ХИМИЯ

Известия ТСХА, выпуск 4, 2002 год

УДК 628.547

НОВЫЕ ПРОИЗВОДНЫЕ В РЯДУ ЗН(1H)-1,3,4-БЕН30-И НАФТО[a]ТРИАЗЕПИНОВ

М.Ю. ЗАХАРОВ, В.С. КОЧУБЕЙ, О.Г. РОДИН

(Кафедра органической химии)

Получен производных ЗН(1Н)-1,3,4-бензоряд новых нафто[а]триазепинов. систематический набор содержащих различных 2,5,7. природе заместителей положениях Обсуждаются особенности синтеза строения некоторых производных ЭТОГО ряда. Строения двух разных предстасоединений дополнительно вителей ЭТОГО класса исследованы методом рентгеноструктурного анализа.

В последние годы в плане поиска новых лекарственных средств, обладающих седативными и другими терапевтическими свойствами, наблюдается повышенный интерес К производным 1.3.4бензотриазепинов. Это на-ШЛО отражение В публикааналитических шии ряда обзоров [3, 6] и недавних оригинальных статей. посвяшенных синтезу некоторых перспективных соединений на их основе [5]. Обращение подобного рода азотсодержашим гетероциклам вызвапервую очередь они являются структурными аналогами таких пулярных терапевтических

средств, как диазепам и элениум. Однако. ктох среди производных 1,3,4-бензотриазепинов и найдены образцы, обладающие высокой биологической активностью [6], достойной замены вышеупомянутым препаратам пока не найдено. Отсутствуют и какие-либо систематические исследования в плане корреляций «структура - биологиактивность», что огческая раничивает потенциальные возможности поиска В ряду перспективных соединеэтих ний.

В то же время в литературе достаточно подробно исследованы и систематизированы возможные подходы

различных 1,3,4синтезу бензотриазепинов (см., например [3, 6]). При этом в своем большинстве в качестве по-ЛУПРОДУКТОВ используются производные антраниловой кислоты и 2-аминобензофено-(гидразиды, гидразоны, карбазоны ИΧ тиоаналоги), т.е. ортоположениях В ароматического ядра уже софункциональные держатся которые далее группировки, разными способами участвув образовании 7-членного бензотриазепинового цик-Такой подход, за редкила. исключениями, приводит ΜИ получению производных К 1,3,4-бензотриазепинов, coдержащих оксо- или тиоксофункции в положениях 2 и (или) 5. В случае же синтеза производных. содержаших другие заместители В указанных положениях, эти методы имеют существенные ограничения.

Недавно Г.И.Колдобский исследовали сотр. детально оригинальный подход к син-ЗЯ-1,3,4-бензотриазепитезу нов путем взаимодействия 5арил(гетероарил)тетразолов N-арилбензилимидоил хлоридами в двухфазной системе с последующей изомери-1-имидоилтетразолов зацией 2-производные, термичесрасщепления кого последних внутримолекулярной трофильной атаки по а-углеродному атому N-арильной фраггруппы имидоильного

мента. Этим методом получен ЗЯ-1,3,4-бензотриазепиряд содержаших. в частно-HOB. сти, различные ароматичесзаместители в положекие ниях 2,5 и 7 [1, 2, 4]. Однако сочетание выбранных стителей таково, что целом трудно составить точную картину влияния структурных и электронных факторов заместителей на хол этой важной в синтетическом OTношении циклизации. Пракне исследованы тически состояние таутомерного 1Н- и 3Н-1,3,4-бенновесия зотриазепинов И влияние природы окружения на строение триазепинового шикла. Кроме того ДЛЯ проведения полноценных биологических испытаний производных ЗЯ(1Н)-1,3,4-бензотриазепинов необходимо иметь более разнообразный набор соединений, содержащих регулярно подобранные заместители.

учетом сказанного исследовали возможность получения широкой серии производных ЗЯ(1Н)-1,3,4бензонафто[а]триазепи-И содержащих комбинаци-HOB, онный набор различных природе заместителей в положениях 2,5 и 7, в том чиссодержащих разные тероароматические фрагменты. Синтез всех производных (I - XL) проводился по общей методике, описанной в работе [2], из соответствующих 5-R'-тетразолов (A) и N-(R²-фе-

нилен)-(Б) или Ы-(а-нафтил)-(В)-R³-имидоилхлоридов двухфазной системе «хлористый метилен-вода» в присутцетилтриметиламмоний ствии бромида и последующим разложением обрамическим имидоилтетразозовавшихся толуоле (способ а), лов (Г) условиях, благоприятт.е. образованию 1,3,4ствующих триазепинового (см. пикла Экспериментальную часть).

Выпавшие из толуольного раствора продукты представ-

ляли собой достаточно чистые соединения и дополнительно подвергались только промывке сухим толуолом, выходы для большинства продуктов находились в широком интервале 20-80% при чистоте не ниже 98-99%. Аналогичная результативность наблюдалась и при получении 1,3,4-бензотриазепинов термолизом сухих образцов соответствующих имидоилтетразолов (Г) (способ б).

 $R^{1} \stackrel{H}{\underset{N}{\longrightarrow}} H + R^{2} \stackrel{Q}{\underset{N}{\longrightarrow}} H = C \stackrel{C}{\underset{R^{3}}{\longrightarrow}} H = C \stackrel{C}{\underset{R^{3}}{\longrightarrow}} H = C \stackrel{R^{3}}{\underset{N}{\longrightarrow}} H = C \stackrel{$

 R^1 : A (C_8H_5), B (n-Cl- C_8H_4), C (n-MeO- C_8H_4), D (n-NMe $_2$ - C_8H_4), E (M,n-ди-EtO- C_8H_3), F (n-Me- C_8H_4), G (n-F- C_8H_4), H (4-пиридил), I (n-NO $_2$ - C_8H_4), J (M,n-ди -MeO- C_8H_3), K (n-BuO- C_8H_4), L (n-EtO- C_8H_4); R^2 : H, Me, MeO, F, Cl, Br; R^3 : A (C_8H_5), B (n-Me- C_8H_4), C (n-MeO- C_8H_4), D (n-F- C_8H_4), E (n-Rescaled to R).

