Известия ТСХА, выпуск 5. 1986 год

УЛК 631.98:632.122

СТАБИЛЬНОСТЬ И МИГРАЦИЯ ПРЕПАРАТА ДЯК В ПОЧВЕ, ПОВЕРХНОСТНЫХ И ГРУНТОВЫХ ВОДАХ

И. К. БЛИНОВСКИЙ, Г. Л. СОРКИНА, В. П. ТУЧКОВ, В. Т. МАЗАЕВ, В. Е. ВАСИЛЕНКО (Межфакультетская лаборатория регуляторов роста и развития с.-х. растений)

Изучены стабильность и миграция 2,2-диметилгидразида янтарной кислоты (ДЯК) в дерново-подзолистой и черноземной почвах, а также в поверхностных и грунтовых водах. На основании полученных данных разработаны модели процессов миграции и деструкции препарата в этих объектах.

В мировой сельскохозяйственной практике в настоящее время используется около 40 регуляторов роста и развития растений, и число их постоянно растет. При расширяющихся масштабах применения средств химизации создается потенциальная опасность загрязнения объектов окружающей природной среды и регуляторами роста растений. В нашей стране разрешено использовать в сельском хозяйстве 20 рострегулирующих препаратов. Препарат ДЯК рекомендован для

опытно-производственного применения на зимних сортах яблони с целью ускорения вступления в товарное плодоношение и повышения урожайности молодых деревьев [21].

Его действующее вещество — 2,2-диметилгидразид янтарной кислоты. ДЯК малотоксичен для теплокровных животных (ЛД $_{50}$ для белых крыс выше 10 000 мг/кг, а для белых мышей — выше 5000 мг/кг). Максимально допустимый уровень его остаточных количеств в яблоках — 3 мг/кг, предельно допустимая концентрация (ПДК) в воде водоемов — 0,05 мг/л, ориентировочно безопасный уровень воздействия (ОБУВ) в воздухе рабочей зоны — 1,7 мг/м³. ДЯК хорошо растворим в воде, содержит 75 % д. в. и ряд добавок, повышающих его эффективность. Применяется в насаждениях яблони в дозе 1,6—2,4 кг д. в. на 1 га. Изучается возможность применения препарата также на картофеле и клевере с целью повышения их семенной продуктивности.

Препарат отличается большей стабильностью, чем другие регуляторы роста, причем снижение уровня остатков в растениях происходит в основном благодаря биоразбавлению [2].

Исследования стабильности и миграции ДЯК в почве и воде проводились в 1983—1984 гг. по договору о творческом научно-техническом содружестве, заключенному между Тимирязевской сельскохозяйственной академией и 1-м Московским медицинским институтом им. И. М. Сеченова.

При постановке экспериментов применяли методы математического планирования многофакторных опытов. Полученные результаты обрабатывали, используя корреляционный и регрессионный анализы с целью создания математических моделей изучаемых процессов [1, 14, 16, 17].

Стабильность и миграцию препарата ДЯК изучали в лабораторных условиях на почвах, преобладающих в предполагаемых районах широкого его применения. Характеристика почв следующая: дерново-подзолистая, по механическому составу легкий песчано-крупнопылеватый суглинок, горизонт Н глубиной 0—40 см; рН 5,8, содержание P_2O_5 — 36,7 мг на 100 г (по Кирсанову), K_2O — 12,7 мг на 100 г (по Масловой), гумуса — 1,7—1,8 %; чернозем обыкновенный легкосуглинистый, горизонт Н глубиной 0—40 см; темно-серый, рыхлый, рН 7,2, содержание P_2O_5 — 25,3 мг на 100 г (по Мачигину), K_2O — 42,2 мг на 100 г (по Масловой), гумуса — 5,8 %, нитрификационная способность — 23 мг/кг.

Миграция препарата ДЯК в почве

Цель данного исследования — определение возможностей и условий попадания препарата ДЯК из почвы в грунтовые воды.

В доступной нам литературе имеется мало данных о миграции химических веществ в окружающей среде. В основном они касаются миграции пестицидов [4, 6, 18, 19, 23, 24] и хлорхолинхлорида [3, 13, 25]. Ведущими факторами, влияющими на миграцию этих веществ в почве, являются физико-химические свойства самих препаратов и почвы, вносимая доза и кратность обработки, климато-географические и гидрогеологические условия в местах применения.

