АГРОХИМИЯ

Известия ТСХА, выпуск 2, 2002 год

УДК 631.811:633.253:633.286

ПРОДУКТИВНОСТЬ ГОРОХООВСЯНОЙ СМЕСИ ПРИ ПРИМЕНЕНИИ РАСЧЕТНЫХ ДОЗ УДОБРЕНИЙ В УСЛОВИЯХ ВОЛОГОДСКОЙ ОБЛАСТИ

Г. Б. КИРИЛЛОВА, Ю. П. ЖУКОВ

(Кафедра агрохимии)

Применение расчетных доз удобрений на дерново-подзолистой почве в условиях Вологодской области в среднем за 8 лет позволило получать 218 ц/га зеленой массы горохоовсяной смеси, что составило 87% планируемого уровня с содержанием сырого белка 13,4% при окупаемости 1 кг д. в. удобрений 31 кг зеленой массы.

Проблему обеспечения населения страны собственными продуктами питания невозможно решить без применения оптимальных ДО3 минеральных, известковых и органических удобрений [1]. Эффективное применение удобрений обеспечивает получение планируемых ypoнаилучшего жаев культур, для конкретных условий катакже чества, a позволяет регулировать содержание почве питательных веществ и соблюдать условия охраны окружающей среды [2, 3].

Цель настоящей работы — экспериментальная проверка возможности получения пла-

новой урожайности горохоовсяной смеси при применении рассчитанных с помощью балансовых коэффициентов доз удобрений. Наряду с этим проводилось экспериментальное уточнение затрат питательных элементов создания 10 и зеленой массы горохоовсяной смеси и баланкоэффициентов пользования элементов удобрений.

Методика

Исследования проводили в стационарном полевом опыте, заложенном в 1990 г. на опытном поле Вологодской государственной молочно-хо-

зяйственной акалемии на дерново-подзолистой почве Пахотный слой почвы перед закладкой опыта характеризовался слабой кислотностью $(pH_{COII}, 5,1)$, высоким содержаподвижного фосфора — 296 мг/кг), $(P_{2}0_{5})$ средобменного ним калия $(K_20 - 116 \text{ мг/кг})$ и повышенным содержанием гумуса (3,28%). Опыт заложен в 4-польном севообороте, развернутом во времени и в пространстве, в 4-кратной повторности co следующим культур: чередованием смесь, рохоовсяная озимая рожь, картофель, ячмень. По завершении I ротации севооборота схема опыта была откорректирована. В опыте высевали горох сорта СЗМ-85 и овес Кировский. Дозы минеральных удобрений рассчитывали на планируемую урожайность 250 ц/га зеленой массы с помощью балансовых коэффициентов использования питательных элементов из удобрений.

Торфо-навозный компост вносили ежегодно под основную обработку почвы картофель; фосфорные калийные удобрения в виде двойного суперфосфата калийной соли — под основную обработку почвы, а азотные в виде аммиачной селитпредпосевную ры ПОД Припосевное культивацию. удобрение в виде нитроам-

мофоса сеялкой вносили СЗУ-ЗД Посевная площадь делянки 140 м², учетной не менее 24 м². Урожай учитывали сплошным методом и приводили стандартной влажности (80%). Количество питательных элементов продукции **устанавливали** общепринятыми методами. Все полученные в полевых и лабораторных исследованиях данные обработаны методом дисперсионного анализа.