Br-C₆H₄), F (2-тиофенил), G (4-пиридил), H (3-пиридил).

Оценивая в целом влияние природы заместителей R1, R2, R³ на эффективность образотриазепинового цикла, вания отметить следующие онжом общие наблюдения. Производные бензотриазепина с незамещенными положениями $(R^2=H)$, нафто[а]производные, а также фтор- и хлорсодержашие производные (R²=F, Cl) выделены с выходами 40-60%. Однако в случае бромпроизводного $(R^2=Br)$ наблюдалось понижение конечного выхода (XVII) 20-30% продукта до образования из-за значиколичеств побочных тельных соединений, по-видимому, вследствие повышенной ycтойчивости алкилированного тетразола (Г) И, как следствие, более жестких **УСЛО**вий разложения (5 ч, 85— 95°C); производные c метильными (XII, XVI) метоксильным (VIII) заместителями (R^2) в положении 7 получаются с более высокими выходами (60-80%). Из-за повышенной растворимости в производных толуоле бензосодержащих триазепинов, (R^3) положении 2 остаток тиофена (V, VI, XI, XXII -XIV) или пиридильный фраг-(XIV, XVII XIX. мент XXV - XVVII), их выходы не превышали 30-40%. В случае синтеза бензотриазепина, содержащего одновременно метоксизаместитель

положении 7 ($R^2 = MeO$) и в ароматическом заместителе в положении 2 (R³) (VIII), наблюдались трудности в образовании производного тетразола (Г) из-за его заметного гидролиза до амида, и при выходы не превышали 30-40%. Существенное влияпродуктов на выходы (40-80%) оказывает и природа заместителя в положении 5 (R¹). Так, например, из-за плохого разделения ДВVXфазной системы на сталии получения производного тетразола (Г) фиксированы пониженные выходы (40-45%)случае диметиламино- (II, VII. XXXIII), нитро-(III. XIX. XXXIX) И бутокси-(XXXI. XXXII) заместителей ароматическом фрагменте R¹. Как и в работе [1], нам не удалось получить также бензотриазепиновые производные, содержащие нитрогруппу В положении $(R^2=NO_2)$.

Строение полученных соединений подтверждено данными ПМР (см. табл. 1) и рентгеноструктурных исследований (соединения V, XXXI).

В спектрах ПМР (в ДМСО- d_6) синтезированных соединений можно отметить следующие общие закономерности. В соединениях (I, II, VI, IX, XI, XIX - XXVII), не содержащих заместителей в бензофрагменте, протоны положений 7 и 8 проявляют-

Таблица Таблица Температуры плавления и спектры ПМР 1,3,4-бензо-(I - XXVII) и нафто[а](XXVIII - XI лиментемпературы)

R¹ R² Bpyrro- формула T _{m³} , °C B H A C ₂₀ H ₁₄ CIN ₃ 240-241 D H A C ₂₂ H ₂₀ N ₄ 278-280 I Cl A C ₂₂ H ₂₃ CIN ₄ O ₂ 243-245 A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J Cl F C ₂₀ H ₁₆ CIN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ CIN ₃ S 226-227	ALL.		-				
B H A C ₂₀ H ₁₄ CIN ₃ 240-241 D H A C ₂₂ H ₂₀ N ₄ 278-280 I Cl A C ₂₀ H ₁₃ CIN ₄ O ₂ 243-245 A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J Cl F C ₂₀ H ₁₆ CIN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ CIN ₃ S 226-227	Соеди-	교	R2.	R³	Брутто- формула	T _{na} , °C	IIMP* **
D H A C ₂₂ H ₃₀ N ₄ 278-280 I Cl A C ₂₀ H ₁₃ ClN ₄ O ₂ 243-245 A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J Cl F C ₂₀ H ₁₆ ClN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ ClN ₃ S 226-227	H	В	Н	A	C.HCIN.	240-241	7.42-7.58m [9H: B. A (CHCHCH)]. 7.89π [2H. A (CHCCH)]:
D H A C ₂₂ H ₃₀ N ₄ 278-280 I Cl A C ₂₀ H ₁₃ ClN ₄ O ₂ 243-245 A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J Cl F C ₂₀ H ₁₆ ClN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ ClN ₃ S 226-227					20 - 14 - 1- 3		8.31c, 9.38c {5:1} (1H, NH)
I Cl A C ₂₀ H ₁₃ ClN ₄ O ₂ 243-245 A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J Cl F C ₂₀ H ₁₆ ClN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ ClN ₃ S 226-227	П	D	H	A	C22 H 20 N 4	278-280	2.98c [6H, D (NCH ₃)], 6.70-6.78 µ [2H, D (CHNMe ₂ CH)],
I CI A C ₂₀ H ₁₃ CIN ₄ O ₂ 243-245 A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J CI F C ₂₀ H ₁₆ CIN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ CIN ₃ S 226-227							[3H, A (CHCHCHCH)], 7.85-7.92µ [2H, A (CHCCH)]; 8.18c, 9.08c {5:1} (1H, NH)
A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J Cl F C ₂₀ H ₁₆ ClN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ ClN ₃ S 226-227	Ш	I	C	A	$C_{20}H_{13}CIN_{4}O_{2}$	243-245	7.10 µ (1H, H°), 7.29 µ (1H, H°), 7.45-7.60 м [4H,
A F C C ₂₁ H ₁₆ FN ₃ O 221-222 J Cl F C ₂₀ H ₁₆ ClN ₃ O ₂ S 165-166 B H F C ₁₈ H ₁₂ ClN ₃ S 226-227							7.894 [2H, A (CHCCH)], 8.284 [2H, I (CHCNO,CH)]; 8.52c, 9.70e {3:1} (1H, NH)
Cl F C ₂₀ H ₁₆ ClN ₃ O ₂ S 165-166 H F C ₁₈ H ₁₂ ClN ₃ S 226-227	IV	A	[24	O	C21H16FN3O	221-222	3.75c (3H, OCH ₃), 6.80дд (1H, H ³), 7.05д [2H, C (CHCOMeCH)], 7.22-7.37м [1H. H ³], 7.42-7.52м
C1 F C ₂₀ H ₁₀ CIN ₃ O ₂ S 165-166 H F C ₁₈ H ₁₂ CIN ₃ S 226-227							(6H, A, H ²), 7.88μ [2H, C (CHCCH)]; 8.15c, 9.25c {3:1} (1H, NH)
H F C ₁₈ H ₁₂ CIN ₃ S 226-227	Λ	5	U	E4	$C_{20}H_{16}CIN_3O_2S$	165-166	3.75c, 3.80c, 3.82c, 3.84c (6H, OCH ³), 6.88 μ [1H, J (CHC $\underline{\text{H}}$ COMe)], 6.95c [1H, J (COMeCHC)], 7.02-7.08 μ
H F C ₁₈ H ₁₂ CIN ₃ S 226-227							[2H, J (MeOCCHCH), H $^{\circ}$], 7.18 μ [1H, F (CHCHCH)], 7.25 μ (1H, H $^{\circ}$), 7.45–7.55 μ (1H, H $^{\circ}$), 7.72 μ [1H, F (SCH)], 7.83 μ [1H, F (SCCH)]; 8.23 ϵ , 9.41 ϵ {2:1} (1H, NH)
	VI	B	н	F	C ₁₈ H ₁₂ CIN ₃ S	226-227	7.00-7.10m [1H, F (CHCHCH)], 7.48-7.55m [4H, B (C,H,Cl)], 7.73m [1H, F (SCH)], 7.85m [1H, F (SCCH)]; 8.10c,