Опыты по выявлению закономерностей миграции ДЯК в почве с ливневыми водами проводили на фильтровальных установках конструкции Е. И. Гончарука [7], которые обеспечивают свободную фильтрацию жидкости и воспроизводимость всего комплекса физико-химических процессов, происходящих в почве при фильтрации. Почву (12 кг), предварительно доведенную до влажности 40 и 60 % максимальной влагоемкости, помещали в установки при высоте набивки 30 см.

ДЯК хорошо растворим в воде, и в связи с этим основными изучаемыми факторами в данном эксперименте были количество выпавших осадков и дозы препарата. Задаваемое количество осадков — 1 и 5 миллиметров в сутки, что соответствует среднему минималь-

ному и максимальному их количеству за последние 10 лет в весеннелетние месяцы (май — июнь) в Московской области. При норме 1 мм почва в установке орошалась 32 мл воды один раз в сутки, при норме 5 мм — 157 мл воды дробно через 1,5—2 ч.

Выбор доз препарата обусловливался методическими указаниями по испытанию ДЯК на яблоне [20] и «Методическими рекомендациями по установлению ПДК химических

Кодирование факторов и интервалы варьирования в опыте по изучению миграции ДЯК в почве

Фактор	+ 1	0	—1
x_1 — доза препарата, кг/га	30	18	6
x_2 — длительность выпадения осадков, сут	10	6	2
x_3 — норма выпадения осад- ков, мм	5	3	1

веществ в почве» [22]. Принятые в опыте дозы —6 и 30 кг д. в. препарата на 1 га, или в расчете на объем почвы, загружаемый в установку, 20 и 100 мг.

При изучении миграции ДЯК в почве использовался метод математического планирования многофакторного эксперимента типа

$$N=2^{x}=2^{3}=8$$
,

где N — количество серий опытов; x — количество изучаемых факторов; 2^x — количество комбинаций факторов.

Составление плана эксперимента заключалось в выборе точек, симметричных относительно нулевого уровня (табл. 1), и построении матрицы, определившей 8 комбинаций изучаемых факторов (табл. 2).

Из табл. 2 следует, что в пробах дренажных вод препарат обнаруживался со 2-х по 10-е сутки после его внесения. Количество вымываемого препарата зависело от интенсивности осадков, длительности их выпадения и дозы.

В результате обработки экспериментальных данных методом наименьших квадратов получено уравнение (модель I):

$$y = 2,14749 - 0,019083 x_1 + 0,093441 x_2 + 0,1055 x_3 + 0,0046353 x_1 x_2 + 0,05265 x_1 x_3 + 0,235312 x_2 x_3 - 0,0052604 x_1 x_2 x_3,$$

где y — выведение препарата, % к внесенному (с разбросом ±1,1 %); x_1 — доза ДЯК, кг/га; x_2 — длительность выпадения осадков, сут; x_3 — норма выпадения осадков, мм.

Анализ данной математической модели показал, что наибольшее влияние на вынос препарата оказывает количество выпавших осадков $(x_3$ и $x_2)$. По результатам расчетов модели I была построена номограмма динамики миграции ДЯК в почве (рис. 1).

После прекращения выноса препарата в дренажные воды на 10-е сутки исследовали его остаточные количества в почве. Пробы почвы

Таблица 2 Матрица эксперимента и результаты изучения миграции ДЯК в почве (при влажности 60 % максимальной влагоемкости и температуре 20°)

	x_1			Выведение ДЯК из ного	почвы, % от внесен- (M ± m)
№ опыта		x_2	x ₃	дерново-подзолис- тая	черноземная
1 2 3 4 5 6 7	30 6 30 6 30 6 30 6	10 10 2 9 10 10 2 6	5 5 5 5 1 1	16,20±2,00 15,54±1,90 11,24±1,40 6,42+0,78 6,36±0,77 5,72±0,19 3,88±0,94 3,12±0,91	$14,76\pm1,80$ $13,42\pm1,20$ $6,11\pm0,74$ $6,21\pm0,68$ $6,38\pm0,18$ $6,87\pm0,74$ $2,96\pm0,86$ $2,97\pm0,61$

Таблица 3

Остаточные количества ДЯК (мг/кг) в дерново-подзолистой почве на 10-й день эксперимента