Результаты и их обсуждение

Урожайность зеленой массы горохоовсяной смеси, полученная только за счет почвенного плодородия, среднем за I ротацию севооборота составила 70% планируемой (табл. 1). Применение расчетных доз удобрений повысило ее на 66 ц/га и практически позволило достичь желаемого уровня. Слеподчеркнуть, дует также что как в отдельные годы, так и в среднем за ротацию севооборота создание и отрицательного (3-й вариант), и положительного (4-й вариант) балансов калия влияния урожайность не оказало. Равноценными оказались эквивалентные по питательным элементам минеральная (2-й вариант) и органо-минеральная (5-й вариант) системы удобрений. Следовательно, выбор величин балансо-

Таблипа 1 Урожайность горохоовсяной смеси в І ротации севооборота при расчетных дозах удобрений (ц/га)

Вариант опыта	1991 г.	1992 г.	1993 г.	1994 г.	В сред- нем за I рота- цию	Плановые балансовые коэффициенты $N-P_2O_3-K_2O$,
1 — Без удобрений	186	144	188	182	175	
2 — 80N40P125K	290	191	226	253	240	110-90-100
3 — 80N40P105K	278	213	223	256	242	110-90-120
4 — 80N40P180K	276	220	224	243	241	110-90-70
5 — 35N15P110K*	299	204	218	238	240	110-90-100
HCP ₀₅	25,6	32,3	20,3	18,0		
* Последействие	240	office	офонат	возног	о компос	та.

вых коэффициентов для расчета доз удобрений может определяться ресурсами удобрений, уровнями BO3можной урожайности горохоовсяной смеси, а также фактической и желаемой обеспеченности почв питательными элементами.

Во II ротации севооборота (табл. 2) в первые два года исследований применение на фоне последействия удобрений в дозах 245, 300 и 225 кг лв/га только припосевного (2-й вариант), или только органического (4-й вариант) удобрения, или того и дру-ГОГО вместе (3-й вариант) соответственно позволило получить такую же урожайность зеленой массы, что и при внесении полной дозы удобрений (5-й вариант). Однако на 3-й и 4-й год полученная на указанных вариантах урожайность была значительно ниже, чем в 5-м варианте. В среднем за 4 года применение лишь припосевного удобрения повысило **урожайность** горохоовсяной смеси на 29 ц/га, лишь органического — на 49 ц/га, расчетной дозы удобрений — на 65 ц/га, что позволило получить в этом варианте 78% планового уровня. Применение на фоне органического удобрения припосевного влияния на урожайность не оказывало.

В среднем за две ротации севооборота при применении ДОЗ расчетных удобрений было получено 218 ц/га земассы горохоовсяной леной смеси. что составило 87% планового уровня.

Поскольку Вологодскую обл. относят к зоне рискованземледелия, TO

Таблица 2 Урожайность горохоовсяной смеси во II ротации севооборота при расчетных дозах удобрений (ц/га)

Вариант опыта	1995 г.	1996 г.	1997 г.	1998 г.	В сред- нем за II рота- цию	Плановые балансовые коэффициенты $N-P_{2}O_{3}-K_{2}O$,
1 - For your forces	190	174	100	194	121	
1 — Без удобрений		174	106	124	131	SCHOOL SERVICE CONTRACTOR
2 - 10N10P0K	166	192	132	152	160	THE CONTRACT OF THE
3 — 10N10P0K*	163	190	173	181	177	DUFFICH SERVICES
4 — 0N0P0K*	184	195	169	170	180	72 10 C. A. 144 Rev
5 — 55N25P60K*	174	200	186	225	196	110-100-200
HCP ₀₅	18,1	12,9	6,1	7,7		
* TT	10 -	/	1			

^{*} Последействие 40 т/га торфонавозного компоста.

важно при анализе эффективности применения удобрений выявить роль как системы удобрений, так и погодных условий по влиянию на колебания урожайности горохоовяной смеси по годам исследований. Статистический анализ вариабельности урожайности (табл. 3) показал, что в первые 4 года эти колебания определялись изменениями погодных и связанных с ними агротехнических

условии И применяемыми удобрениями в равной степени. Однако в последующие 4 года роль первых значительно снизилась и составила 23%, а роль удобрений повысилась и лостигла Следовательно. длительное применение расчетных удобрений обеспечивает лее стабильную урожайность горохоовсяной смеси в разные по погодным условиям годы.

