химия

Известия ТСХА, выпуск 4, 2002 год

УДК 628.547

НОВЫЕ ПРОИЗВОДНЫЕ В РЯДУ ЗН(1Н)-1,3,4-БЕНЗО-И НАФТО[а]ТРИАЗЕПИНОВ

М.Ю. ЗАХАРОВ, В.С. КОЧУБЕЙ, О.Г. РОДИН

(Кафедра органической химии)

Получен производных ЗН(1Н)-1,3,4-бензоряд новых и нафто[а]триазепинов. систематический набор содержащих различных 2.5.7. по природе заместителей в положениях Обсуждаются особенности синтеза и строения некоторых производных этого ряда. Строения двух разных предстасоединений дополнительно вителей этого класса исследованы методом рентгеноструктурного анализа.

В последние годы в плане поиска новых лекарственных средств, обладающих седативными и другими терапевтическими свойствами, наблюдается повышенный интерес к производным 1.3.4бензотриазепинов. Это нашло отражение В публикааналитических шии ряда обзоров [3, 6] и недавних оригинальных статей. посвяшенных синтезу некоторых перспективных соединений на их основе [5]. Обращение к подобного рода азотсодержашим гетероциклам вызвано В первую очередь тем. что они являются структурными аналогами таких ΠΟпулярных терапевтических

средств, как диазепам и эле-НИУМ. Однако. хотя среди производных 1,3,4-бензотриазепинов и найдены образцы, облалаюшие высокой биологической активностью [6]. достойной замены вышеупомянутым препаратам пока не найдено. Отсутствуют и какие-либо систематические исследования в плане корреляций «структура - биологиактивность», что огческая раничивает потенциальные возможности поиска В ряду перспективных соединеэтих ний.

В то же время в литературе достаточно подробно исследованы и систематизированы возможные подходы

различных 1,3,4синтезу к бензотриазепинов (см., например [3, 6]). При этом в своем большинстве в качестве полупродуктов используются производные антраниловой кислоты и 2-аминобензофено-(гидразиды, гидразоны, на карбазоны и их тиоаналоги), т.е. ортоположениях В ароматического ядра уже софункциональные держатся которые далее группировки, разными способами участвув образовании 7-членноют го бензотриазепинового цик-Такой подход, за редкила. исключениями, приводит МИ получению производных к 1,3,4-бензотриазепинов, coдержащих оксо- или тиоксофункции в положениях 2 и (или) 5. В случае же синтеза производных. содержаших другие заместители В указанных положениях, эти методы имеют существенные ограничения.

Недавно Г.И.Колдобский И исследовали сотр. детально оригинальный подход к син-ЗЯ-1,3,4-бензотриазепитезу нов путем взаимодействия 5арил(гетероарил)тетразолов с N-арилбензилимидоил хлоридами в двухфазной системе с последующей изомери-1-имидоилтетразолов зацией в 2-производные, термичесрасщепления кого последних И внутримолекулярной электрофильной атаки по а-углеродному атому N-арильной фраггруппы имидоильного

мента. Этим методом получен ЗЯ-1,3,4-бензотриазепиряд содержаших. в частно-HOB. сти. различные ароматичесзаместители в положекие ниях 2,5 и 7 [1, 2, 4]. Однако сочетание выбранных заместителей таково, что цe-В лом трудно составить точную картину влияния структурных и электронных факторов заместителей на ход этой важной в синтетическом ОТношении циклизации. Пракне исследованы тически состояние таутомерного рав-1Н- и 3Н-1,3,4-бенновесия зотриазепинов И влияние природы окружения на строение триазепинового цикла. Кроме того ЛЛЯ проведения полноценных биологических испытаний производных ЗЯ(1Н)-1,3,4-бензотриазепинов необходимо иметь более разнообразный набор соединений, содержащих регулярно подобранные заместители.

С учетом сказанного ΜЫ исследовали возможность получения широкой серии производных ЗЯ(1Н)-1,3,4бензонафто[а]триазепи-И содержащих комбинаци-HOB, онный набор различных по природе заместителей в положениях 2,5 и 7, в том чиссодержащих разные ле гетероароматические фрагменты. Синтез всех производных (I - XL) проводился по общей методике, описанной в работе [2], из соответствующих 5-R'-тетразолов (А) и N-(R²-фе-

нилен)-(Б) или Ы-(а-нафтил)-(В)-R³-имидоилхлоридов лвухфазной системе «хлористый метилен-вода» в присутцетилтриметиламмоний ствии бромида и последующим терразложением обрамическим имидоилтетразозовавшихся толуоле (способ а), лов (Г) в условиях, благоприятт.е. в образованию 1.3.4ствующих триазепинового (см. пикла Экспериментальную часть).

Выпавшие из толуольного раствора продукты представ-

ляли собой достаточно чистые соединения и дополнительно подвергались только промывке сухим толуолом, выходы для большинства продуктов находились в широком интервале 20-80% при чистоте не ниже 98-99%. Аналогичная результативность наблюдалась и при получении 1,3,4-бензотриазепинов термолизом сухих образцов соответствующих имидоилтетразолов (Г) (способ б).

 R^1 : A (C₆H₅), B (n-Cl-C₆H₄), C (n-MeO-C₆H₄), D (n-NMe₂-C₆H₄), E (м, n-ди-EtO-C₆H₃), F (n-Me-C₆H₄), G (n-F-C₆H₄), H (4-пиридил), I (n-NO₂-C₆H₄), J (м, n-ди -MeO-C₆H₃), K (n-BuO-C₆H₄), L (n-EtO-C₆H₄); R²: H, Me, MeO, F, Cl, Br;

R³: A (C₆H₅), B (n-Me-C₆H₄), C (n-MeO-C₆H₄), D (n-F-C₆H₄), E (n-Вг-C₆H₄), F (2-тиофения), G (4-пиридия), H (3-пиридия).