T _{nt} , °C IIMP*.**	243-245 2.88c [6H, N(CH ₂) ₂], 6.75 μ [2H, D (CHCMe ₂ CH)], 6.85 μ (1H, H*), 7.10-7.40 μ [4H, A (CHCHCHCHCH), H*], 7.45-7.52 μ [3H, D (CHCCH), H*], 7.88 μ [2H, A (CHCCH)]; 8.80c, 9.15c {4:1} (1H, NH)	208-209 3.65c, 3.83c (6H, OCH ₃), 6.50c (1H, H*), 7.03дд [2H, C (CHCOMeCH)], 7.09-7.21м (2H, H*, H*), 7.38-7.52м (5H, A), 7.80-7.98дд [2H, C (CHCCH)]; 8.00c, 9.15c [4:1] (1H, NH)	188-189 1.25-1.40m [5H, E (CH,)], 3.95-4.15m [4H, E (CH,)], 6.82µµ [1H, E (CCHCOEt)], 7.23µ [1H, E (CCHCH)], 7.40-7.53m [4H, A (CHCHCHCHCHCHC)], 7.89µµ [2H, A (CHCCH)]; 8.20c, 9.20c [6:1] [1H, NH)	219-220 6.88дд (1H, H*), 7.13-7.21м (1H, H*), 7.25-7.38м [2H, B (CHCCICH)], 7.48-7.58м [6H; B (CHCCH), A (CHC <u>H</u> C <u>H</u> CHCH), H*], 7.91дд [2H, A (CHCCH)]; 8.28c, 9.38c {3:1} (1H, NH)	234-236 7.01-7.08m [2H, G (CHCFCH)], 7.10-7.25m [1H, F (SCHCH)], 7.45-7.51m [2H, G (CHCCH)], 7.71n [1H, F (SCH)], 7.85n [1H, F (SCCH)]; 8.16c, 9.33c {2:1} (1H, NH)	211-213 2.20c (3H, CH ₂), 6.82c (1H, H ⁵), 7.15 μ (1H,H ³), 7.30m (1H, H ³), 7.40-7.55 μ [7H; A, D (CHCFCH)], 7.90-7.98m
Т., °С	243-24	208-20	188-18	219-22	234-23	211-21
Бругто- формула	$C_{22}H_{19}FN_{+}$	$C_2H_{19}N_3O_2$	C ₂₄ H ₂₃ N ₃ O ₂	C ₂₀ H ₁₃ CIFN ₃	C ₁₈ H ₁₂ FN ₃ S	C21H16FN3
R3	A	O	A	A	(st	A Me D
R.:	D F	A OMe C	H	(tra	Н	Me
	KIV. NV	0		В	C	

7.10c (1H, H°), 7.28µ (1H, H°), 7.43µ (1H, H°), 7.48-7.62м [5H; A (CHCHCHCHCH), H (CHCCH)], 7.88µ [2H,	A (CACCA)], 8.68g [ZH, H (CANCA); 8.50c, 9.68c {4:1} (1H, NH)	6.87дд (1Н, Н°), 7.20-7.35м (1Н, Н°), 7.38-7.58м (6Н; А, Н°), 7.85д [2Н, G (СНССН)], 8.72д [2Н, G (СНИСН)]; 8.41с, 9.56с {4:1} (1H, NH)	7.01c (1H, H*), 7.25-7.37m [3H; D (CHCFCH), H*)], 7.45-7.57m (6H; A.H*), 7.95µµ [2H, D (CHCCH)]; 8.38c, 9.43c {2:1} (1H, NH)	2.21c (3H, CCH ₃), 3.83c [3H, C (OCH ₃)], 6.82c (1H, H ³), 7.03g [2H, C (CHCOMeCH)], 7.12g (1H, H ³), 7.28g (1H, H ³),	7.43-7.48m (5H, A), 7.88µ [2H, C (CHCCH)]; 8.01c, 9.10c {3:1} (1H, NH)	248-249 6.98-7.11m [1H, H (CHCHN)], 7.13c (1H, H*), 7.25 μ (1H, H*), 7.43-7.55 μ (5H, A), 7.60-7.72 μ (1H, H*), 8.25 μ [1H, H (CHCHN)], 8.70 μ [1H, H (CCHNCH)], 9.03c [1H, H (CCHN)], 8.50c, 9.58c {4:1} (1H, NH)	249-250 7.10-7.20m [1H, H (CHCHN)], 7.02c (1H, H*), 7.29n (1H, H*), 7.43-7.59m (6H; A, H*), 8.22n [1H, H (CHCCHN)], 8.70n [1H, H (CCHNCH)], 9.03c [1H, H (CCHN)]; 8.50c, 9.57c {4:1} (1H, NH)	7.00-7.20m [3H, H (CCHCH)], 7.74µ [2H, I (CHCCH)], 8.20-8.31m [3H; I (CHCNO ₂ CH), H (CECCHN)], 8.72µ [1H, H (CCHNCH)], 9.08c [1H, H (CCHN)]; 8.48c, 9.63c{4:1} (1H, NH)
192-193		212-213	208-209	182-183		248-249	249-250	272-273
C ₁₉ H ₁₃ CIN ₄		C ₁₈ H ₁₃ FN ₄	C ₂₀ H ₁₃ CIFN ₃	$C_{22}H_{19}N_3O$		$C_{19}H_{13}BrN_{4}$	C ₁₉ H ₁₃ CIN ₊	C ₁₉ H ₁₃ N ₃ O ₂
A		Ö	D	O		Н	Н	H
Cl A		E4	Ü	Me		Br	5	н
Н		A	A	A		A	A	1
IIIX		XIV	XV	XVI		XVII	XVIII	XIX

