УДК 633.31+633.262+633.264]:633.038(477.64)

СОЗДАНИЕ ЛЮЦЕРНО-ЗЛАКОВОГО ТРАВОСТОЯ ПАСТБИЩ В УСЛОВИЯХ ЗАПОРОЖСКОЙ ОБЛАСТИ

Н. Г. АНДРЕЕВ, В. А. ТЮЛЬДЮКОВ, А. Г. ТУНИК (Кафедра луговодства)

Решениями XXV съезда КПСС намечено значительное расширение площади орошаемых земель в южных районах нашей страны. При этом большое значение придается повышению эффективности использования оросительной воды.

Йспользование поливной воды может быть наиболее эффективным только при оптимальном режиме орошения в сочетании с внесением необходимого количества удобрений.

Установлено, что от 0,001 до 0,03% всей воды, содержащейся в растении, находится в связанном состоянии, а более 99% ее находится в свободном состоянии и расходуется на транспирацию [5, 11].

Для многих культур и естественных фитоценозов суммарная потребность в воде равна испаряемости. При высокой продуктивности пастбищные травы в течение сезона используют примерно 600 мм воды. Поливы при этом нужно проводить часто и небольшими нормами [4, 5, 9]. Многими исследователями показано, что предполивная влажность почвы для разных культур находится в интервале от 60 до 90 и даже 100% предельной полевой влагоемкости [1, 2, 3, 10, 12].

Определение нижней границы оптимальной влажности активного слоя почвы, при которой пастбищные травы развивают максимальную корневую систему и надземную часть, а также наиболее полно используют питательные вещества, весьма важно как с теоретической, так и с практической точки зрения.

В луговодческой литературе много противоречивых сведений о влиянии минеральных удобрений, в частности азотных, на продуктивность бобово-злакового травостоя [7, 8, 13, 16]. Мало изучено влияние азотных удобрений на формирование люцерно-злакового травостоя в засушливой зоне при его пастбищном использовании.

В связи с этим нами в период 1974—1976 гг. были проведены исследования, в которых уточнялись водный режим и нормы удобрений при орошении пастбищ применительно к условиям Запорожской области.

Условия и методика проведения опыта

Экспериментальная работа была выполнена на культурном орошаемом пастбище колхоза «Украина» Приморского района Запорожской области.

Почва опытного участка — чернозем обыкновенный маломощный. В слое 0—50 см содержание гумуса по Тюрину — 4,48%, подвижного фосфора по Мачигину — 5,4 мг, обменного калия по Мачигину — 21,8 мг на 100 г почвы. Реакция почвы близка к нейтральной (рН 6,9). Объемная масса — 1,12 г/см³, удельная масса — 2,65 г/см³, общая

скважность — 58,7%, влажность завядания — 13,9%, предельная полевая влагоемкость (ППВ) — 30,4% от массы абсолютно сухой почвы определялись по общепринятым методикам. Грунтовые воды залегают на глубине 10-12 м и практически не влияют на водообеспечение трав.

Травостой культурного пастбища создавался в 1973 г. следующим образом. По глубокой зяблевой вспашке провели предпосевную обработку почвы (весеннее боронование в два следа, культивация). Покровную культуру ячмень высевали 2 апреля; норма высева — 130 кг/га. Почву прикатали кольчатыми катками. Затем (4 апреля) высевали травосмесь, состоящую из люцерны синегибридной (15 кг/га), костра безостого (8 кг) и овсяницы луговой (8 кг) и почву вновь прикатали.

Покровную культуру убирали на зерно, травы в год посева скашивали на зеленый корм, в последующие годы здесь выпасали стадо телок старше одного года.

Количество осадков, температура и относительная влажность воздуха в вегетационный период 1974 г. находились в пределах средних многолетних, за исключением второй половины июня и первой половины июля, когда осадков было на 33% меньше нормы. Неблагоприятным для произрастания пастбищного травостоя оказался 1975 г. из-за недостаточного количества осадков и высоких температур. Относительная влажность воздуха была низкой (51—53%). Периоды без осадков продолжались 30 дней и более. В пастбищный сезон осадков выпало всего 137 мм. Следующий год оказался более благоприятным для роста пастбищных трав. В первую половину вегетационного периода влажность и температура не отличались от средних многолетних, во вторую — осадков было на 28% больше нормы. Относительная влажность воздуха на 17% превышала среднемноголетнюю.