Оценивая в целом влияние природы заместителей R¹, R², R³ на эффективность образотриазепинового цикла, вания отметить следующие можно общие наблюдения. Производные бензотриазепина с незамещенными положениями 7 $(R^2=H),$ нафто[а]производные, а также фтор- и хлорсодержашие производные (R²=F, Cl) выделены с выходами 40-60%. Однако в случае бромпроизводного $(R^2=Br)$ наблюдалось понижение конечного выхода (XVII) 20-30% продукта до образования из-за значиколичеств побочных тельных соединений, по-видимому, вследствие повышенной ycтойчивости алкилированного тетразола (Г) И. как следствие, более жестких условий разложения (5 ч, 85-95°C); производные с метильными (XII, XVI) И метоксильным (VIII) заместителями (R²) в положении 7 получаются с более высокими выходами (60-80%). Из-за повышенной растворимости в производных толуоле бензосодержащих триазепинов, в (\mathbb{R}^3) положении 2 остаток тиофена (V, VI, XI, XXII -XIV) или пиридильный фраг-(XIV, XVII XIX. мент XXV - XVVII), их выходы не превышали 30-40%. В случае синтеза бензотриазепина, содержащего одновременно метоксизаместитель В

положении 7 ($R^2 = MeO$) и в ароматическом заместителе в положении 2 (R³) (VIII), наблюдались трудности в образовании производного тетразола (Г) из-за его заметного гидролиза до амида, и при этом выходы не превышали 30-40% Существенное влияпродуктов ние на выходы (40-80%) оказывает и прирола заместителя в положении 5 (R¹). Так, например, из-за плохого разделения **ЛВVX**фазной системы на сталии получения производного тетразола (Г) фиксированы пониженные выходы (40-45%)случае диметиламино- (II, в VII. XXXIII), нитро-(III. XIX. XXXIX) И бутокси-(XXXI. XXXII) заместителей R ароматическом фрагменте R¹. Как и в работе [1], нам не удалось получить также бензотриазепиновые производные, содержащие нитрогруппу в положении 7 $(R^2 = NO_2)$.

Строение полученных соединений подтверждено данными ПМР (см. табл. 1) и рентгеноструктурных исследований (соединения V, XXXI).

В спектрах ПМР (в ДМСОd₆) синтезированных соединений можно отметить следующие общие закономерности. В соединениях (I, II, VI, IX, XI, XIX - XXVII), не содержащих заместителей в бензофрагменте, протоны положений 7 и 8 проявляют-

R ¹ R ² R ³ Epyrro- T _n , °C IIMP* **	B H A C ₂₀ H ₁₄ CIN ₃ 240-241 7.42-7.58m [9H; B, A (CHCHCH)], 7.89 _A [2 8.31c, 9.38c {5:1} (1H, NH	D H A $C_{22}H_{23}N_4$, 278-280 2.98c [6H, D (NCH ₃)], 6.70-6.78 μ [2H, D	7.22-7.37дд [2H, D (CHCCH)], 7.4 [3H, A (CHC <u>H</u> C <u>H</u> CH)], 7.85-7.92дд [2F 8.18c, 9.08c [5:1} (1H, NH)	I Cl A C ₂₀ H ₁₃ CIN ₄ O ₂ 243-245 7.10µ (1H, H ⁸), 7.29µ (1H, H ⁸), 7.45- ⁷	7.89µ [2H, A (CHCCH)], 8.28µ [2H, A (CHCCH)], 8.28µ [2H, I (C 8.52c, 9.70c {3:1} (1H, NH)	A F C C ₂₁ H ₁₆ FN ₃ O 221-222 3.75c (3H, OCH ₃), 6.80дд (1H, H [*]), 7 С (СНСОМеСН)], 7.22-7.37м [1H. H [*]].	6H, A, H ³), 7.88μ [2H, C (CHCCH) 9.25c {3:1} (1H, NH)	J Cl F C ₂₀ H ₁₆ ClN ₃ O ₂ S 165-166 3.75c, 3.80c, 3.82c, 3.84c (6H, OCH ³), J (CHC <u>H</u> COMe)], 6.95c [1H, J (COMeCHC	[2H, J (MeOCCHCH), H ^s], 7.18m [1H, F 7.25µ (1H, H ^s), 7.45-7.55m (1H, H ^s), 7.72µ 7.83µ [1H, F (SCCH)]; 8.23c, 9.41c {2:1	B H F C ₁₈ H ₁₂ CIN ₃ S 226-227 7.00-7.10m [1H, F (CHC <u>H</u> CH)], 7.48-7.55m [7.73 μ [1H, F (SCH)], 7.85 μ [1H, F (SCH)], 7.85 μ [1H, F (SC
R ²	Η	Η		CI		E-		CI		Η
R	В	D		Ι		А		2		В
Соеди- нение	I	П		III		IV		Λ		IA

Продолжение табл. 1	IIMP*.**	2.88c [6H, N(CH ₃) ₂], 6.75д [2H, D (C <u>H</u> CMe ₂ C <u>H</u>)], 6.85дд (1H, H [*]), 7.10-7.40м [4H, A (CHC <u>H</u> CHCH), H ³], 7.45-7.52м [3H, D (CHCCH), H ³], 7.88дд [2H, A (CHCCH)]; 8.80c, 9.15c [4:1] (1H, NH)	3.65с, 3.83с (6H, OCH ₃), 6.50с (1H, H [*]), 7.03дд [2H, С (С <u>H</u> COMeC <u>H</u>)], 7.09-7.21м (2H, H [*] , H [*]), 7.38-7.52м (5H, A), 7.80-7.98дд [2H, C (CHCCH)]; 8.00с, 9.15с {4:1} (1H, NH)	1.25-1.40м [5H, E (CH.,)], 3.95-4.15м [4H, E (CH.,)], 6.82дд [1H, E (CCHCOEt)], 7.23д [1H, E (CCHCH)], 7.40-7.53м [4H, A (CHCHCHCHCH)],7.89дд [2H, A (CHCCH)]; 8.20с, 9.20с [6:1] (1H, NH)	6.88µµ (1H, H [*]), 7.13-7.21m (1H, H [*]), 7.25-7.38m [2H, B (CHCCICH)], 7.48-7.58m [6H; B (CHCCH), A (CHC <u>H</u> C <u>H</u> CH), H [*]], 7.91µµ [2H, A (CHCCH)]; 8.28c, 9.38c [3:1] (1H, NH)	7.01-7.08m [2H, G (CHCFCH)], 7.10-7.25m [1H, F (SCHC <u>H</u>)], 7.45-7.51m [2H, G (CHCCH)], 7.71 _π [1H, F (SCH)], 7.85 _μ [1H, F (SCCH)]; 8.16c, 9.33c [2:1] (1H, NH)	2.20c (3H, CH ₃), 6.82c (1H, H ⁵), 7.15µ (1H,H ³), 7.30m (1H, H ³), 7.40-7.55m [7H; A, D (CHCFCH)], 7.90-7.98m [2H, D (CHCCH)]; 8.30c, 9.35c {4:1} (1H, NH)
	T _m , °C	243-245	208-209	188-189	219-220	234-236	211-213
11 2 2 2 3 11	Брутто- формула	$C_{22}H_{16}FN_{4}$	$C_{22}H_{19}N_{3}O_{2}$	$C_{24}H_{23}N_3O_2$	C ₂₀ H ₁₃ CIFN ₃	C ₁₈ H ₁₂ FN ₃ S	C ₂₁ H ₁₆ FN ₃
	R³	A	U	А	А	Ge.	D
K	R²	۲.	OMe	Ш	۲u	Н	Me
10	R'	D	A	E	20	Ċ	А
1	Соеди- нение	ПЛ	ШЛ	X	×	XI	ЛХП

