново-ивановское, ул. Агрохимиков, 6; e-mail: niicrnz@mail.ru; тел.: (495) 107—40–00 Чебаненко Светлана Ивановна, канд. с.-х. наук, доцент кафедры защиты растений РГАУ-МСХА имени К.А. Тимирязева; Российская Федерация, г. Москва, ул. Тимирязевская, 49; e-mail: svchebanenko@yandex.ru; тел.: (917) 500–58–99

Савоськина Ольга Алексеевна, д-р с.-х. наук, профессор кафедры земледелия и МОД РГАУ-МСХА имени К.А. Тимирязева; Российская Федерация, г. Москва, ул. Тимирязевская, 49

Ol'ga V. Pavlova, CSc (Ag), Leading Research Associate, Federal Research Center "Nemchinovka" (6 Agrokhimikov Str., worker's settlement Novoivanovskoe, Odintsovo, Moscow region, 143026, Russian Federation; phone: (495) 107–40–00; Email: silyanova69@mail.ru)

Lyudmila A. Marchenkova, CSc (Ag), Leading Research Associate, Federal Research Center "Nemchinovka" (6 Agrokhimikov Str., worker's settlement

Novoivanovskoe, Odintsovo, Moscow region, 143026, Russian Federation; phone: (495) 107–40–00; E-mail: ludmila.marchenkova@yandex.ru)

Raisa F. Chavdar', Senior Research Associate, Federal Research Center "Nemchinovka" (6 Agrokhimikov Str., worker's settlement Novoivanovskoe, Odintsovo, Moscow region, 143026, Russian Federation; phone: (495) 107–40–00)

Tatyana G. Orlova, Senior Research Associate, Federal Research Center "Nemchinovka" (6 Agrokhimikov Str., worker's settlement Novoivanovskoe, Odintsovo, Moscow region, 143026, Russian Federation; phone: (495) 107–40–00)

Nina Yu. Garmash, DSc (Bio), Federal Research Center "Nemchinovka" (6 Agrokhimikov Str., worker's settlement Novoivanovskoe, Odintsovo, Moscow re-gion, 143026, Russian Federation; phone: (495) 107–40–00; E-mail: niicrnz@mail.ru)

Svetlana I. Chebanenko, CSc (Ag), Associate Professor, Associate Professor of the Department of Plant Protection, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy (49 Timiryazevskaya Str., Moscow, 127434, Russian Federation; phone: (917) 500–58–99; E-mail: svchebanenko@yandex.ru)

Ol'ga A. Savos'kina, DSc (Ag), Associate Professor, Professor of the Department of Agriculture and Experimental Methodology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy (49 Timiryazevskaya Str., Moscow, 127434, Russian Federation)