Опыт заложен в 4-кратной повторности методом рендомизированных повторений по схеме: І режим увлажнения — без полива (контроль); ІІ — влажность почвы поддерживали на уровне не ниже 55% ППВ; ІІІ — не ниже 70% ППВ; ІІV — не ниже 85% ППВ.

При всех указанных режимах увлажнения изучали следующие варианты минеральных удобрений: 1 — без удобрений (контроль); 2 — $P_{90}K_{60}$; 3 — $N_{120}P_{70}K_{40}$; 4 — $N_{180}P_{90}K_{60}$; 5 — $N_{240}P_{120}K_{90}$.

Расчеты исследуемых норм внесения азота, фосфора, калия проведены балансовым методом с помощью усредненных коэффициентов использования элементов питания из почвы и удобрений. В опыте применяли аммиачную селитру, гранулированный суперфосфат и хлористый калий. Удобрения вносили поверхностно: фосфорные и калийные — по половине нормы весной и осенью, азотные — дробно (4 раза) равными долями весной и после 1, 2 и 3-го стравливаний.

Орошение пастбища и экспериментального травостоя согласно заданным режимам увлажнения осуществляли ДДА-100М. Воду брали из прудов, пополняемых за счет вод местного стока в осенне-зимний период. Нормы и сроки полива рассчитывали по состоянию влажности слоя почвы 0—50 см, так как в нем, по данным многих исследователей, сосредоточена большая часть корней пастбищных трав в этой зоне.

Динамику влажности почвы в опыте изучали с апреля по октябрь ежегодно. Этот показатель, зависящий от количества осадков и испаряемости, определяли при всех режимах увлажнения в 3-кратной повторности. Начальный запас влаги в слое 0—100 см в 1974 г. устанавливали 4 апреля, в 1975 г. — 2 апреля, в 1976 г. — 6 апреля.

Водный режим

Влажность корнеобитаемого слоя. В 1974 г. при I режиме увлажнения влажность в слое 0—10 см (иногда в слое 0—20) доходила до уровня влажности завядания. Травы в течение двух месяцев

не отрастали. При этом режиме было проведено только 3 стравливания и получен наименьший урожай. Для обеспечения заданного уровня влажности почвы при II режиме провели 4 полива с оросительной нормой 1028 м³/га; при III и IV режимах — соответственно 8 и 12 поливов с оросительными нормами 3840 и 4931 м³ воды на 1 га.

В 1975 г. вследствие высоких температур в июле и августе и низкой относительной влажности воздуха при I режиме влажность почвы в течение этих месяцев была ниже критической, в результате чего травы выгорели и не отрастали до конца августа. Оросительные нормы при II, III и IV режимах в пастбищный сезон 1975 г. были увеличены соответственно на 965, 1243, 1139 м³/га по сравнению с 1974 г., а коли-

чество поливов — на 2 при II и на 4 при III и IV режимах. Пастбищный период 1976 г. по динамике влажности почвы мало чем отличался от 1974 г.

Поливные нормы варьировали от 270 до 500 м³/га; при II режиме увлажнения они были наибольшими.

Водопотребление пастбищных трав. Водопотребление пастбищных трав рассчитывали методом водного баланса [6]. Полученные данные (табл. 1) подтверждают положение о том, что водопотребление трав в первую очередь зависит от метеорологических условий вегетационного периода. Так, при IV режиме увлажнения в 1975 г. суммарное водопотребление было на 1141 м³/га больше, чем в 1974 г., так как 1975 г. отличался высокими температурами в июле — августе и низкой относительной влажностью воздуха.