7.10c (1H, H ⁵), 7.28 _µ (1H, H ⁵), 7.43 _µ (1H, H ³), 7.48-7.62 _M [5H; A (CHC <u>H</u> C <u>H</u> CH), H (CHCCH)], 7.88 _µ [2H, A (CHCCH) 0.62 _µ (2H, CHCCH), 0.50 _µ (2H,	A (CHUCCH)], 0:00A [2H, H. (CHNCH), 0:0UC, 9:00C [4:1] (1H, NH)	6.87дд (1Н, Н*), 7.20-7.35м (1Н, H*), 7.38-7.58м (6Н; А, H*), 7.85д [2Н, G (СНССН)], 8.72д [2Н, G (СНИСН)]; 8.41с, 9.56с {4:1} (1Н, NH)	7.01c (1H, H [*]), 7.25-7.37m [3H; D (CHCFCH), H [*])], 7.45-7.57m (6H; A,H ³), 7.95μμ [2H, D (CHCCH)]; 8.38c, 9.43c {2:1} (1H, NH)	 2.21c (3H, CCH₃), 3.83c [3H, C (OCH₃)], 6.82c (1H, H[*]), 7.03д [2H, C (CHCOMeCH)], 7.12д (1H, H[*]), 7.28д (1H, H[*]), 7.43-7.48m (5H, A), 7.88д [2H, C (CHCCH)]; 8.01c, 9.10c {3:1} (1H, NH) 	 6.98-7.11м [1H, H (CHCHN)], 7.13с (1H, H*), 7.25д (1H, H*), 7.43-7.55м (5H, A), 7.60-7.72д (1H, H*), 8.25д [1H, H (CHCCHN)], 8.70дд [1H, H (ССНИСЦ)], 9.03с [1H, H (CCHN)]; 8.50с, 9.58с [4:1] (1H, NH) 	7.10-7.20m [1H, H (CHCHN)], 7.02c (1H, H ^s), 7.29μ (1H, H ^s), 7.43-7.59m (6H; A, H ^s), 8.22 _μ [1H, H (CHCCHN)], 8.70μ [1H, H (CCHNC <u>H</u>)], 9.03c [1H, H (CCHN)]; 8.50c, 9.57c {4:1} (1H, NH)	7.00-7.20m [3H, H (CCHC <u>H</u>)], 7.74π [2H, I (CHCCH)], 8.20-8.31m [3H; I (CHCNO ₂ CH), H (C <u>H</u> CCHN)], 8.72π [1H, H (CCHNC <u>H</u>)], 9.08c [1H, H (CCHN)]; 8.48c, 9.63c{4:1} (1H, NH)
192-193		212-213	208-209	182-183	248-249	249-250	272-273
C ₁₉ H ₁₃ CIN ₄		$C_{1g}H_{13}FN_4$	C ₂₀ H ₁₃ CIFN ₃	C ₂₂ H ₁₉ N ₃ O	C ₁₉ H ₁₃ BrN ₄	C ₁₉ H ₁₃ CIN ₄	C ₁₉ H ₁₃ N ₅ O ₂
А		C	D	U	Н	Н	H
C		Бч.	G	Me	Br	G	н
Н		A	A	A	A	A	-
XIII		XIV	XV	IVX	IIVX	XVIII	XIX

Продолжение табл. 1	IIMP*.**	2.35c [3H, B (CH ₃)], 7.30μ [2H, B (CHCMeCH)], 7.41μ [2H, H (CHCCH)], 7.79μ [2H, B (CHCCH)], 8.66μ [2H, H (CHNCH)]; 8.35c, 9.50c(5:1} (1H, NH)	7.40 μ [2H, H (CHCCH)], 7.70 μ [2H, E (CHCBrCH)], 7.83 μ [2H, E (CHCCH)], 8.65 μ [2H, H (CHNCH)]; 8.40c, 9.58c{4:1} (1H, NH)	3.78c [3H, C (OCH3)], 6.90-7.10m [3H; C (CHCOMeCH), F (SCHCH)], 7.40π [2H, C (CHCCH)], 7.71π [1H, F (SCCH)], 7.83π [1H, F (SCH)]; 8.18c, 9.31c(3:1} (1H, NH)	7.10-7.20m [1H, F (SCHC <u>H</u>)], 7.43 _μ [2H, <u>H</u> (CHCCH)], 7.74 _μ [1H, F (SCCH)], 7.88 _μ [1H, F (SCH)], 8.68 _μ [2H, H (CHNCH)]; 8.26c, 9.58c{3:1} (1H, NH)	2.35c [3H, F (CH ₃)], 7.00-7.08м [1H, F (SCHC <u>H</u>)], 7.26д [2H, F (C <u>H</u> CMeCH)], 7.35дд [2H, F (CHCCH)], 7.70д [1H, F (SCCH)], 7.85д [1H, F (SCH)]; 8.12c, 9.38c{2:1} (1H, NH)	 2.38c [3H, F (CH,)], 7.00-7.08m [1H, H (C<u>H</u>CHN)], 7.25μ [2H, F (C<u>H</u>CMeC<u>H</u>)], 7.35μ [2H, F (CHCCH)], 8.22μ [1H, H (C<u>H</u>CCHN)], 8.70μ [1H, H (CCHNC<u>H</u>)], 9.07c [1H, H (CCHN)]; 8.30c, 9.12c{5.1} (1H, NH) 	 3.82c [3H, C (ОСН₃)], 7.00д [2H, C (СЕСОМеСЕ]), 7.05-7.09м [1H, H (СЕСНN)], 7.45д [2H, C (СНССН)], 8.23д [1H, H (СЕССНN)], 8.70д [1H, H (ССНNСЕ])], 9.05c [1H, H (ССНN)]; 8.30c, 9.32c{6:1} (1H, NH)
	Т, °С	255-256	268-269	215-216	224-225	259-260	276	244-245
	Брутто- формула	$C_{20}H_{16}N_4$	C ₁₈ H ₁₃ BrN ₄	$C_{19}H_{15}N_{3}OS$	C ₁₇ H ₁₂ N ₄ S	$C_{19}H_{15}N_{3}S$	$C_{20}H_{16}N_4$	$C_{20}H_{16}N_{4}O$
	R³	В	E	E4	Et.	E.	Н	н
	R ²	Н	Н	на	Н	Н	н	H . 5
	R	Н	Н	U	Н	E.	Fr.	U
	Соеди- нение	XX	IXX	IIXX	IIIXX	XXIV	XXV	IVXX .