Соеди-	R	R:	R³	Брутто-	T _m , °C	IIMP*:**
×	Н	н	В	C 20 H 16 N 4	255-256	2.35c [3H, B (CH ₃)], 7.30 _H [2H, B (C <u>H</u> CMeC <u>H</u>)], 7.41 _H [2H, H (CHCCH)], 7.79 _H [2H, B (CHCCH)], 8.66 _H [2H, H (CHNCH)]; 8.35c, 9.50c{5:1} (1H, NH)
IXX	Н	H	E	$C_{19}H_{13}BrN_{_{4}}$	268-269	7.40µ [2H, H (CHCCH)], 7.70µ [2H, E (CHCBrCH)], 7.83µ [2H, E (CHCCH)], 8.65µ [2H, H (CHNCH)]; 8.40c, 9.58c{4:1} (1H, NH)
XXII	O	ш й	E =	C ₁₉ H ₁₅ N ₃ OS	215-216	3.78c [3H, C (OCH3)], 6.90-7.10m [3H; C (CHCOMeCH), F (SCHCH)], 7.40m [2H, C (CHCCH)], 7.71m [1H, F (SCCH)], 7.83m [1H, F (SCH)]; 8.18c, 9.31c{3:1} (1H, NH)
XXIII	Н	н	Fe ₄	$C_{17}H_{12}N_{4}S$	224-225	7.10-7.20m [1H, F (SCHCH)], 7.43m [2H, H_(CHCCH)], 7.74m [1H, F (SCCH)], 7.88m [1H, F (SCH)], 8.68m [2H, H (CHNCH)]; 8.26c, 9.58c{3:1} (1H, NH)
XXIV	Ce.	н	E	C ₁₉ H ₁₅ N ₃ S	259-260	2.35c [3H, F (CH ₃)], 7.00-7.08m [1H, F (SCHC <u>H</u>)], 7.26µ [2H, F (C <u>H</u> CMeC <u>H</u>)], 7.35µµ [2H, F (CHCCH)], 7.70µ [1H, F (SCCH)], 7.85µ [1H, F (SCH)]; 8.12c, 9.38c{2:1} (1H, NH)
XXX	H	H	H	C ₂₀ H ₁₆ N ₄	276	2.38c [3H, F (CH ₂)], 7.00-7.08m [1H, H (CHCHN)], 7.25μ [2H, F (CHCMCH)], 8.22μ [1H, H (CHCCHN)], 8.70μ [1H, H (CCHNCH)], 9.07c [1H, H (CCHNCH)], 8.70μ [1H, H (CCHNCH)], 9.07c [1H, H (CCHNCH)], 9.07c [1H, H (CCHN)], 8.30c, 9.12c{5:1} (1H, NH)
XXVI	O	H	Н	$C_{20}H_{16}N_{4}O$	244-245	3.82c [3H, C (OCH ₃)], 7.00µ [2H, C (CHCOMeCH)], 7.05-7.09µ [1H, H (CHCHN)], 7.45µ [2H, C (CHCCH)], 8.23µ [1H, H (CHCCHN)], 8.70µ [1H, H (CCHNCH)], 0.05c [1H, H (CHCHN)], 8.30c 0.32c(6.1) (1H, NH)