При недостаточном уровне увлажнения почвы (II режим) водопотребление было во все годы опыта ниже, чем при III и IV поливных

Гаолица Г Водопотребление люцерно-злакового травостоя пастбищ (м³/га)

1974 г., эффективные осадки 1346, м ³ /га						
II III VI	1284 3622 5048	$^{+638}_{+696}$ $^{+674}_{+610}$	1984 3248 5642 7004			

1975 г.,

эффективные осадки 1167, м ³ /га						
I		+937	2104			
ΙI	2233	+903	4303			
III	4985	+810	6962			
VI	6238	+640	8045			

1976 г.,							
эфф	ективные	осадки	1439,	м³/га			
I II III VI	1244 3683 4755	$^{+69}_{-69}$	25 30	2130 3308 5702 6841			

режимах, и травы заметно страдали от недостатка влаги; продуктивность пастбищного травостоя была низкой и колебалась по вариантам от 32 до 50 ц сухого вещества на 1 га. Следовательно, в данных почвенно-климатических условиях влажность почвы 55% ППВ нельзя принимать за нижний предел оптимального увлажнения пастбищ.

При III режиме влажности (70% ППВ) во все годы эксперимента соотношение корневой и надземной массы трав было хорошим, урожай травостоя высоким по всем вариантам (51,9—107,9 ц сухого вещества на 1 га). При IV режиме (85% ППВ) водопотребление трав было на 1200—1440 м³/га, или на 17—20%, больше, чем при III режиме, а продуктивность пастбищного травостоя только на 8—10% выше.

Таким образом, высокой продуктивности люцерно-злакового травостоя можно добиться при нижнем пределе увлажнения почвы 70% от ППВ, при котором травы уже не испытывают недостатка во влаге. Это дает возможность сократить затраты и избежать непроизводительного расхода поливной воды.

Коэффициент водопотребления (Кв) люцернозлакового травостоя. Данные табл. 2 показывают, что Кв изменяется в зависимости от норм минеральных удобрений. С их увеличением Кв уменьшался. При недостаточном увлажнении (I и II режимы) его величина была наибольшей вследствие того, что при недостатке влаги резко замедлялся рост трав, травостой изреживался, и значительная часть воды расходовалась на испарение с поверхности почвы. Самые низкие величины Кв отмечены при III режиме увлажнения (70% от ППВ) в вариантах с внесением $N_{120}P_{70}K_{40}$ и $N_{240}P_{120}K_{90}$ (552 и 516 м³ на 1 т сухого вещества). В вариантах без удобрений Кв были высокими (1324—1380 м³).

Эффективность применения поливной воды зависела от норм вносимых удобрений и режимов увлажнения пастбищ. Наиболее экономное расходование воды при максимальной урожайности пастбищных трав наблюдалось на участках, где влажность почвы не падала ниже 70% ППВ (III режим), а удобрения вносили из расчета $N_{180}P_{90}K_{60}$ и $N_{240}P_{120}K_{90}$.

Формирование, продуктивность и качество пастбищного травостоя

Густота стояния трав. Исследования показали, что костер безостый и овсяница луговая вытесняют люцерну из травостоя. Этот процесс при орошении и внесении азотных удобрений ускоряется, а при применении фосфорно-калийных туков замедляется.

Таблица 2 **Коэффициенты водопотребления пастбищного травостоя** (м³ воды на 1 т сухого вещества)

	Варианты					
Режим увлаж- нения	1 — без удоб- рений	2 — P ₉₀ K ₆₀	3 - N ₁₂₀ P ₇₀ K ₄₀	4 N ₁₈₀ P ₉₀ K ₈₀	5-N ₂₄₀ P ₁₂₀ K ₉₀	
			1974 г.			
I II III IV	942 998 865 980	728 761 812 868	597 674 603 697	503 570 552 561	481 532 516 508	
			1975 г.			
I II II IV	853 1298 1160 1380	741 1122 1013 1113	578 896 742 884	511 800 665 714	512 724 632 681	
			1976 г.			
I II III IV	1032 1085 1032 1324	799 839 859 880	561 730 635 726	519 633 602 590	451 559 528 551	

Режимы увлажнения почвы и питания растений в большей мере определяли скорость образования дернины пастбищ и густоту стояния побегов [14]. Без орошения густота стояния трав была в 1,9 раза меньше, чем при IV режиме увлажнения. При I режиме количество побегов осенью 1976 г. равнялось 1194 на 1 м² (вариант с $N_{240}P_{120}K_{90}$), а при IV режиме — 2343 побега на 1 м². Следовательно, наиболее густой травостой не только формировался, но и сохранялся при оптимальном увлажнении почвы (III и IV режимы).