3.82c [3H, C (OCH,)], 7.01д [2H, C (C <u>H</u> COMeC <u>H</u>)], 7.45д [2H, C (CHCCH)], 7.85д [2H, G (CHCCH)], 8.73д [2H, G (CHNCH)]; 8.28c, 9.32c{7:1} (1H, NH)	7.19-7.24дд [1H, G (SCHC <u>H</u>)], 7.43д [2H, H (CHCCH)], 7.88-7.93м [2H, G (CHCSCH)], 8.63-8.68д [2H, H (CHNCH)]; 8.82с, 9.78с {1:8} (1H, NH)	3.80c (3H, OCH ₃), 6.95д [2H, C (C <u>H</u> COMeC <u>H</u>)], 7.30-7.50m [2H, G (CHCFCH)], 8.18-8.28дд [2H, G (CHCCH)]; 8.75c, 8.35c {1:6} (1H, NH)	3.80c (3H, OCH ₃), 6.98μ [2H, C (C <u>H</u> COMeC <u>H</u>)], 7.42μ [2H, C (CHCCH)], 7.78μ [2H, F (CHCBrCH)]; 8.73c, 9.35c {1:6} (1H, NH)	0.93r (3H, CH ₂ C <u>H</u> ₃), 1.35-1.50m (2H, C <u>H</u> ₂ CH ₃), 1.65-1.78m (2H, OCH ₂ C <u>H</u> ₂), 2.38c [3H, B (CH ₃)], 4.00r (2H, OCH ₂), 6.85-7.00π [2H, K (C <u>H</u> COBuC <u>H</u>)], 7.36π [2H, K (C <u>H</u> CMeC <u>H</u>)], 7.40π [2H, B (C <u>H</u> CMeC <u>H</u>)], 8.08π [2H, B (CHCCH)]; 8.60c, 9.25c {1:4} (1H, NH)	0.9T [3H, K (CH ₃)], 1.35-1.48m [2H, K (CH ₂ CH ₃)], 1.65-1.75m [2H, K (OCH ₂ CH ₃)], 3.95-4.07m [2H, K (OCH ₂)], 6.95 μ [2H, K (CHCOBUCH)], 7.40 μ [2H, K (CHCCH)], 7.55-7.65m [3H, A (CHC <u>H</u> CH)], 8.18 μ [2H, A (CHC <u>H</u> CH)CH)], 8.18 μ [2H, A (CHCCH)]; 7.55-7.65m [3H, A (CHC <u>H</u> CH)], 9.10c {11:6} (1H, NH)	2.95c [6H, N(CH ₃) ₃], 6.73µ [2H, D (CHCNMe ₃ CH)], 7.32µ [2H, D (CHCCH)], 7.70µ [2H, F (CHCBrCH)], 8.12µ [2H, F (CHCCH)]; 8.88c, 9.68c {1:6} (1H, NH)	7.40-7.52m (5H, A), 7.77 _A [2H, E (CHCBrCH)], 8.12 _A [2H, E (CHCCH)]; 8.72c, 9.40c {1:6} (1H, NH)
203-204	266-267	199-201	201-203	179-181	146-148	195-197	169-170
C 20 H 16 N 4 O	$C_{21}H_{14}N_{4}S$	C 25 H 18 FN 3 O	$C_{25}H_{18}BrN_{a}O$	$C_{39}H_{27}N_3O$	C 38 H 35 N 3 O	$C_{26}H_{21}BrN_{4}$	$C_{24}H_{16}BrN_3$
Ċ	Ċ	5	E.	В	A	E	БЭ
H			1	r		0	
C	Н	U	U	K	К	D	A
ПVXX	XXVIII	XXIXX	XXX	IXXX	IIXXX	IIIXXX	XXXIV