	Внесено ДЯК. мг			
Слой почвы,	20		100	
СМ	В	ыпало ос	адков,	ММ
	1	5	1	5
0—5 5—10 10—15 15—20	1,06 0,98 0,08 0,09	0,93 0,84 0,37 0,42	5,48 4,63 0,26 0,44	5,11 4,95 1,13 2,21

отбирали с глубин 5, 10, 15 и 20 см и высушивали до постоянной массы. Анализ проводили унифицированным методом, основанным на щелочном гидролизе остаточных количеств препарата и возможных его метаболитов до диметилгидразина и колориметрической реакции последнего с пентацианоаминоферратом [5]. Результаты исследования представлены в табл. 3.

Остаточные количества препарата в почве на 10-й день в среднем составляли 0,55—0,64 мг/кг при внесении 6 кг/га и 2,71—3,35 мг/кг

при внесении 30 кг/га. При этом наибольшее его количество (до 10 % внесенной дозы) обнаруживалось в слое почвы 0—10 см.

Стабильность препарата ДЯК в почве

Цель данного исследования — определение стабильности препарата в почве для обоснования возможности прогнозирования остаточных его количеств в естественных условиях.

Влажность и температура почвы воздействуют на метаболизм почвенных микроорганизмов и высших растений, ферментные системы которых могут участвовать в расщеплении молекул химических веществ [9, 12, 15, 26]. Степень разрушения химических соединений под действием этих факторов внешней среды зависит от времени контакта химического агента с почвой.

При изучении стабильности пестицидов и ретарданта хлорхолинхлорида было установлено [8, 10, 13, 25, 26], что на содержание препаратов в почве влияют различные факторы, в том числе вид и механический состав почвы. Поэтому для наших опытов использовались

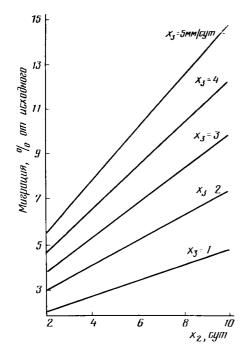


Рис. 1. Номограмма определения миграции ДЯК из почвы с ливневыми и поливными водами.

два разных вида почвы (см. выше). Тип многофакторного эксперимента был тем же, что и при изучении миграции препарата:

 $N=2^{x}$, где N — количество опытов; x — количество изучаемых факторов; 2^{x} — количество комбинаций.

Составление плана эксперимента заключалось в выборе точек, симметричных относительно нулевого уровня (табл. 4), и построении матрицы, определившей 8 комбинаций изучаемых факторов (табл. 5).

В опыте использовали конические колбы объемом 500 мл с марлевыми пробками. Почву доводили до воздушно-сухого состояния, затем просеивали через сито Кноппа № 3. Из подготовленных образцов брали навески по 100 г, в которые с помощью пульверизатора вносили по 10 мг препарата, растворенного в воде. Количество воды добавляли в соответствии с матрицей эксперимента для обеспечения 60 и 20 %.

влажности почвы к ее максимальной влагоемкости. Такую влажность почвы поддерживали в течение всего эксперимента.

Всего было подготовлено 192 пробы почвы, из них 96 проб (опыты 1—4 по матрице эксперимента) помещали в термостат, где поддерживали температуру 20±1°, а остальные 96 проб (опыты 5—8) — в холодильник с температурой 4± ±1,5°. Периодичность отбора проб устанавливали, исходя из процента деструкции в течение первого дня эксперимента. Степень деструкции колебалась от 4 до 15 %, в связи с чем в соответствии с «Методическими рекомендациями по установлению ПДК химических веществ в почве» определение остаточных количеств препарата проводилось через 1, 5, 15, 30, 45, 60 и 110 сут после введения ДЯК. В каждый срок для анализа отбирали 24 пробы (по 3 на каждый опыт согласно матрице). В отобранные пробы вносили по 100 мл дистиллированной воды и аккуратно их перемешивали в течение 30 мин, а затем анализировали указанным ранее методом.