Следует подчеркнуть, что люцерна менее устойчива к пастбищному использованию, чем злаки — костер безостый и овсяница луговая,

поэтому в вариантах с фосфорно-калийными удобрениями количество ее побегов за три года уменьшилось в 1,2-1,5 раза, а при внесении азотных удобрений ($N_{180-240}$) — в 4-5 раз.

Недостаток влаги (I и II режимы) в почве, особенно в верхних слоях, усиливает депрессию в отрастании лугопастбищных трав летом. Дефицит влаги в почве затрудняет формирование новых побегов из почек и задерживает рост уже появившихся побегов. Так, значительное иссушение почвы (I режим) в 1975 г. привело к уменьшению побегообразовательной способности пастбищных трав в следующем 1976 г. Если в 1975 г. весной в травостое при I режиме (без удобрений) было 1280 побегов, то в 1976 г.— только 1049 на 1 м².

Таблица 3 Продуктивность пастбищного травостоя в зависимости от режимов увлажнения и норм минеральных удобрений (ц сухого веществ на 1 га)

Вариант удобрения	1974 r.	1975 r.	1976 г.	Среднее за 3 года
	I режим	(без орошения)		
Без удобрений	24,9	21,8	23,2	23,3
$P_{90}K_{60}$	30,1	24,3	26,8	27,2
$N_{120}P_{70}K_{40}$	35,9	31,6	37,3	34,9
$N_{180}P_{90}K_{60}$	40,8	35,4	40,2	38,8
$N_{240}P_{120}K_{90}$	43,4	36,7	45,6	42,2
	II режим	(55% ППВ)		
Без удобрений	33,8	30,5	31,6	31,9
$P_{90}K_{60}$	39,0	37,1	39,7	38,6
N ₁₂₀ P ₇₀ K ₄₀	46,4	41,2	45,6	44,3
N ₁₈₀ P ₉₀ K ₆₀	54,2	47,0	53,0	51,4
$N_{240}P_{120}K_{90}$	58,4	51,8	60,1	56,4
	III режи	м (70% ППВ)		
Без удобрений	64,7	55,3	51,9	57,3
$P_{90}K_{60}$	68,9	62,5	66,5	65,9
$N_{120}P_{70}K_{40}$	87,6	81,9	85,5	85,0
$N_{180}P_{90}K_{60}$	100,8	95,5	94,5	97,0
$N_{240}P_{120}K_{90}$	107,4	101,0	107,9	105,4
	IV режи	м (85% ППВ)		
Без удобрений	71,7	58,1	52,2	60,6
P ₉₀ K ₆₀	77,0	72,7	78,2	75,8
N ₁₂₀ P ₇₀ K ₄₀	92,6	87,4	91,2	90,4
N ₁₈₀ P ₉₀ K ₆₀	118.3	112,8	117,4	116,4
N ₂₄₀ P ₁₂₀ K ₉₀	124,4	116.4	123,1	121,9
HCP ₀₅	9,6	10,2	7,9	8,1
НСР ₀₅ от орошения	4,1	4,9	3,8	4,2
HCP ₀₅ от удобрения	5,0	5,7	4,6	4,9
•				

Трехлетние наблюдения показали, что пастбищный травостой из трех основных компонентов (люцерны синегибридной, костра безостого и овсяницы луговой) был лучше при III и IV режимах увлажнения в вариантах $P_{90}K_{60}$ и $N_{120}P_{70}K_{60}$; наиболее хорошо развивалась и сохранялась люцерна, что создавало предпосылки для получения высококачественного пастбищного корма.

Урожай и его сезонное распределение. Изменяя два основных фактора экологической среды — уровень увлажнения и минерального питания, мы попытались найти их оптимальные границы, в пределах которых дополнительные затраты окупались бы увеличением урожайности.

Орошение способствовало значительному повышению урожайности трав. В вариантах с удобрениями это можно объяснить большей доступностью элементов питания из удобрений, а в контрольном варианте — улучшением пищевого режима в результате увеличения содержания в травостое люцерны, способной фиксировать атмосферный азот.

С повышением влажности корнеобитаемого слоя до 70 и 85% ППВ возрастала и урожайность пастбищных трав соответственно на 34 и 37,3 ц сухого вещества с 1 га по сравнению с урожайностью на неорошаемых участках.