$ \begin{array}{c cccc} \begin{tabular}{c ccccc} & R^{i} $	(t		the second se
XXXVL-A $C_{ad}H_{a1}N_1O$ 140-141 $1.42r$ [3H, L (CH, CH, J), A20k [2H, L (CH, CH, J), 7.30XXXVIG $C_{a4}H_{a1}N_1O$ $152-153$ $331c$ [3H, L (CH, CH, J), 7.85-7.93m [2H, A (CHCCH)], 7.40-7.55XXXVICG $C_{a4}H_{a5}N_1O$ $152-153$ $331c$ [3H, C (OCH, J)], 6.99 (2H, C (CHCCH), R-7.55XXXVIIA-FC $_{a4}H_{a5}N_1S$ $195-197$ $7.42n$ [2H, C (CCCH)], 8.10n [2H, G (CHCCH)], 9.40e (1H, NH)XXXVIIIA-CC $_{a4}H_{a5}N_1O$ $181-182$ $335c$ [3H, C (OCH, J)], 6.99 (1H, NH)XXXVIIIA-CC $_{a4}H_{a5}N_1O$ $181-182$ $335c$ [3H, C (OCH, J)], 7.10n [2H, G (CHCCH)], 9.50e (1H, NH)XXXVIIIA-CC $_{a4}H_{a5}N_1O$ $181-182$ $335c$ [3H, C (OCH, J)], 7.10n [2H, G (CHCCH)], 9.50e (1H, NH)XXXIXIEC $_{a4}H_{a5}N_1O$ $335c$ [3H, C (OCH, J)], 7.10n [2H, G (CHCCH)], 8.70e,XXXIXI-EC $_{a4}H_{a5}N_1O$ $335c$ [3H, C (OCH, J)], 7.10n [2H, G (CHCCH)], 9.50e (1H, NH)XXXIXI-EC $_{a4}H_{a5}N_1O$ $335c$ [3H, C (OCH, J)], 7.10n [2H, G (CHCCH)], 8.70e,XXXIXI-EC $_{a4}H_{a5}N_1O_{a5}$ $335c$ [3H, C (OCH, J)], 7.10n [2H, G (CHCCON]; 8.70e,XXXIXI-EC $_{a4}H_{a5}N_1O_{a5}$ $335c$ [3H, C (OCH, J)], 7.10n [2H, G (CHCCON]; 8.70e,XXXI-EC $_{a4}H_{a5}N_1O_{a5}$ $335c$ [3H, C (OCH, J)], 7.10n [2H, M]	Соеди- нение	R	R²	R ³	Брутто- формула	Тпя, °С	IIMP* **
XXXVI C - G $C_{34}H_{18}N_4O$ 152-153 381c [3H, C (OCH,)], 6.99 π [2H, G (CHCOM), XXXVII A - F $C_{24}H_{18}N_4O$ 152-153 381c [3H, C (OCH,)], 8.10 π [2H, G (CHCCH)], XXXVII A - F $C_{24}H_{18}N_4O$ 181-182 3.82π [2H, G (CHNCH)], 9.40e (1H, NH) XXXVIII A - C $C_{24}H_{16}N_4O$ 181-182 $3.85c$ [3H, C (OCH,)], 7.10 π [2H, G (HCCH)], 9.50e (1H, NH) XXXXVIII A - C $C_{24}H_{16}BrN_4O$ 181-182 $3.85c$ [3H, C (OCH,)], 7.10 π [2H, C (CHCCM)]; 8.70e, 9.35e (1:5) (1H, NH) XXXXIX I - E $C_{24}H_{16}BrN_4O_2$, 222-223 $3.85c$ [3H, C (OCH,)], 7.10 π [2H, C (CHCCM)]; 8.70e, 9.35e (1:5) (1H, NH) XXXXIX I - E $C_{24}H_{16}BrN_4O_2$, 222-223 $7.60-7.80m$ [4H; E (CHCCPH)]; 8.70e, 9.35e (1:5) (1H, NH) XXXX I - E $C_{24}H_{16}BrN_4O_2$, 222-223 $7.60-7.80m$ [4H; E (CHCCPH)]; 8.70e, 9.95e (1:6) (1H, NH) XXX I - E $C_{24}H_{16}BrN_4O_2$, 222-223 $7.60-7.80m$ [4H; E (CHCCPH), 1 (CHCCH)]; 8.70e, 9.95e (1:6) (1H, NH) XL C -	XXXV	F	· · ·	А	$C_{26}H_{21}N_3O$	140-141	1.42т [3H, L (CH,CH,)], 4.20к [2H, L (CH,CH,)], 7.20д [2H, L (CHCOEtCH)], 7.60д [2H, L (CHCCH)], 7.40-7.55м [3H, A (CHCHCHCH)], 7.85-7.93дд [2H, A (CHCCH)], 9.45м (1H, NH)
XXXVII $A = F$ $C_{22}H_{19}N_3S$ 195-197 $7.20-7.25M$ [1H, F (SCHCEJ)], 7.45-7.50M (5H, A), XXXVIII $A = C$ $C_{23}H_{19}N_3O$ 181-182 $3.85c$ [3H, C (OCH ₃)], 7.10 μ [2H, C (CHCOMecH)], 8.70e, $7.38-7.50M$ (5H, A), 8.15 μ [2H, C (CCCCH)]; 8.70e, 9.35c [1:5] (1H, NH) (7.36-7.50H, [4H; E (CHCCH)]; 8.70e, 9.35c [1:5] (1H, NH) (7.36-7.50H, [2H, E (CHCCH)]; 8.70e, 9.35c [1:5] (1H, NH) (7.36-7.50H, [2H; E (CHCCH)]; 8.70e, $9.35c$ [1:5] (1H, NH) (7.36-7.50H, [2H; E (CHCCH)]; 8.29 μ [2H, NH) (7.30e, 8.10π [2H, E (CHCCH)], 8.29 μ [2H, NH) (7.30e, 8.10π [2H, E (CHCCH)], 8.29\mu [2H, NH) (7.30e, 8.30e, 9.72e [1:6] (1H, NH) (7.30e, 200e, 2012e [1:6] (1H, NH) (7.30e, 2012e)], XL C - C' $C_{23}H_{21}N_3O_2$ 164-165 $3.80c, 3.88e$ [6H; C, C' (OCH ₃)], 6.98 μ [2H, C' (CHCOMeCH)], 8.10π [2H, C (CHCCH)], 9.25e (1H, NH) (7.400e, CH)], 9.25e (1H, NH)	IVXXX	U	1	Ċ	C 24 H 18 N 4 O	152-153	 3.81c [3H, C (OCH₃)], 6.99μ [2H, C (C<u>H</u>COMeC<u>H</u>)], 7.42μ [2H, C (CHCCH)], 8.10μ [2H, G (CHCCH)], 8.82μ [2H, G (CHNCH)], 9.40c (1H, NH)
XXXVIII A - C $C_{23}H_{16}N_3O$ 181-182 3.85c [3H, C (OCH_3)], 7.10 μ [2H, C (CHCOMeCH)], 8.70c, 9.35c [1:5] (1H, NH) XXXIX I - E C_{34}H_{16}BrN_4O_2 222-223 7.60-7.80m [4H; E (CHCBrCH)], 8.29 μ [2H, NH) XXXIX I - E C_{34}H_{16}BrN_4O_2 222-223 7.60-7.80m [4H; E (CHCBrCH)], 1(CHCCH)], 8.70c, CH)]; XXIX I - E C_{34}H_{16}BrN_4O_2 222-223 7.60-7.80m [4H; E (CHCBrCH)], 1(CHCCH)]; 8.70c, CH)]; XIL C - C' C_{34}H_{21}N_3O_2 164-165 3.80c, 3.88c [6H; C, C' (OCH_3)], 7.41\mu [2H, C' (CHCCM]], 8.99m (2H, NH) XIL C - C' C_{34}H_{21}N_3O_2 164-165 3.80c, 3.88c [6H; C, C' (OCH_3)], 7.41\mu [2H, C' (CHCCM]], XIL C - C' C_{34}H_{21}N_3O_2 164-165 3.80c, 3.88c [6H; C, C' (OCH_3)], 7.41\mu [2H, C' (CHCCM]], XIL C C' C' 164-165 3.80c, 3.88c [6H; C, C' (OCH_3)], 7.41\mu [2H, C' (CHCCM]],	IIVXXX	A		H	$C_{22}H_{15}N_{3}S$	195-197	7.20-7.25m [1H, F (SCHCH)], 7.45-7.50m (5H, A), 7.55-7.66m [2H, F (CHCSCH)], 9.50c (1H, NH)
XXXIX $I - E C_{24}H_{16}BrN_4O_2$ 222-223 $7.60-7.80m$ [4H; E (CHCBrCH), I (CHCCH)], 8.10 π [2H, E (CHCCH)], 8.29 π [2H, I (CHCNO,CH)]; XL C - C' C_{26}H_{21}N_4O_2 164-165 3.80c, 3.88c [6H; C, C' (OCH_3)], 6.98 π [2H, NH) 7.10 π [2H, C (CHCOMeCH)], 9.25c (1H, NH) 8.17 π [2H, C (CHCCH)], 9.25c (1H, NH)	XXXVIII	A	-	U	C 25 H 19 N 3 O	181-182	3.85c [3H, C (OCH ₃)], 7.10 _H [2H, C (CHCOMeCH)], 7.38-7.50 _M (5H, A), 8.15 _H [2H, C (CHCCH)]; 8.70c, 9.35c {1:5} (1H, NH)
 XL C - C' C₂₈H₂₁N₃O₂ 164-165 3.80c, 3.88c [6H; C, C' (OCH₃)], 6.98_A [2H, C' (CHCOMeCH)], 7.10_A [2H, C (CHCOMeCH)], 7.41_A [2H, C' (CHCCH)], 9.25c (1H, NH) 8.17_A [2H, C (CHCCH)], 9.25c (1H, NH) 	XIXXX	I	-	E2	C ₂₄ H ₁₅ BrN,O ₂	222-223	7.60-7.80m [4H; E (CHCBrCH), I (CHCCH)], 8.10д [2H, E (CHCCH)], 8.29д [2H, I (CHCNO ₂ CH)]; 8.90c, 9.72c {1:6} (1H, NH)
	XL	U	4.	Û	$C_{26}H_{21}N_{3}O_{2}$	164-165	3.80c, 3.88c [6H; C, C' (OCH ₃)], 6.98 _μ [2H, C' (C <u>H</u> COMeC <u>H</u>)], 7.10 _μ [2H, C (C <u>H</u> COMeC <u>H</u>)], 7.41 _μ [2H, C' (CHCCH)], 8.17 _μ [2H, C (CHCCH)], 9.25c (1H, NH)