Таблица 3 Влияние различных факторов на колебания урожайности горохоовсяной смеси при расчетных дозах удобрения (%)

Ротация	Погодно- агротехнические	Дозы удобрений	Случайные факторы
I	47,0	47,2	5,8
I	22,9	58,7	18,4
В среднем за 8 лет	35,0	53,0	12,0

Таблица 4 Содержание сырого белка в горохоовсяной смеси (% на абсолютно сухое вещество)

	(, , , , , , , , , , , , , , , , , , ,								
Вариант опыта	I ротация	II ротация	В среднем за 1991-1998 гг.						
1	11,0	11,0	11,0						
2	13,4	12,6	13,0						
3	13,1	13,6	13,4						
4	13,8	13,1	13,4						
5	13,2	13,7	13,4						

Применение расчетных удобрений оказывало ДО3 положительное лействие качество зеленой массы горохоовсяной смеси: в частности, содержание сырого белка при этом в среднем за І ротацию севооборота выросло на 2,1—2,8% (табл. 4). Слеподчеркнуть, что варианты по влиянию на этот показатель оказались практически равноценными.

В среднем за II ротацию севооборота применение припосевного удобрения способствовало повышению содержания сырого белка смеси на 1,6%, а органического и полной дозы удобрений — на 2,1 и 2,7% соответственно. В среднем 8 лет при применении расчетных доз удобрений содержание белка в зеленой массе выросло с 11 до 13,4%. Следовательно, применение расчетных доз удобрений позволяет получить не только плановую урожайность зеленой массы горохоовсяной

смеси, но и, как правило, хорошего качества.

Основным показателем. отражающим урожайкак ность зеленой массы горохоовсяной смеси, так и содержание в ней азота, фосфора являются затраты калия, (вынос) этих элементов единицу продукции. При использовании расчетных лоз удобрений во все годы исслелований значительно повышались затраты азота калия, затраты фосфора a при этом в I ротации нескольувеличивались, a BO практически не изменялись (табл. 5).

Следует подчеркнуть, в I ротации севооборота затраты азота, фосфора, а во II ротации только затраты фосфора ПО исследуемым вариантам практически не Затраты различались. калия увеличивались омкцп пропорционально величине дозы удобрений. Во II ротации севооборота затраты азота и калия были несколько

Таблица 5 Затраты азота, фосфора и калия на 10 ц зеленой массы горохоовяной смеси (кг)

				()		
Затраты	ar ministra	Hamel				
по ротациям	1	2	3	4	5	План
0,6	1 NE	1	Азот	2,850	10.00	1
I	3,0	3,7	3,6	3,8	3,7	
II	2,9	3,3	3,6	3,5	3,7	
В среднем	3,0	3,5	3,6	3,6	3,7	3,5
		Ф	осфор			
or Handing	0,9	1,1	1,0	1,1	1,0	
II	0.7	0.7	0.8	0.7	0,8	
В среднем	0,8	0,9	0,9	0,9	0,9	1,4
		H	Салий			
-oxedor vers	3,4	4,5	4,2	4,8	4,4	
- II	2.8	3,9	4.1	4.2	4,6	
В среднем	3,1	4,2	4,2	4,5	4,5	5,0

выше при внесении полной дозы удобрений. Рост затрат питательных элементов на единицу продукции свидетельствует о том, что рост урожайности горохоовсяной смеси лимитировался не недостатком питательных элементов, а другими факторами.

В среднем за 8 лет при применении расчетных ДО3 удобрений затраты азота и калия, равно как и рассчитанные балансовые коэффишиенты использования этих элементов, были близки к плановым, а затраты фосфора, а также полученные балансовые коэффициенты использования этого элемента из удобрений — ниже плановых (табл. 5, 6).