3.82c [3H, C (OCH,)], 7.01µ [2H, C (CHCOMeCH)], 7.45µ [2H, C (CHCCH)], 7.85µ [2H, G (CHCCH)], 8.73µ [2H, G (CHNCH)]; 8.28c, 9.32c{7:1} (1H, NH)	7.19-7.24µµ [1H, G (SCHCH)], 7.43µ [2H, H (CHCCH)], 7.88-7.93м [2H, G (CHCSCH)], 8.63-8.68µ [2H, H (CHNCH)]; 8.82c, 9.78c [1:8] (1H, NH)	3.80c (3H, OCH,), 6.95д [2H, C (СЦСОМеСЦ)], 7.30-7.50м [2H, G (СНСГСН)], 8.18-8.28дд [2H, G (СНССН)]; 8.75c, 8.35c [1:6] (1H, NH)	3.80c (3H, OCH ₃), 6.98µ [2H, C (CHCOMeCH)], 7.42µ [2H, C (CHCCH)], 7.78µ [2H, F (CHCBrCH)]; 8.73c, 9.35c {1:6} (1H, NH)	0.93T (3H, CH,CH,L), 1.35-1.50M (2H, CH,CH,), 1.65-1.78M (2H, OCH,CH,), 2.38c [3H, B (CH,)], 4.00T (2H, OCH,C), 6.85-7.00m [2H, K (CHCOBuCH)], 7.36m [2H, K (CHCMeCH)], 7.36m [2H, B (CHCMeCH)], 8.08m [2H, B (CHCCH)]; 8.60c, 9.25c [1:4] (1H, NH)	0.9T [3H, K (CH ₂)], 1.35-1.48m [2H, K (CH ₂ CH ₃)], 1.65-1.75m [2H, K (OCH ₂ CH ₂)], 3.95-4.07m [2H, K (OCH ₂)], 6.95µ [2H, K (CHCCH ₃)], 7.40µ [2H, K (CHCCH)], 7.55-7.65m [3H, A (CHCHCHCHCHCH)], 8.18µ [2H, A (CHCCH)];	2.95c [6H, N(CH ₃) ₂], 6.73 μ [2H, D (CHCNMe,CH)], 7.32 μ [2H, D (CHCCH)], 7.70 μ [2H, F (CHCBrCH)], 8.12 μ [2H, F (CHCCH)]; 8.88c, 9.68c [1:6] (1H, NH)	$7.40-7.52$ m (5H, A), 7.77 μ [2H, E (CHCBrCH)], 8.12 μ [2H, E (CHCCH)]; 8.72 c, 9.40 c $\{1:6\}$ (1H, NH)
203-204	266-267	199-201	201-203		146-148	195-197	169-170
C ₂₀ H ₁₆ N ₄ O	$C_{21}H_{14}N_{4}S$	C25H18FN3O	C ₂₅ H ₁₈ BrN ₃ O 201-203	C ₂₀ H ₂₇ N ₃ O 179-181	C20 H 25 N 3 O	$\mathrm{C}_{26}\mathrm{H}_{21}\mathrm{BrN}_{4}$	C ₂₄ H ₁₆ BrN ₃ 169-170
D	C	C	Et.	В	A	田	E
H	COS ILIZA	1	1	ET T		û :	1
O	Н	U	U	K	X	D	A
XXVII	XXVIII	XXIX	XXX	XXX	IIXXXX	XXXIII	XXXIV

Продолжение табл. 1	$\Pi M P^{*,**}$	1.42τ [3H, L (CH ₂ CH ₂)], 4.20κ [2H, L (CH ₂ CH ₃)], 7.20π [2H, L (CHCCH ₃)], 7.40-7.55μ [3H, A (CHCHCHCHCH)], 7.85-7.93μμ [2H, A (CHCHCHCHCH)], 9.45м (1H, NH)	3.81c [3H, C (OCH ₃)], 6.99μ [2H, C (C <u>H</u> COMeC <u>H</u>)], 7.42μ [2H, C (CHCCH)], 8.10μ [2H, G (CHCCH)], 8.82μ [2H, G (CHNCH)], 9.40c (1H, NH)	7.20-7.25m [1H, F (SCHCH)], 7.45-7.50m (5H, A), 7.55-7.66m [2H, F (CHCSCH)], 9.50c (1H, NH)	3.85c [3H, C (OCH ₃)], 7.10µ [2H, C (CHCOMeCH)], 7.38-7.50м (5H, A), 8.15µ [2H, C (CHCCH)]; 8.70c, 9.35c {1:5} (1H, NH)	7.60-7.80m [4H; E (CHCBrCH), I (CHCCH)], 8.10µ [2H, E (CHCCH)], 8.29µ [2H, I (CHCNO ₂ CH)]; 8.90c, 9.72c {1:6} (1H, NH)	3.80c, 3.88c [6H; C, C' (OCH,)], 6.98µ [2H, C' (CHCOMeCH)], 7.10µ [2H, C (CHCOMeCH)], 7.41µ [2H, C' (CHCCH)], 8.17µ [2H, C (CHCCH)], 9.25c (1H, NH)
105-510	Т., °С	140-141	152-153	195-197	181-182	222-223	164-165
C. H. C. H. C.	Брутто-	C26 H21 N3O	C24 H 18 N 4 O	$C_{22}H_{15}N_3S$	C 25 H 19 N 3 O	C ₂₄ H ₁₅ BrN,O ₂ 222-223	C26 H21 N3 O2
-0	R3	A	Ö	De.	O	(E)	Û
	R ²	e r =	1	1	1	100	10
F	R _i	T	O	A	A	I	O
ANSWER -	Соеди-	XXXX	XXXVI	XXXVII	XXXVIII	XXXXIX	XL

В фигурных скобках приведено соотношение соответствующих интегральных интенсивностей протонов Отнесения сигналов протонов незамещенных бензо- и нафто[а]фрагментов приведены в тексте.

при атомах азота.

vширенным мультиплетом в области 7,00-7,20 м.д., а протоны положений 6 и 9 — дублетными сигналами в областях 7,25-7,30 и 7,40-7,50 мд. соответственно. В спектрах соединений (XXVIII-XL), нафто[а]фрагмендержаших ты, протоны положений проявляются дублетным налом В области 6 90-7 05 м.д., протоны положений 7 и 11 — двумя дублетами в об-7,85-8,00 и 8,55-8,65 ластях м.д. соответственно, а протоны положений 8, 9 и 10 мультиплетом сложным области 7,45-7,75 м.д. Отнесигналов протонов сение бензофрагментах. содержащих заместители ($R^2 \Phi H$), и отнесения сигналов протонов в заместителях R^1 и R^3 представлены в табл. 1. Среди обзакономерностей ших можно также отметить. что сигна-ЛЫ протонов В заместителях \mathbb{R}^3 существенно смещены в более слабые поля (на 0,2— 0,8 м.д.) по сравнению с протонами в аналогичных заместителях R1. При этом наиболее сильно смещены слабые поля протоны ортоположений ароматических заместителей R³.