СЯ уширенным мультиплетом в области 7,00-7,20 м.д., а протоны положений 6 и 9 — дублетными сигналами в областях 7,25-7,30 и 7,40-7,50 мд. соответственно. В спектрах соединений (XXVIII-XL), coнафто[а]фрагменлержаших ты, протоны положений - 6 проявляются дублетным сигналом в области 6 90-7 05 м.д., протоны положений 7 и 11 — двумя дублетами в об-7,85-8,00 и 8,55-8,65 ластях м.д. соответственно, а протоны положений 8, 9 и 10 мультиплетом сложным в области 7,45-7,75 м.д. Отнесигналов протонов сение R бензофрагментах. содержащих заместители ($R^2 \Phi$ H), и отнесения сигналов протонов в заместителях R¹ и R³ представлены в табл. 1. Среди обзакономерностей ших можно также отметить. что сигналы протонов в заместителях **R**³ существенно смещены в более слабые поля (на 0.2-0,8 м.д.) по сравнению с протонами в аналогичных заместителях R¹. При этом наиболее сильно смещены R слабые поля протоны ортоположений ароматических заместителей R³.

Другой важной особенностью спектров ПМР этих соединений является то, что они в своем большинстве находятся в виде двух прототропных форм: *1 H* и 3H-1,3.4бензотриазепинов. Исходя из

литературных данных [3, 81. предположить. можно что в более сильных полях (8,00— 8 70 м.л.) находится сигнал протона при атоме азота положения 3 (N³H), тогда как в более слабых полях (9,00-9.70 м.д.) находится сигнал протона при азоте положения 1 (N'H). Характерно, что бензопроизводные имеют по интегральной интенсивности более сильный сигнал этого протона преимущественно R области 8.00-8.70 м.л., тогла нафто[а]производные, как имеют наоборот, более ИНтенсивный сигнал этого протона преимущественно в области 9,00-9,70 м.д. Химичесслвиги И отношения кие интегральных интенсивностей сигналов протонов N¹H и N³H у конкретных синтезированных соединений представлены также табл. В 1. Отметим далее. что сигналы протонов положений 6 и 9 производных бензотриазепинов, сигналы протонов положений 6 и 11 нафто[а]триазепинов и сигналы протонов орто-положений ароматизаместителей ческих R³. как наиболее чувствительные к прототропным указанным переходам, в случае присутствия двух таутомеров обычпроявляются но дополнительным минорным мультиплетом примерно в том же интегральном отношении к основному мультиплету, что

и интегральное отношение сигналов протонов N[!]H и N³H.

Согласно Кембриджскому банку кристаллографических опубликовано всего данных. полишь несколько работ, изучению криссвященных 1.3.4таллической структуры бензотриазепинов [7]. При этом набор исследованных соединений случаен и трудоценить влияние прироно строение ЛЫ окружения на триазепинового цикла и образование преимущественного таутомера в кристалле. С учетом этого мы дополнительно исследовали строение триазепинов (V) и (XXXI) с рентгеноструктурпомощью ного анализа (см. рис. 1, 2 и табл. 2-6). Нами обнаружено, что в кристаллах этих соединений триазепиновые никлы имеют существенно разное строение. Так, протон триазепинового цикла в кристалле соединения (V) находится при атоме азота N¹ (см. рис. 1), тогда как у соединения (XXXI) — при атоме азота N³ (см. рис. 2), что не совпадает с предполагаемыми отпреимущественнесениями ных положений этого протосделанными на в растворе, основе выше на анализа спектров ПМР. Длины наиболее характерных связей триазепинового цикла в соединении (V) оказались следуюшие: N¹ - C² 1.403(5) A. C² - N^3 1.277(4) **A**, N^3 - N^4 1.395(4) **А.** N⁴ - C⁵ 1.295(4) **А.** тогда как в соединении (XXXI) равны: N¹ - C² 1.289(4) А, C² - N³ 1.414(4) A, $N^3 - N^4$ 1.433(4) A, N⁴ - C⁵ 1.279(4) **А.** Из-за миграции протона от азота N³ к

Рис. 1, Молекулярная структура 2-(2-тиофенил)-4-(3,4-диметоксифенил)-7-хлор-1Н-1,3,4-бензотриазепина (V) и отдельный вид бензотриазепинового фрагмента.

2. Молекулярная структура Рис. сифенил)- ЗН-1,3,4~нафто[а]триазепина (XXXI) и отдельный вид нафто[а]триазепинового фрагмента.

2-(4-метилфенил)-5-(4-буток-

азоту N1 и, соответственно, миграции двойной связи из положения N1 - Сг в положение C² - N³ триазепиноваый цикл соединения (V) сложобразом де-формирован ным (см. рис. 1) и его строение лучше описывается торсионуглами образующих ными его связей (см. табл. 4). Триазепиновый никл соелинения (XXXI) организован более упорядоченно, ОН лважлы изогнут по линиям N1 - C5 и C² - N⁴(см. рис. 2): плоскость, образованная атомами N1 - C2 -N⁴ - C⁵, обра-зует угол 36,9° с плоскостью, образованной нафто[а]остат-ком с атомами

N1, C5; плоскость, образованная атомами C² - N³ - N⁴, образует уго. с плоскостью $N^1 - C^2 - N^4 - C^5$ 56,0°, так. что суммарный угол. образованный плоскостью C² - N³ - N⁴ и нафто[а]остатком с атомами N¹, C³ составляет 92.9°. кри-В сталлической структуре coединений (V) и (XXXI) нами фиксировано образования не водородных связей.