Кодирование факторов и интервалы варьирования в опыте по изучению стабильности ДЯК в почве

Фактор	+1	0	1
x_1 — тип почвы и содержание гумуса, % x_2 — влажность почвы, % макси-	Черно- земная 5,8	3,8	Дерново- подзоли- стая 1,8
мальной влагоем- кости	60	40	20
x_3 — температура почвы, °C	20	12	4

Таблица 5

Матрица эксперимента

№ опыта	x,	x 2	x s
1 2 3 4 5 6 7 8	$ \begin{array}{c} +1 \\ -1 \\ +1 \\ -1 \\ +1 \\ -1 \\ +1 \\ -1 \end{array} $	+1 +1 -1 -1 +1 +1 -1	+1 +1 +1 +1 -1 -1 -1

На основании полученных результатов определяли для каждого опыта (по матрице) в каждый срок наблюдения среднее значение содержания остатков препарата и значение ошибки опыта ($M\pm m$).

Из табл. 6 видно, что изменение содержания ДЯК в почве во времени близко к экспоненциальной зависимости

$$C_t = C_0 \cdot e^{-kt}$$
,

где $C_{\rm t}$ — содержание препарата в данный момент времени t, мг; $C_{\rm 0}$ — исходное его содержание; k — константа скорости разложения ДЯК; e — основание натурального логарифма.

По данным табл. 6 рассчитаны константы скорости разложения и периоды полуразложения препарата ДЯК в почве (табл. 7).

В результате обработки экспериментальных данных методом наименьших квадратов получено уравнение, описывающее процесс разложения ДЯК в почве (модель II):

$$y = -0.028587 + 0.005305x_1 + 0.0004197x_2 + 0.009742x_3 - 0.000076x_1x_2 - 0.001557x_1x_3 - 0.0000654x_2x_3 + 0.0000116x_1x_2x_3,$$

Таблица 6 Динамика изменения содержания ДЯК (мг) в пробах почвы

		Срок набл	юдения, сут	
№ опыта	1	15	45	110
1	7,5±0,80	$6,09\pm0,53$	3,37±0,42	1,55±0,08
2	$8,57\pm0,65$	$0,27\pm0,04$	0.07 ± 0.01	0,0
3	$9,56\pm0,37$	$7,83\pm0,63$	$4,44\pm0,38$	$2,10\pm0,11$
4	9,43+0,38	0.97 ± 0.12	0,06+0,02	0,0
5	8,57±0,54	8,14±0,72	$7,63\pm0,93$	$5,82\pm0,67$
6	$8,34\pm0,46$	$6,17\pm0,57$	$3,23\pm0,28$	$1,55\pm0,12$
7	8.09 ± 0.71	$7,64\pm0,63$	$6,49\pm0,52$	$5,24\pm0,31$
8	8,13±1,11	6,87±0,76	$4,95\pm0,65$	$2,46\pm0,31$

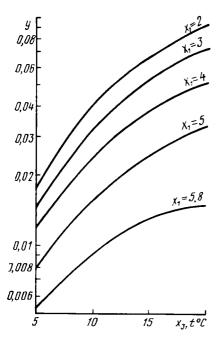


Рис. 2. Номограмма определения константы скорости разложения ДЯК (у) в почве (при влажности 40 % максимальной влагоемкости).

Константы скорости разложения (κ) и периоды полуразложения $(t_{0,5})$ ДЯК в почве в зависимости от действия факторов внешней среды

№ опыта	k	t _{0,5} , сут
1	0,01736±0,00043	39,93±0,96
2	0,08330±0,02200	8,32±1,80
3	0,01668±0,00014	41,56±0,36
4	0,10757±0,00280	6,44±0,18
5	0,00421±0,00048	164,66±21,00
6	0,01502±0,00330	46,15±8,30
7	0,00476±0,00032	145,63±9,00
8	0,01080±0,0025	64,19±12,00

где y — константа скорости разложения ДЯК в почве (при разбросе $\pm 0,0004$), x_1 — тип почвы по содержанию гумуса от 1,8 до 5,8 %; x_2 — влажность почвы от 20 до 60 % максимальной влагоемкости; x_3 — температура почвы от 4 до 20°

Анализ данного уравнения показал, что степень разложения

препарата зависит в первую очередь от температуры почвы, а затем от типа почвы. С увеличением температуры процесс разложения ускоряется, а с увеличением содержания гумуса в почве — замедляется. Последнее может быть обусловлено образованием гидразидсодержащих метаболитов — продуктов взаимодействия препарата и гуминовых веществ почвы. Влажность почвы оказывает меньшее влияние.