В засушливых районах прибавка урожая от орошения больше, чем от внесения удобрений [5]. В наших исследованиях удобрение без орошения увеличило урожайность трав в среднем за 3 года только на 18,9 ц сухого вещества с 1 га, тогда как орошение без удобрений — на 37,3 ц/га.

Фосфорно-калийные удобрения при всех режимах увлажнения дали сравнительно небольшую прибавку урожая сухого вещества: от 4,1 ц/га при I режиме и до 15,2 ц/га при IV режиме в среднем за 3 года. Аналогичные данные получены многими исследователями [7, 13, 15].

Азотные удобрения резко повышают урожайность пастбищного травостоя. В варианте $N_{120}P_{70}K_{40}$ при III режиме увлажнения урожайность пастбища была на 22 ц сухого вещества с 1 га, в варианте $N_{240}P_{120}K_{90}$ — на 52 ц/га выше, чем по $P_{90}K_{60}$ (табл. 3).

Таблица 4 Экономическая оценка применения различных режимов орошения и норм удобрений на злаково-люцерновом пастбище

		` •				
	D	Денежны	Денежные затраты на 1 га, руб.			
Вариант	Выход корм. ед. с 1 га	капитальные в расчете на год	текущие в среднем за год	всего	Себестоимость 1 ц корм. ед., руб.	
		I режим				
Без удобрений Р ₉₀ К ₆₀ N ₁₂₀ Р ₇₀ К ₄₀	2032 2624 2813	28,31 28,31 28,31	12,98 36,60 61,40	41,28 64,91 98,71	2,03 2,46 3,17	
$ N_{140}P_{90}K_{60} $ $ N_{280}P_{120}K_{90} $	3589 4018	28,31 28,31	$72,90 \\ 91,20$	101,21 119,80	3,09 2,99	
		II режим				
Без удобрений $P_{90}K_{60}$ $N_{120}P_{70}K_{40}$ $N_{180}P_{90}K_{60}$ $N_{240}P_{120}K_{90}$	2496 3120 3712 4362 4672	64,28 64,28 64,28 64,28 64,28	33,32 57,04 81,82 93,34 108,65	97,60 121,92 145,10 157,62 172,92	3,91 3,90 3,90 3,69 3,58	
		III режим				
Без удобрений $P_{90}K_{60}$ $N_{120}P_{70}K_{40}$ $N_{180}P_{90}K_{60}$ $N_{240}P_{120}K_{90}$	5497 5883 7516 8567 9246	64,28 64,28 64,28 64,28 64,28	71,13 94,85 119,65 134,18 158,47	135,41 139,13 183,93 198,46 222,75	2,45 2,70 2,46 2,40 2,42	
		IV режим				
Без удобрений Р ₉₀ К ₆₀ N120 ^P 70 К ₄₀ N180 ^P 90 К ₆₀ N240 ^P 120 К ₉₀	5652 6484 7962 9630 10096	64,28 64,28 64,28 64,28 64,28	107,57 131,29 166,06 182,58 204,85	171,85 195,57 230,34 246,86 269,13	3,03 3,01 2,89 2,58 2,63	

Люцерно-злаковый травостой в течение 3 лет отвечал на увеличение норм азотных удобрений повышением урожайности.

Отмечена тенденция к постепенному спаду урожайности от первого цикла стравливания к последнему при всех режимах увлажнения и нормах удобрений. Наиболее равномерным поступление пастбищного корма было при III и IV режимах увлажнения в вариантах с $N_{120}N_{180}$ и N_{240} . Совместное применение орошения и удобрений позволило увеличить урожайность пастбищного травостоя в 3,5—4 раза. Следует отметить, что первостепенную роль в повышении урожайности играло орошение. Так, если при I режиме в варианте $N_{240}P_{120}K_{90}$ урожайность в среднем за 3 года составила 42 ц/га, то при II — 56 ц, III — 105 ц, IV — 121,9 ц сухого вещества на 1 га. Самым низким урожай травостоя был при I режиме (без орошения). Данные опыта свидетельствуют о нецелесообразности создания культурных пастбищ на богаре.

Ботанический состав травостоя. Исследования показали, что ботанический состав люцерно-злакового травостоя в первую очередь зависел от азотных удобрений и в меньшей степени — от режимов увлажнения.