Таким образом, на основе анализа данных ПМР и рентгеноструктурных исследований можно слелать вывол. что строение триазепинового цикла и преимуществен-

Таблица 2

Атом	x	y	2	Ueq
Cl	8546(1)	-533(1)	2587(1)	62(1)
S	4126(1)	6949(2)	355(1)	75(1)
0(1)	10131(2)	5873(3)	6715(2)	48(1)
O(2)	9390(2)	8221(3)	5613(2)	57(1)
N(1)	5204(2)	3427(4)	2212(2)	40(1)
N(3)	5820(2)	5943(3)	2041(2)	41(1)
N(4)	6507(2)	5894(3)	2945(2)	41(1)
C(1)	6007(3)	2455(4)	2342(2)	35(1)
C(2)	5171(3)	4848(5)	1735(3)	40(1)
C(3)	5869(3)	918(5)	1976(3)	42(1)
C(4)	6649(3)	-19(5)	2085(3)	46(1)
C(5)	7065(2)	4656(4)	3278(2)	34(1)
C(6)	7723(3)	2129(4)	2907(2)	36(1)
C(7)	6940(2)	3063(4)	2827(2)	32(1)
C(8)	7567(3)	616(5)	2522(2)	39(1)
C(9)	4371(3)	5072(4)	843(3)	45(1)
C(10)	3771(3)	3927(8)	257(3)	65(2)
C(11)	3120(4)	4618(9)	-570(4)	83(2)
C(12)	3223(4)	6208(9)	-608(3)	77(2)
C(13)	7879(2)	4911(4)	4195(2)	36(1)
C(14)	8279(3)	3660(5)	4801(3)	44(1)
C(15)	9030(3)	3945(5)	5646(3)	46(1)
C(16)	9397(3)	5470(5)	5905(2)	38(1)
C(17)	8985(3)	6739(4)	5299(2)	38(1)
C(18)	8243(3)	6463(4)	4457(3)	38(1)
C(19)	8946(4)	9567(5)	5062(4)	56(1)
C(20)	10664(4)	4604(6)	7303(4)	61(1)

Координаты атомов (х 10-4) и эквивалентные изотропные температурные факторы (Е·10-3) для 2-(2-тиофенил)-4-(3,4диметоксифенил)-7-хлор-1Н-1,3,4-бензотриазенина (V)

образование одного ное ИЗ таутомеров изученных производных сложным образом зависят от природы заместидополнителей и требуют тельных спектральных и рентгеноструктурных исследований.

Экспериментальная часть

Спектры ЯМР Н регистрировали на приборе Bruker АМ-400 в ДМСО-с1₆, внутренний стандарт ТМС, рабочая частота 400 МГц.

Данные рентгеноструктурного анализа соединений (V)

Таблица 3

Связь	d	Угол	w
N(4)-C(5)	1.295(4)	C(5)-N(4)-N(3)	121.7(3)
N(4) - N(3)	1.395(4)	C(2)-N(3)-N(4)	119.6(3)
N(3)-C(2)	1.277(4)	C(2)-N(1)-C(1)	112.4(3)
N(1)-C(2)	1.403(5)	N(3)-C(2)-N(1)	123.1(3)
N(1)-C(1)	1.409(4)	N(3)-C(2)-C(9)	118.4(4)
C(1)-C(7)	1.395(4)	N(1)-C(2)-C(9)	118.5(3)
C(7)-C(5)	1.485(5)	C(3)-C(1)-N(1)	120.2(3)
		C(7)-C(1)-N(1)	119.5(3)
		N(4)-C(5)-C(7)	125.2(3)
		N(4)-C(5)-C(13)	115.0(3)
		C(7)-C(5)-C(13)	119.8(3)

Некоторые длины связей (d, A) и валентные углы (w, град) соединения (V)

Таблица 4

Торсионные углы (w, град) в триазепиновом цикле соединения (V)

Связи	w
C(5)-N(4)-N(3)-C(2)	57.4
N(4)-N(3)-C(2)-N(1)	-11.6
C(1)-N(1)-C(2)-N(3)	-63.8
C(2)-N(3)-C(1)-C(7)	60.6
N(1)-C(1)-C(7)-C(5)	6.5
N(3)-N(4)-C(5)-C(7)	-11.9
C(1)-C(7)-C(5)-N(4)	-38.7

и (XXXI) получены на автоматическом дифрактометре САD-4 с МоК_{са}-излучателем*. Соединение (V), кристалл моноклинный ($C_{20}H_{16}CIN_30_2S$, *M* 397.87), *P*2(1)/с, *a* 15.357(3) **A**, *b* 8.291(2) **A**, с 16.394(3) **A**; *aa* 90°, *Pb* 115.88(3)°, *y∂* 90°; V 1878.0(7) **A**³, d_{выч} 1.407 г/см³, μm 0.335 мм⁻¹, F(000) 824. В расчетах участвовало 3760 независимых отражений с $I > 2\sigma s(I)$. Окончательные значения факторов расходимости R₁ 0.0230, $w R_2$ 0.0595.

Соединение (XXXI), кристалл моноклинный (С₂₉Н²⁷N₃O, M 433.54), P2(1)/n, a 13.296(3) Å. b 18.469(4) Å, c 19.849(4) Å; *αa* 90°, *βb* 103.93(3)°, γg 90°; V 4730(2) A^3 , d_{Bbly} , 1.217 r/cm³, μm 0.075 MM⁻¹, F(000) 1840. В расчетах участвовало 3023 независимых отражений c Ι > $2\sigma s(I)$. Окончательные значения факторов расходимости R, 0.0367, *wR*₂ 0.1023.

Структуры решены прямым методом и уточнены полноматричным методом наименьших квадратов в анизотропном приближении.

* Рентгеноструктурные исследования выполнены д.х.н., проф. Бельским В.К. (ГНЦ РФ НИФХИ им. Л.Я.Карпова).