Расчеты по модели II позволили построить номограмму для определения степени разложения ДЯК в почве в зависимости от ее температуры и содержания в ней гумуса (рис. 2).

Пользуясь определенной по номограмме или модели константой скорости разложения препарата и уравнением экспоненты, можно определить остаточные количества препарата в почве на любой конкретный срок наблюдения при известном расходе препарата.

Стабильность препарата в водной среде

Значительная стабильность препарата ДЯК в почве и его способность мигрировать из почвы с ливневыми и поливными водами предопределяют возможность попадания препарата в поверхностные и грунтовые воды. В связи с этим задачей данного исследования являлось определение стабильности ДЯК в водной среде при моделировании влияния факторов внешней среды на процессы его разложения.

Поскольку ДЯК может мигрировать с поверхностным стоком в водоемы, а с ливневыми осадками — в грунтовые воды, нами изучалась стабильность препарата в водах разного вида: в воде из пруда Новодевичьего монастыря, в которую исключено попадание как промышленных стоков, так и хозяйственно-бытовых сточных вод (водоем неглубокий, хорошо прогревается солнцем, и, следовательно, процессы самоочищения в нем могут протекать весьма интенсивно за счет деятельности сапрофитной микрофлоры и водорослей); в грунтовой воде, полученной из скважины глубиной 72 м (мощность перекрытия 27м), качество ее соответствовало требованиям ГОСТ 2874—73 «Вода питьевая»; в дистиллированной воде с рН 6,8. Модельными водоемами слу-

Кодирование факторов и интервалы варьирования в опытах по изучению стабильности ДЯК

Таблица 9

№ опыта	x_1	x_2
1	+ 1	+1
2	1	+1
3	+ 1	1
4	1	1

по изучению стабильности ДЯК в прудовых и грунтовых водах						
Фактор	+1	0	—1			
$egin{array}{ll} x_1 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	9 20	7 12	5 4			

жили стеклянные аквариумы емкостью 20 л и сосуды объемом 5 л с широким горлом.

Известно, что процесс разложения химических веществ в водной среде может зависеть от ее рН [8, 11]. Поэтому в экспериментах моделировали действие этого фактора. Для большинства поверхностных и грунтовых вод характерны значения рН от 5 до 9. Эти крайние значения рН и были приняты при проведении экспериментов. Требуемый уровень рН получали введением слабых растворов кислот и щелочей.

Температура воды в опытах 20 и 4° (соответственно в термостате и в холодильнике).

При изучении стабильности препарата ДЯК в прудовой и грунтовой водах также использовали методы математического планирования эксперимента. Поставленную задачу решали с помощью полного факторного эксперимента типа:

$$N=2^x$$
 при $x=2$ (рН и t°).

Составление плана эксперимента заключалось в выборе симметричных относительно нулевого уровня точек (табл. 8) и построении матрицы эксперимента (табл. 9), позволившей определить необходимость постановки двух серий опытов, по 4 комбинации изучаемых факторов в каждом.

Опыты с дистиллированной водой проводились на свету при pH среды 6,8, температуре 20° и служили контролем.

Пробы воды из модельных водоемов отбирали регулярно с 1-го по 110-й день эксперимента. Содержание остаточных количеств ДЯК определяли указанным ранее методом.

Анализ полученных данных (табл. 10) свидетельствует о том, что процесс разложения ДЯК в водной среде близок экспоненциальной зависимости. Это позволило определить периоды полуразложения препарата и константы скорости его разложения (табл. 11).

В прудовой воде скорость разложения препарата зависит от тем-

Таблица 10 Динамика концентрации препарата ДЯК (мг,л) в водной среде

	Срок наблюдения, сут					
№ опыта	1	3	7	9	43	110
			Прудовая вод	(a		
1	1,18	0,55	0,47	0,13	0,12	0,0
2	1,11	0,66	0,36	0,07	0,0	0,0
2 3	1,10	0,55	0,32	0,37	0,21	0,087
4	0,85	0,48	0,49	0,30	0,12	0,0
			Грунтовая вод	ца		
1	0,80	0,51	0,45	0,33	0,06	0,0
1 9	0,80	0,57	0,28	0,19	0,13	0,05»
3	0,72	0,46	0,39	0,26	0.07	0,0
4	0,81	0,51	0,29	0,25	0,16	0,116
)	Цистиллированн	ая вода		
	0,79	0,53	0,34	0,24	0,13	0,058

Константы скорости разложения (k) и периоды полуразложения ($\mathbf{t}_{0,5}$) препарата ДЯ К в водной среде

	Прудовая вода		Грунтовая вода	
N° опыта	k	t _{0,5} , cyt	К	t _{0,5} , cyT
1 2 3 4	0,04053 0,30670 0,01793 0,03948	17,10 2,26 38,66 17,56	0,05692 0,01896 0,05146 0,01352	12,18 36,56 13,47 51,27

П р и м е ч а н и е . В дистиллированной воде k=0,02268, $t_{0.5}$, =30,56 сут.