Увлажнение на фоне фосфорно-калийных удобрений способствовало увеличению доли бобовых в травостое, однако при влажности 85% ППВ процент бобовых в этом варианте (1976 г.) несколько уменьшился.

В варианте с $N_{120}P_{70}K_{40}$ на протяжении трех лет формировался довольно устойчивый злаково-люцерновый травостой. В 1974 г. доля люцерны в нем составила 46,8%, в 1975 г. — 30,2 и в 1976 г. — 24,6%. Дальнейшее увеличение нормы азотных удобрений приводило к значительному выпадению люцерны из пастбищного травостоя. Следует отметить, что в 1976 г. в вариантах с $N_{240}P_{120}K_{90}$ содержание люцерны уменьшилось по сравнению с 1974 г. в 3 раза и составило 13,7% в пятом цикле стравливания. Под влиянием азотного удобрения повышался удельный вес злаков и уменьшалось количество бобовых независимо от того, вносили азот отдельно или в смеси с другими удобрениями.

Питательная ценность пастбищного корма. Содержание питательных веществ в пастбищном корме менялось в основном вследствие изменения ботанического состава пастбищного травостоя. В вариантах с $N_{120-180}$ содержание сырого протеина в корме не увеличивалось, наоборот, из-за уменьшения удельного веса люцерны в урожае оно несколько снижалось. Наибольшим содержание сырого протеина было в 1-м и 2-м вариантах (22,7—21,04), где доля люцерны в урожае равнялась 42—29%, а наименьшим — во все годы исследований (21,26—19,13%) в 3-м варианте. Содержание сырой клетчатки в пастбищном корме колебалось от 17,02 до 21,76% С повышением дозы азотных удобрений в исследуемых вариантах оно существенно не изменялось.

Содержание фосфора в травах при увеличении доз азотных удобрений не возрастало, что согласуется с данными, полученными ранее другими исследователями [13]. Кальция в пастбищном корме содержалось от 0,54 до 0,98%. Высокое содержание кальция отмечено в корме, полученном в вариантах без удобрений и с внесением фосфорнокалийных туков. Это объясняется большим удельным весом в травостое люцерны, в которой кальция больше, чем в злаках.

Во все циклы стравливания питательная ценность корма была высокой. Орошение несколько меньше влияло на этот показатель, чем внесение удобрений.

Экономическая эффективность различных уровней увлажнения пастбищ

Одной из задач нашей работы явилось определение экономической эффективности различных режимов орошения и норм удобрений, применяемых на люцерно-злаковом травостое культурного пастбища.

Данные опыта показали, что пастбищное использование орошаемого люцерно-злакового травостоя экономически очень эффективно (табл. 4). Сбор кормовых единиц с гектара в первую очередь зависел от режимов увлажнения корнеобитаемого слоя, а также от внесения минеральных удобрений.

Продуктивность люцерно-злаковой травосмеси была самой высокой при поддержании влажности корнеобитаемого слоя почвы на уровне не ниже 85% ППВ. Себестоимость 1 ц корм. ед. при этом режиме в зависимости от вариантов колебалась от 2,63 до 3,03 руб. При влажности 70% ППВ в варианте $N_{180}P_{90}K_{60}$ получено 8567 корм. ед., а себестоимость 1 ц корм. ед. составила 2,40 руб., т. е. была самой низкой в нашем опыте.

Влажность почвы не ниже 85% ППВ в зоне недостаточного увлажнения в производственных условиях в силу технических и экономических причин трудно поддерживать в течение вегетационного периода, поэтому рекомендовать ее производству в настоящее время нецелесообразно, хотя она и обеспечивает наибольшую прибавку от орошения (6041 корм. ед. с 1 га в варианте $N_{180}P_{90}K_{60}$ против 4978 корм. ед. при влажности 70% ППВ).

Опыт, проведенный в колхозе «Украина» Запорожской области, показал, что создание и использование орошаемого люцерно-злакового пастбища экономически высокоэффективны. При выпасе скота (телок разных возрастов) на люцерно-злаковом орошаемом пастбище среднесуточные привесы составили 567—642 г в зависимости от возраста животных.