Для оценки экономической эффективности изучавшихся систем удобрения нами была рассчитана окупаемость 1 кг vдобрений прибавками урожая зеленой массы горохоовсяной смеси. Как показали расчеты, в среднем за І ротацию севооборота применение удобрений в дозах, рассчитанных с помощью балансовых коэффициентов, обеспечивало ИΧ оплату, практически равную (4-й вариант) или превышающую нормативную на 3,5 и 6,8 кг зеленой массы (2-, 5- и 3-й варианты соответственно). Следует заметить, что окупаемость минеральных удобприбавками рений **урожая** горохоовсяной смеси снижалась при повышении степе-

Таблица 6 Балансовые коэффициенты использования питательных элементов удобрений горохоовсяной смесью при расчетных дозах удобрений (%)

SIL SUTTO SILE	Вариант опыта							
Ротация	2	3	4 4	5				
The Atoms	DIE MARKET	Азот	1011//05/2	H MODEN HORSE				
II	111	110	115	110(110)* 90(110)				
В среднем	AN PERMON		comp_on =	100(110)				
		Фосфор						
I	63	60	63	59(90)				
Вородиом	METRICA	ALIEN TO CAME	NAME OF STREET	39(100)				
В среднем	CONTRACTOR	Калий	Corner day	49(95)				
I	86	97	63	84(100)				
II	-	-	-	138(200)				
В среднем	for the inter	MINE VANDA	DEN THE R	111(150)				
* В скобках п	лановые по	казатели.						
Окупаемость 1 кг NPK прибавками								
урожая, кг								
30 7 \								
28 -	Z [BQ]							
South autonor	1							
26 -								
24								
24 -								
22 -								
20	3143000	- Marina Marina						
225	245	265	285	305				
1220				the file of the second				
	Доза уд	обрений, кг/	га д.в.					
		_						

Влияние насыщенности удобрениями на окупаемость $1\ \rm kr\ NPK$ прибавками урожая.

ни удобренности более 225 кг д.в./га (рисунок). Во II ротации севооборота оплата 1 кг д.в. при применении расчетных доз удобрений была значительно выше, чем в І ротации, и составила 36 кг зеленой массы. В среднем за 8 лет исследований применение расчетных доз удобрений обеспечивало оплату каждого килограмма удобрений 31 кг зеленой массы горохоовсяной смеси, что в 1,3 раза выше норматива.

Выводы

Применение расчетных доз удобрений под горохоовсяную смесь хорошо на окультуренной дерново-подзолистой почве в условиях Вологодской обл. в среднем за 8 лет обеспечивало получение 218 ц/га зеленой массы горохоовсяной смеси с содержанием белка не менее 13%. Достигнутая за две ротации севооборота урожайность составила 87% планового уровня, оплата 1 кг д.в. удобрений — 31 кг зеленой массы.

2. Для почвенно-климатических условий Вологодской обл. и территорий, близких к ней, при расчете доз удобрений затраты элементов на 10 ц зеленой массы горохоовсяной могут быть смеси равными по азоту фосфору — 0,9 и калию — 4,5 кг, а балансовые коэффициенты использования удобрений — соответственно 90-100, 70-100 и 100-150%.

ЛИТЕРАТУРА

1. *Жуков Ю. П.* Агроэкологические аспекты комплексного применения средств химизации в Нечерноземной зоне. — Проблемы агроэкологического мониторинга ландшафтном земледелии. М.: ВИУА, 1994, с. 21-24. — Жуков Ю. П. Система удобрения в хозяйствах Нечерноземья. М.: Московский рабочий. 1983. — 3. Жуков Ю. П. Комплексная химизация интенсивных технологиях возделывания культур в Нечерноземье. М.: МСХА, 1989.

Статья поступила 25 декабря 2001 г.

SUMMARY

Application of calculated doses of fertilizers on soddy-podzolic soil in Vologodsky region allowed to obtain during 8 years on the average 218 centners/ha of green mass of pea-oat mixture, which made 87% of planned level with the content of raw protein 13,4% and repayment of 1 kg of active substance of fertilizers — 31 kg of green mass.