Другой важной особенностью спектров ПМР этих соединений является то, что они в своем большинстве находятся в виде двух прототропных форм: *1 Н* и 3H-1,3.4-бензотриазепинов. Исходя из

литературных данных [3, предположить. в более сильных полях (8,00— 8 70 м.д.) находится сигнал протона при атоме азота положения 3 (N³H), тогда как в более слабых полях (9.00 м.д.) находится сигнал протона при азоте положения 1 (N'H). Характерно, что бензопроизводные имеют интегральной интенсивности более сильный сигнал этого протона преимущественно области 8.00-8.70 м.д., тогда нафто[а]производные, как имеют наоборот, более тенсивный сигнал этого протона преимущественно в области 9,00-9,70 м.д. Химичессдвиги И отношения кие интегральных интенсивностей сигналов протонов N1H и N³H у конкретных синтезированных соединений представлены также табл. В Отметим далее, что сигналы протонов положений 6 и производных бензотриазепинов, сигналы протонов положений 6 и 11 нафто[а]триазепинов и сигналы протонов орто-положений ароматизаместителей ческих \mathbb{R}^3 . как наиболее чувствительные прототропным указанным переходам, в случае присутствия двух таутомеров обычпроявляются HO дополнительным минорным мультиплетом примерно в том интегральном отношении основному мультиплету, что

и интегральное отношение сигналов протонов N!H и N³H

Согласно Кембриджскому кристаллографических опубликовано всего данных, полишь несколько работ, изучению криссвященных 1.3.4таллической структуры бензотриазепинов [7]. При этом набор исследованных соединений случаен и трудоценить влияние приростроение ЛЫ окружения на триазепинового цикла и образование преимущественного таутомера в кристалле. С учетом этого мы дополнительно исследовали строение триазепинов (V) и (XXXI) с рентгеноструктурпомощью ного анализа (см. рис. 1, 2 и табл. 2-6). Нами обнаружено, что в кристаллах этих соединений триазепиновые пиклы имеют существенно разное строение. Так, протон триазепинового цикла в кристалле соединения (V) находится при атоме азота N1 (см. рис. 1), тогда как у соединения (XXXI) — при атоме азота N^3 (см. рис. 2), что не совпадает с предполагаемыми отпреимущественнесениями ных положений этого протосделанными на растворе, основе выше на анализа спектров ПМР. Длины наиболее характерных связей триазепинового цикла в соединении (V) оказались следуюшие: N^1 - C^2 1.403(5) A, C^2 - N^3 1.277(4) **A**, N^3 - N^4 1.395(4) A, N^4 - C^5 1.295(4) A, тогда как в соединении (XXXI) равны: N¹ - C² 1.289(4) A, C² - N³ 1.414(4) \mathbf{A} , \mathbf{N}^3 - \mathbf{N}^4 1.433(4) \mathbf{A} , N⁴ - C⁵ 1.279(4) **А.** Из-за миграции протона от азота N³ к

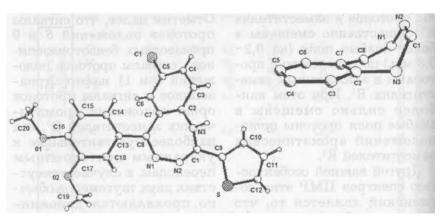


Рис. 1, Молекулярная структура 2-(2-тиофенил)-4-(3,4-диметоксифенил)-7-хлор-1H-1,3,4-бензотриазепина (V) и отдельный вид бензотриазепинового фрагмента.

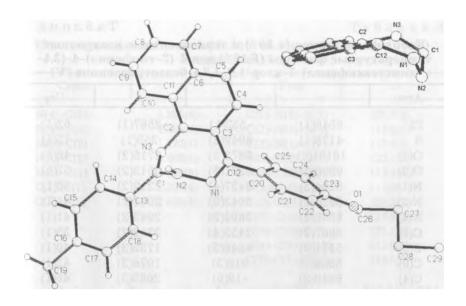


Рис. 2. Молекулярная структура 2-(4-метилфенил)-5-(4-буток-сифенил)- 3H-1,3,4~нафто[а]триазепина (XXXI) и отдельный вид нафто[а]триазепинового фрагмента.

азоту N1 и, соответственно, миграции двойной связи из положения N^1 - C^r в положение C² - N³ триазепиноваый ЦИКЛ соединения (V) сложобразом де-формирован ным (см. рис. 1) и его строение лучше описывается торсионуглами образующих ными его связей (см. табл. 4). Триазепиновый пикл соелинения (XXXI) организован более упорядоченно, ОН дважды изогнут по линиям N^1 - C^5 и C² - N⁴(см. рис. 2): плоскость, образованная атомами N1 - C2 -N⁴ - C⁵, обра-зует угол 36,9° с плоскостью, образованной нафто[а]остат-ком с атомами

 N^{1} , C^{5} ; плоскость, образованная атомами C^2 - N^3 - N^4 , образует VIO. с плоскостью N1 - C2 - N4 - C5 56,0°, так. что суммарный **УГОЛ**, образованный костью C^2 - N^3 - N^4 и нафто[а]остатком с атомами N^1 , C^3 составляет 92,9°. кри-В сталлической структуре coединений (V) и (XXXI) нами фиксировано образования водородных связей.

Таким образом, на основе анализа данных ПМР и рентгеноструктурных исследований можно сделать вывод, что строение триазепинового цикла и преимуществен-

Таблица 2 Координаты атомов (х 10-4) и эквивалентные изотропные температурные факторы (Е·10-3) для 2-(2-тиофенил)-4-(3,4диметоксифенил)-7-хлор-1H-1,3,4-бензотриазенина (V)

	· · · · · /	· - F	1	()
Атом	x	y	2	Ueq
Cl	8546(1)	-533(1)	2587(1)	62(1)
S	4126(1)	6949(2)	355(1)	75(1)
O(1)	10131(2)	5873(3)	6715(2)	48(1)
O(2)	9390(2)	8221(3)	5613(2)	57(1)
N(1)	5204(2)	3427(4)	2212(2)	40(1)
N(3)	5820(2)	5943(3)	2041(2)	41(1)
N(4)	6507(2)	5894(3)	2945(2)	41(1)
C(1)	6007(3)	2455(4)	2342(2)	35(1)
C(2)	5171(3)	4848(5)	1735(3)	40(1)
C(3)	5869(3)	918(5)	1976(3)	42(1)
C(4)	6649(3)	-19(5)	2085(3)	46(1)
C(5)	7065(2)	4656(4)	3278(2)	34(1)
C(6)	7723(3)	2129(4)	2907(2)	36(1)
C(7)	6940(2)	3063(4)	2827(2)	32(1)
C(8)	7567(3)	616(5)	2522(2)	39(1)
C(9)	4371(3)	5072(4)	843(3)	45(1)
C(10)	3771(3)	3927(8)	257(3)	65(2)
C(11)	3120(4)	4618(9)	-570(4)	83(2)
C(12)	3223(4)	6208(9)	-608(3)	77(2)
C(13)	7879(2)	4911(4)	4195(2)	36(1)
C(14)	8279(3)	3660(5)	4801(3)	44(1)
C(15)	9030(3)	3945(5)	5646(3)	46(1)
C(16)	9397(3)	5470(5)	5905(2)	38(1)
C(17)	8985(3)	6739(4)	5299(2)	38(1)
C(18)	8243(3)	6463(4)	4457(3)	38(1)
C(19)	8946(4)	9567(5)	5062(4)	56(1)
C(20)	10664(4)	4604(6)	7303(4)	61(1)