пературы и рН. Так, при повышении температуры от 4 до 20° период полуразложения сократился в 8 раз. Также в 8 раз сократился $t_{0.5}$,

при снижении pH с 9 до 5. Это дает основание предположить, что существенную роль в разложении препарата в водной среде может играть микрофлора, для которой температура 20° и pH 5 близки к оптимальным.

В грунтовой воде, бедной микроорганизмами, ведущим фактором в разложении препарата является рН, причем с ростом значений рН период полуразложения сокращается. Это согласуется с соответствующими данными для дистиллированной воды, имеющей рН 6,8.

На основании матрицы эксперимента и полученных результатов составлены 2 системы по 4 уравнения вида:

$$y = a_0 + a_1x_1 + a_2x_2 + a_3x_1x_2$$

где y — константа скорости разложения ДЯК в водной среде; a_0 — свободный член; a_1 — a_2 — коэффициенты, свидетельствующие о линейном вкладе каждого фактора; a_3 — коэффициент, свидетельствующий о наличии или отсутствии парных взаимодействий факторов.

В результате обработки данных методом наименьших квадратов получено математическое описание процесса разложения ДЯК в прудовой воде (модель III) и грунтовых водах (модель IV) в виде следующих уравнений регрессии:

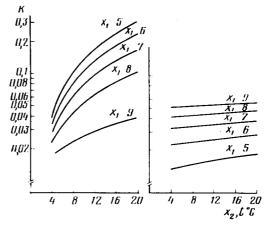
$$y_{\text{п. B.}} = -0.0768924 + 0.0099136x_1 + 0.0358152x_2 - 0.0038228x_1x_2;$$

 $y_{\text{г. B.}} = -0.0352588 + 0.00948375x_1 + 0.00033844x_2 + 0.000003125x_1x_2,$

где $y_{\text{п. в.}}$ и $y_{\text{г. в}}$. — константа скорости разложения ДЯК соответственно в прудовой (поверхностной) и грунтовых водах; x_1 — рН водной среды в пределах 5—9; x_2 — температура воды от 4 до 20° .

Оценка значимости факторов в модели III показывает, что ведущим фактором, влияющим на процесс разложения препарата в поверхностных водах, является температура воды, а рН играет меньшую роль. В грунтовых же водах (модель IV) ведущим фактором является рН, а температура влияет на этот процесс в меньшей степени.

На основании полученных математических моделей построены номограммы для определения констант скорости разложения препарата в водной среде (рис. 3). Пользуясь указанными моделями или номограммами, можно прогнозировать границы распространения препарата в воде.


Пример расчета миграции ДЯК в почве и воде

В этом сообщении приводится пример такого расчета для сада, в котором препаратом ДЯК обрабатывался участок 8-летних яблонь, растущих на дерново-подзолистой почве с содержанием гумуса 3,5 %. Влажность почвы в период обработки 40 %, температура 20°. Дождь, начавшийся через 4 дня после опрыскивания, продолжался 3 дня. При этом выпадало по 5 мм осадков в сутки.

Рис. 3. Номограмма определения константы скорости разложения ДЯК (у) в поверхностных (слева) и в грунтовых волах

При обработке сада такого возраста до 25 % препарата попало непосредственно на почву, что составило 0,5 кг/га.

По номограмме (рис. 2) определяем, что при данных почвенных условиях константа скорости разложения препарата равна 0,06. По формуле $C_t = C_\theta e^{-ki}$ рассчитываем, что

к моменту выпадения осадков остатки препарата в почве составили

$$C_t = 0.5e^{-0.06 \cdot 4} = 0.393 \text{ kg/ra}.$$

Опыты с меченым препаратом, проведенные в том же саду, показали, что при нанесении чистого действующего вещества (без добавок, введенных в препаративную форму) на листья и плоды в отмывке с них на 4-й день может находиться около 40 % д. в. Допускаем, что осадки полностью смоют на почву 0,760 кг д. в. на 1 га (т. е. 40 % от 1,9 кг, попавших на деревья при опрыскивании).