Выводы

- 1. Для создания культурных пастбищ в засушливой зоне юга Украины (Запорожская область) целесообразно применять травосмесь, состоящую из люцерны синегибридной, костра безостого и овсяницы луговой.
- 2. Поддержание влажности активного корнеобитаемого слоя почвы $(0,5\,\mathrm{M})$ на уровне 70% ППВ (поливные нормы $400-500\,\mathrm{M}^3/\mathrm{ra})$ и внесение $N_{180}P_{90}K_{60}$ на культурном пастбище (N_{45} после каждого стравливания, РК по половине дозы весной и осенью) обеспечивало высокую продуктивность травостоев (более $8500\,\mathrm{kpm}$. ед. с 1 га) и достаточно равномерное поступление корма по циклам стравливания.
- 3. Самая низкая себестоимость 1 ц корм. ед. (2,4 руб.) получена при внесении $N_{180}P_{90}K_{60}$ и поддержании влажности почвы на уровне 70% ППВ.

ЛИТЕРАТУРА

1. Андреев и др. Орошаемые культурные пастбища. М., «Колос», 1978. — 2. Алпатьев А. М. О методах расчета потребности в воде культурных фитоценозов в связи с развитием орошения в СССР. В сб.: Биологические основы орошаемого земледелия. М., «Наука», 1974. — 3. Алпатьев С. М. Режим орошения сахарной свеклы. В сб.: Режим орошения сахарной свеклы. В сб.: Режим орошения с.-х. культур. М., «Колос», 1965, с. 123—124. — 4. Величко Е. Б. Поливной режим культурных пастбищ в Краснодарском крае. В сб.: Биолог. основы орошаемого земледелия.

М., «Наука», 1974, с. 121—122. — 5. Джулай А. П. Режим орошения с.-х. культур. Краснодар. кн. изд-во, 1970. — 6. Костяков А. Н. Основы мелиораций. М., Гос. изд-во с.-х. литературы, 1960. — 7. Кук Д. У. Регулирование плодородия почвы. М., «Колос», 1970. — 8. Кутузова А. А. и др. Использование минеральных элементов питания в системе почва — растение — животное — животное — животное — животное об материалов XII Междунар. конгр. по луговодству. Т. 2. М., «Колос», 1977, с. 110—113. — 9. Лысогоров С. Об-

работка почвы в условиях орошения. В сб.: Орошаемое земледелие на Украине. Киев, «Урожай, 1971, с. 148. — 10. Льгов Г. К. Орошаемое земледелие в предгорьях Северного Кавказа. Орджоникидзе, Северо-Осетинское кн. изд-во, 1963. — 11. Максимов Н. А. Избр. работы по засухоустойчивости и зимостойкости растений. Т. 1. М., Изд-во АН СССР, 1952. — 12. Петинов Н. С. Физиологические основы рационального поливного режима сельскохозяйственных

культур. В сб.: Режим орошения с.-х. культур. М., «Колос», 1965, с. 3—8.—13. Ромашов П. И. Удобрение сенокосов и пастбищ. М., «Колос», 1969.—14. Смелов С. П., Якушев Д. В., Татаринова Н. К. Биологические основы интенсивного луговодства. В сб.: Кормопроизводство. Вып. 9. М., «Колос», 1974, с. 54.—15. Цюрн Ф. Удобрение сенокосов и пастбищ. М., «Колос», 1972.—16. Reid D. "J. Agrie. Sci.", 1970, vol. 74, p. 227—240.

Статья поступила 11 сентября 1978 г.

SUMMARY

Investigations were conducted in 1974—1976 on an irrigated cultivated pasture of the collective farm "Ukraine" (Zaporozhsky region). Three irrigation regimes — 55,70 and 85% of maximum field water capacity — of grass and lucerne grass stand under different levels of mineral nutrition were studied. It has been found that if moisture in the 0,5 m layer of grassland soil is maintained at the level of 70% of maximum field water capacity (10—12 irrigations during the season), high productivity of the grass stand is provided (up to 107,9 hwt of dry matter per 1 ha in certain years). Application of $N_{120}Y_{70}K_{40}$ allows to keep up to 20—24% of lucerne in the grass stand during three years. The lowest cost of 1 fodder unit has been obtained with moisture at 70% of maximum field water capacity in $N_{180}P_{90}K_{60}$ version.