образование одного ИЗ изученных таутомеров производных сложным образом зависят от природы заместителей и требуют дополнительных спектральных и рентгеноструктурных исследований.

Экспериментальная часть

Спектры ЯМР Н регистрировали на приборе Bruker AM-400 в ДМСО-с 1_6 , внутренний стандарт ТМС, рабочая частота 400 МГц.

Данные рентгеноструктурного анализа соединений (V)

Таблица 3 Некоторые длины связей (d, A) и валентные углы (w, град) соединения (V)

Связь	d	121110	Угол	w
N(4)-C(5)	1.295(4)		C(5)-N(4)-N(3)	121.7(3)
N(4)-N(3)	1.395(4)		C(2)-N(3)-N(4)	119.6(3)
N(3)-C(2)	1.277(4)		C(2)-N(1)-C(1)	112.4(3)
N(1)-C(2)	1.403(5)		N(3)-C(2)-N(1)	123.1(3)
N(1)-C(1)	1.409(4)		N(3)-C(2)-C(9)	118.4(4)
C(1)-C(7)	1.395(4)		N(1)-C(2)-C(9)	118.5(3)
C(7)-C(5)	1.485(5)		C(3)-C(1)-N(1)	120.2(3)
			C(7)-C(1)-N(1)	119.5(3)
			N(4)-C(5)-C(7)	125.2(3)
			N(4)-C(5)-C(13)	115.0(3)
			C(7)-C(5)-C(13)	119.8(3)

Таблица 4
Торсионные углы (w, град)
в триазепиновом цикле
соединения (V)

Связи	w
C(5)-N(4)-N(3)-C(2)	57.4
N(4)-N(3)-C(2)-N(1)	-11.6
C(1)-N(1)-C(2)-N(3)	-63.8
C(2)-N(3)-C(1)-C(7)	60.6
N(1)-C(1)-C(7)-C(5)	6.5
N(3)-N(4)-C(5)-C(7)	-11.9
C(1)-C(7)-C(5)-N(4)	-38.7

и (XXXI) получены на автоматическом дифрактометре CAD-4 с $MoK_{\alpha a}$ -излучателем*. Соединение (V), кристалл моноклинный ($C_{20}H_{16}CIN_30_2S$, M 397.87), P2(1)/c, a 15.357(3) A, b 8.291(2) A, с 16.394(3) A; aa 90°, Pb 115.88(3)°, $y\partial$ 90°; V 1878.0(7) A^3 , d_{RMI} 1.407 г/см³,

 μm 0.335 мм⁻¹, F(000) 824. В расчетах участвовало 3760 независимых отражений с $I > 2\sigma s(I)$. Окончательные значения факторов расходимости R₁ 0.0230, wR₂ 0.0595.

Соединение (XXXI), сталл моноклинный ($C_{29}H^{27}N_3O$, M 433.54), P2(1)/n, a 13.296(3) Å, b 18.469(4) A, c 19.849(4) A; $\alpha a 90^{\circ}$, $\beta b 103.93(3)^{\circ}$, $\gamma g 90^{\circ}$; V 4730(2) A³, d_{выч}, 1.217 г/см³, *ит* 0.075 мм⁻¹, F(000) 1840. В расчетах участвовало 3023 независимых отражений $2\sigma s(I)$. Окончательные значения факторов расходимости R, 0.0367, wR₂ 0.1023.

Структуры решены прямым методом и уточнены полноматричным методом наименьших квадратов в анизотропном приближении.

^{*} Рентгеноструктурные исследования выполнены д.х.н., проф. Бельским В.К. (ГНЦ РФ НИФХИ им. Л.Я.Карпова).

Таблица 5 Координаты атомов (х 10^{-4}) и эквивалентные изотропные температурные факторы (А 10^{-1}) для 2-(4-метилфенил)-5-(4-бутоксифенил)- 3H-1,3,4-нафто[а] триазепина (XXXI)

Атом	\boldsymbol{x}	y	Z	Ueq
O(1)	9901(2)	5652(2)	3491(1)	72(1)
N(1)	7451(2)	8119(1)	6158(1)	46(1)
N(3)	9100(2)	7672(2)	6713(2)	55(1)
N(4)	9313(2)	7214(2)	6181(2)	51(1)
C(1)	7891(3)	8488(2)	5674(2)	46(1)
C(2)	8043(3)	7788(2)	6676(2)	45(1)
C(3)	8665(3)	8220(2)	5392(2)	48(1)
C(4)	9044(3)	8657(2)	4916(2)	59(1)
C(5)	9104(2)	7486(2)	5571(2)	46(1)
C(6)	7865(3)	9612(2)	5012(2)	59(1)
C(7)	7422(4)	10305(2)	4818(2)	76(1)
C(8)	6625(5)	10549(3)	5062(2)	80(1)
C(9)	6213(4)	10131(2)	5516(2)	72(1)
C(10)	6626(3)	9465(2)	5723(2)	59(1)
C(11)	7454(3)	9186(2)	5477(2)	49(1)
C(12)	8674(4)	9330(3)	4747(2)	67(1)
C(13)	7642(3)	7582(2)	7278(2)	46(1)
C(14)	6763(4)	7922(3)	7384(2)	74(1)
C(15)	6436(4)	7795(3)	7977(3)	90(2)
C(16)	6931(4)	7321(2)	8475(2)	69(1)
C(17)	7787(4)	6968(2)	8362(2)	67(1)
C(18)	8138(3)	7097(2)	7774(2)	58(1)
C(19)	6583(6)	7211(5)	9141(3)	104(2)
C(20)	9351(3)	7019(2)	5025(2)	47(1)
C(21)	10103(3)	6489(2)	5189(2)	55(1)
C(22)	10313(3)	6030(2)	4696(2)	60(1)
C(23)	9759(3)	6088(2)	4012(2)	55(1)
C(24)	9007(3)	6621(2)	3826(2)	58(1)
C(25)	8806(3)	7078(2)	4332(2)	54(1)
C(26)	10609(5)	5050(3)	3664(3)	81(2)
C(27)	10504(7)	4598(3)	3020(3)	104(2)
C(28)	10871(6)	4960(4)	2443(3)	108(2)
C(29)	12025(7)	5080(6)	2601(4)	140(3)