Таким образом, суммарное количество препарата, оказавшегося в почве составляет 1.153 кг/га.

По номограмме (рис. 1) находим, что при интенсивности осадков 5 мм и 3-дневной длительности их выпадения мигрировать может 10 % препарата, т. е. 0,115 кг. В этом случае в грунтовых водах, мощность залегания которых составляет около 3 м, при пористости водоносных пород 0,001 создается следующая концентрация препарата:

$$C_0 = \frac{0.115}{10.000 \text{ M}^2 \cdot 3 \text{ M} \cdot 0.001} = \frac{0.115}{30 \text{ M}^3} = 3.83 \text{ r/M}^3 = 3.83 \text{ M}^2/\pi.$$

Пользуясь номограммой (рис. 3), определяем, что при значении pH грунтовых вод 7 и их температуре 10° константа скорости разложения препарата равна 0.035.

Зная, что ПДК ДЯК в воде 0,05 мг/л, можно рассчитать время, за которое препарат разложится в грунтовых водах до уровня ПДК.

По модели IV находим, что

$$t = \left(\ln \frac{C_0}{C_t}\right) \cdot y^{-1} = \left(\ln \frac{3.83}{0.05}\right) \cdot \frac{1}{0.035} = 123.9 \text{ cyr.}$$

Скорость грунтового потока может быть в пределах от 0,1 до 10 м/сут. Взяв в расчет ее значение, близкое к максимальному — 8 м/сут, можем предсказать границу распространения препарата с грунтовыми водами и сроки возможного загрязнения водоемов. Так, если водоем расположен ближе 1000 м от места применения препарата, то загрязненные воды попадут в него через 124 сут. В данном примере рассмотрены экстремальные условия, при которых получено наибольшее распространение препарата с водной средой. В регламентах применения препарата ДЯК принята (на основании наших исследований) удаленность мест применения и слива промывных вод от водоисточников, используемых для питьевых целей, не менее 1000 м.

Выводы

1. Препарат ДЯК разлагается в почве и водной среде, и процесс его деструкции в этих средах характеризуется экспоненциальной зависимостью.

- 2. ДЯК способен частично мигрировать с поливными и ливневыми водами, а также в определенной степени закрепляться в поверхностном слое почвы.
- 3. Ведущими факторами, определяющими разложение препарата в почве, являются температура, а затем содержание гумуса, причем с увеличением последнего скорость деструкции замедляется.
- 4. На разложение препарата в поверхностных водах влияют их температура и рН, при этом интенсивность разложения ДЯК выше в условиях, наиболее благоприятных для развития сапрофитной микрофлоры. В грунтовых водах температура оказывает меньшее влияние на разложение ДЯК, а ведущим фактором является рН среды, причем более интенсивно процесс деструкции идет в щелочной среде, что обусловлено химическими свойствами препарата.
- 5. Препарат ДЯК отличается большей стабильностью в почве и воде по сравнению с такими регуляторами роста, как хлорхолинхлорид и кампозан.
- 6. Разработанные модели позволяют прогнозировать интенсивность разложения препарата в конкретных условиях и делать расчеты его остаточных количеств на определенный срок.

ЛИТЕРАТУРА

1. Адлер Ю. П., Марков Е. В., Грановский А. В. Планирование эксперимента при поиске оптимальных условий. Наука, 1971. — **2.** Блиновский И. К., Тучков В. П., Соркин а Г. Л. и др. Исследование остаточных количеств 2,2-диметилгидразида янтарной кислоты в различных органах яблони при разработке регламентов применения препарата ДЯК. — С.-х. биол., 1984, № 10, с. 56—62. — 3. Блиновский И. К., T учков B. Π ., M азаев B. T. и др. Стабильность и миграция хлорхолинхлорида в почве и воде. — Изв. ТСХА, 1979, вып. 6, с. 89—95. — **4.** Болотный А. В., Письменная М. В., Акоренко С. А. Трансформация фосфорорганическчх пестицидов антио и хлорофоса в окружающей среде. — Гигиена и санитария, 1978, № 5, с. 28—31. — **5.** Бунятя н Ю. А., Петросян М. С., М у радян А. Г. и др. Методические указания по определению ДЯК, ГМК — Na, гидрела, дигидрела методом спектрофотометрии в воде, растительном материале: томаты, яблоки, свек-Метод, указ. по определела. — В кн.: нию микроколичеств пестицидов в продуктах питания, кормах и внешней среде. M.: MCX CCCP, 1984, c. 267—274. -6. Вирченко Е. П., Бобовникова Ц. И., Егоров В. В. О миграции ДДТ и гамма-ГХЦГ в дерново-подзолистых почвах. — Почвоведение, 1977, № 2, с. 59—63. — 7. Гончарук Е. И. Санитарная охрана почвы от загрязнения химическими веществами. Киев: Здоровье, 1977. — **8.** Киселева Н. И. Влияние ультрафиолетового облучения и рН среды на стойкость полихлоркамфена. — Химия в сельск. хоз-ве, 1975, № 5, c. 52.-9. Ковда В. А. Основы учения о почвах. М.: Наука, 1973, т. 1. — **10.** Кожинова Л. А. Гигиеническая оценка почвы и растений, обработанных ПХП. — Гигиена и санитария, 1970, № 8, с. 53—56. — 11. Королев А. А., Мазаев В. Т. Трансформация химических веществ в водоемах и в процессе очистки воды как гигиеническая проблема. — Гигиена и санитария, 1975, № 7, с. 83—86. — 12. Ко-

роткова О. А. Пестициды и окружающая среда: ароматические амины и солет четвертичных аммониевых оснований. — Химия в сельск. хоз-ве, 1976, № 12, с. 34— 39. — **13.** Мазаев В. Т., Василенко В. Е. Расчет распространения зоны загрязнения хлорхолинхлоридом грунтовых вод. — Гигиена и санитария, 1982, № 5, с. 13—16. — **14.** Нагорный П. В. Изучение комбинированного действия скольких факторов с помощью регрессионно-корреляционного анализа. — Гигиена и санитария, 1973, № 7, с. 76. — **15.** Най-штейн С. Я. Актуальные вопросы гигиены почвы. Кишинев: Штиинца, 1974.— 16. Налимов В. В. Теория эксперимен-Наука, 1971. — **17.** Налита. М.: мов В. В., Чернова Н. А. Статистические методы планирования экспериментов^ М.: Наука, 1965. — **18.** Спыну Е. И. Гигиенические аспекты циркуляции пестицидов в окружающей среде. — В сб.: Акт. вопр. применения пестицидов в различных климато-географ, зонах. Ереван: Айастан, 1976, с. 8—11. — **19.** Спыну Е. И., Моложанова Е. Г., Стежанский Н. С. Гигиеническое нормирование пестицидов в почве. — Химия в сельск. хоз-ве, 1975, № 10, с. 69—71. — **20.** Временные методические указания по испытанию препарата ДЯК в производственных условиях. М.: MCX СССР, 1978. — **21.** Рекомендации по опытно-производственному препарата ДЯК на зимних сортах яблони. M.: MCX СССР, 1985. — 22. Методические рекомендации по установлению ПДК химических веществ в почве (№ 1427—76 от 19 мая 1976 г.). М.: МЗ СССР, 1976.— 23. На maker J. W. — J. Am. Chem. Soc. Adv. Chem. Ser. 1966, vol. 60, p. 102, — 24. На maker J. W. The interp. 102, — 24. Hallakel J. W. The interpretation of soil leashing experiments. Envizion Dyn. Pestic. N. J. L., 1975, p. 115—133. — 25. Linser H. u. a. Zeitschrift für Pfllanz., 1965, Bd. 108, N 1. S. 57—65.—26. Takahashi E., Yamamada Y,, Konishi S., Matsuda T., Yamamoto O. — J. Sci. of Soil a. Manure. Japan. 1969, vol. 40, N 2, p. 84-88. Статья поступила 1 января 1986 г.

SUMMARY

Stability and migration of 2.2-demethylhydrazide of succinic acid (DSA) in soddy-podzolic and chernozem soils, as well as in surface and ground waters have been studied. As a result of information obtained, models of migration and destruction processes of the preparation in these objects are developed.