Таблица 6 Некоторые длины связей (d, A) и валентные углы (w, град) соединения (XXXI)

Связь	d d	Угол	w
N(4)-C(5)	1.279(4)	C(5)-N(4)-N(3)	115.4(3)
N(4)-N(3)	1.433(4)	C(2)-N(3)-N(4)	115.1(3)
N(3)-C(2)	1.405(5)	C(2)-N(1)-C(1)	119.8(3)
N(1)-C(2)	1.289(4)	N(1)-C(2)-N(3)	121.8(3)
N(1)-C(1)	1.414(4)	N(1)-C(2)-C(13)	119.9(3)
C(1)-C(3)	1.377(5)	N(3)-C(2)-C(13)	118.1(3)
C(3)-C(5)	1.485(5)	C(3)-C(1)-N(1)	125.1(3)
		N(1)-C(1)-C(1)	114.4(3)
		C(1)-C(3)-C(5)	121.3(3)

Общая методика синтеза производных триазепинов (I - XL).

К раствору 0.01 М производного тетразола (А), 0.44 г NaOH и 0.2 г цетилтриметиламмоний бромида в 40 мл воды прибавляли раствор

0.01 М производного N-арил- $\Gamma 1^3$ -имидоил хлорида (E) 40 хлористого метилена ΜЛ интенсивно перемешивали при 25°C 2 ч. Органический слой отделяли. промывали 1% водным водой (3х10 мл), раствором NaOH (3x10 Mл),водой (3х10 мл), сушили над свежепрокаленным сульфа-TOM натрия И растворитель удаляли в вакууме.

а. К твердому остатку (Г) добавляли 10 мл толуола и нагревали при перемешивании при 90°С 3 ч. Раствор охлаждали, выпавшие кристаллы промывали минимальным количеством холод-

ного толуола и сушили в вакууме.

б. Твердый остаток (Г) нагревали в слабом токе аргона при 120°С 3 ч, промывали минимальным количеством холодного толуола и сушили в вакууме.

ЛИТЕРАТУРА

1. Иванова С.Э., Колдобский Г.И., Островский В.А. — XΓC, 1993, N 7, c. 907-912. — 2. Колдобский Г.И., Никонова И.В., Живич А.Б. и др. — ЖОХ, 1992, т. 62, вып. 1, с. 194-198. — 3. Колдобский Г.И., *Иванова С.Э.* — ЖОрХ, 1995, т. 31, вып. 11, с. 1601-1616. — 4. Колдобский Г.И., Артамонова T.B.ЖорХ, 1997. т. 33, вып. 12, с. 1850-1853; Артамонова Т.В, Алам Ј1.В., Колдобский Г.И. — ЖОрХ. 2000, т. 36, вып. 11, с. 1749— 1750. — **5.** Frohherg P.,

P. — Heterocycles. 1996, vol. 43, N 12, p. 2549-2552; Karp G.M. — J. Heterocycl. Chem., 1996, vol. 33, N 4, p. 1131-1135; Morgenstern O., Schuster R., Finke M., Richter P.H. — Pharmazie. 1996, Bd. 51, N 7, s. 458-467; RedcLv Ch.K., Reddv P.C.S. a. o. — Indian J. Heterocycl. Chem, 1997, vol. 7, N 1, p. 17-20; Reddy G.M., Reddy P.S.N. — Indian J. Chem., Sect. B., 1998, vol. 37B, N 3, p. 207-208. — 6. Richter P., Morgenstern O. — Pharmazie, 1984, 39. N 5, s. 301-314; Morgenstern O., Richter P. — Pharmazie, 1992, Bd. 47, N 9, s. 655-677. — 7. *Parkcinyi L.*.

Argav G. — Acta Sect. B., 1976, vol. B32, N 12, 3316-3318; BovdGV. Cobb J. a. o. — Chem. Commun, 1987, N 2, p. 99-101; Gal M., Pallagi I. a. o., — Tetrahedron, 1989, vol. 45, N 11, 3513-3522; *Lindley P.F.*, Bovd G.V., Nicolaou G.A. — Acta Cryst. Sect. C., 1990, vol. C46, N 6, p. 1693-1697; Frohberg P., Kupfer C. a. o. — Arch. Pharm., 1995, vol. 328, N 6, p. 505-516; Simeonov M.F., Fiildp F. a. o. — J. Org. Chem.. 1997, vol. 62, N 15, p. 5089-5095. — 8. Pihlaia K., Simeonov M.F., Fiildp F. — J. Org. Chem., 1997, vol. 62, N 15. p. 5080-5088.

Статья поступила 9 апреля 2002 г.

SUMMARY

The set of new 3H(lH)-l,3,4-benzo- and naphto[a]triazepins, variously 2-, 5- and 7-substituted, have been synthesized by heat-promoted destruction of 1- and 2-imidoiltetrazoles. Nature of substituents affects the route of reaction as well as the 3H-lH-tautomerism of triazepines formed, was shown by PMR spectroscopy and crystallographic analysis of pair different structures discussed.