Таблица 5

Атом	x	y	Z	Ueq
O(1)	9901(2)	5652(2)	3491(1)	72(1)
N(1)	7451(2)	8119(1)	6158(1)	46(1)
N(3)	9100(2)	7672(2)	6713(2)	55(1)
N(4)	9313(2)	7214(2)	6181(2)	51(1)
C(1)	7891(3)	8488(2)	5674(2)	46(1)
C(2)	8043(3)	7788(2)	6676(2)	45(1)
C(3)	8665(3)	8220(2)	5392(2)	48(1)
C(4)	9044(3)	8657(2)	4916(2)	59(1)
C(5)	9104(2)	7486(2)	5571(2)	46(1)
C(6)	7865(3)	9612(2)	5012(2)	59(1)
C(7)	7422(4)	10305(2)	4818(2)	76(1)
C(8)	6625(5)	10549(3)	5062(2)	80(1)
C(9)	6213(4)	10131(2)	5516(2)	72(1)
C(10)	6626(3)	9465(2)	5723(2)	59(1)
C(11)	7454(3)	9186(2)	5477(2)	49(1)
C(12)	8674(4)	9330(3)	4747(2)	67(1)
C(13)	7642(3)	7582(2)	7278(2)	46(1)
C(14)	6763(4)	7922(3)	7384(2)	74(1)
C(15)	6436(4)	7795(3)	7977(3)	90(2)
C(16)	6931(4)	7321(2)	8475(2)	69(1)
C(17)	7787(4)	6968(2)	8362(2)	67(1)
C(18)	8138(3)	7097(2)	7774(2)	58(1)
C(19)	6583(6)	7211(5)	9141(3)	104(2)
C(20)	9351(3)	7019(2)	5025(2)	47(1)
C(21)	10103(3)	6489(2)	5189(2)	55(1)
C(22)	10313(3)	6030(2)	4696(2)	60(1)
C(23)	9759(3)	6088(2)	4012(2)	55(1)
C(24)	9007(3)	6621(2)	3826(2)	58(1)
C(25)	8806(3)	7078(2)	4332(2)	54(1)
C(26)	10609(5)	5050(3)	3664(3)	81(2)
C(27)	10504(7)	4598(3)	3020(3)	104(2)
C(28)	10871(6)	4960(4)	2443(3)	108(2)
C(29)	12025(7)	5080(6)	2601(4)	140(3)

Координаты атомов (х 10⁻⁴) и эквивалентные изотропные температурные факторы (А 10⁻¹) для 2-(4-метилфенил)-5-(4-бутоксифенил)- ЗН-1,3,4-нафто[а]триазепина (XXXI)

Таблица 6

Связь	d	Угол	w
N(4)-C(5)	1.279(4)	C(5)-N(4)-N(3)	115.4(3)
N(4) - N(3)	1.433(4)	C(2)-N(3)-N(4)	115.1(3)
N(3)-C(2)	1.405(5)	C(2)-N(1)-C(1)	119.8(3)
N(1)-C(2)	1.289(4)	N(1)-C(2)-N(3)	121.8(3)
N(1)-C(1)	1.414(4)	N(1)-C(2)-C(13)	119.9(3)
C(1)-C(3)	1.377(5)	N(3)-C(2)-C(13)	118.1(3)
C(3)-C(5)	1.485(5)	C(3)-C(1)-N(1)	125.1(3)
	Arch, Phains,	N(1)-C(1)-C(1)	114.4(3)
		C(1)-C(3)-C(5)	121.3(3)

Некоторые длины связей (d, A) и валентные углы (w, град) соединения (XXXI)

Общая методика синтеза производных триазепинов (I - XL).

К раствору 0.01 М производного тетразола (А), 0.44 г NaOH и 0.2 г цетилтриметиламмоний бромида в 40 мл воды прибавляли раствор

0.01 М производного N-арил-Г1³-имидоил хлорида (Б) R 40 хлористого метилена ΜЛ интенсивно перемешивали И при 25°С 2 ч. Органический промывали слой отделяли. 1% водным водой (3х10 мл), раствором NaOH (3x10 мл), водой (3x10 мл), сушили над свежепрокаленным сульфатом натрия И растворитель удаляли в вакууме.

К твердому остатку (Г) a. 10 мл толуола и добавляли нагревали при перемешивании при 90°С 3 ч. Раствор охлаждали. выпавшие кристаллы промывали минимальным количеством холодного толуола и сушили в вакууме.

б. Твердый остаток (Г) нагревали в слабом токе аргона при 120°С 3 ч, промывали минимальным количеством холодного толуола и сушили в вакууме.

ЛИТЕРАТУРА

1. Иванова С.Э., Колдобский Г.И., Островский В.А. — ХГС, 1993, N 7, с. 907-912. — 2. Колдобский Г.И., Никонова И.В., Живич А.Б. и др. — ЖОХ. 1992. т. 62. вып. 1. с. 194-198. — З. Колдобский Г.И., Иванова С.Э. — ЖОрХ, 1995, т. 31, вып. 11, с. 1601-1616. — 4. Колдобский Г.И., Артамонова *T.B.* ____ ЖорХ, 1997. т. 33, вып. 12, с. 1850-1853; Артамонова Т.В, Алам ЈІ.В., Колдобский Г.И. — ЖОрХ. 2000, т. 36, вып. 11, с. 1749-1750. — **5.** Frohherg P.,

Nuhn P. — Heterocycles. 1996, vol. 43, N 12, p. 2549-2552; Karp G.M. — J. Heterocycl. Chem., 1996, vol. 33, N 4, p. 1131-1135; Morgenstern O., Schuster R., Finke M., *Richter* P.H. — Pharmazie. 1996, Bd. 51, N 7, s. 458-467; RedcLv Ch.K., Reddv P.C.S. a. o. — Indian J. Heterocycl. Chem, 1997, vol. 7, N 1, p. 17-20; Reddy G.M., Reddy P.S.N. — Indian J. Chem., Sect. B., 1998, vol. 37B, N 3, p. 207-208. — 6. Richter P., Morgenstern O. — Pharmazie, 1984, 39. N 5, s. 301-314; Bd. Morgenstern O., Richter P. -Pharmazie, 1992, Bd, 47, N 9, s. 655-677. — 7. Parkcinvi L..

Argav G. — Acta Cryst., Sect. B., 1976, vol. B32, N 12, 3316-3318; p. Bovd GV P_{i} $Cobb J_{i}$ a. o. — Chem. Commun, 1987, N 2, p. 99-101; Gal M., Pallagi I. a. o., — Tetrahedron, 1989, vol. 45, N 11, p. 3513-3522; Lindlev P.F., Bovd G.V., Nicolaou G.A. — Acta Cryst. Sect. C., 1990, vol. C46, N 6, p. 1693-1697; Frohberg P., Kupfer C. a. o. — Arch. Pharm., 1995, vol. 328, N 6, p. 505-516; Simeonov M.F., Fiildp F. a. o. — J. Org. Chem., 1997, vol. 62, N 15, p. 5089-5095. — 8. Pihlaia K. Simeonov M.F., Fiildp F. — J. Org. Chem., 1997, vol. 62, N 15. p. 5080-5088.

Статья поступила 9 апреля 2002 г.

SUMMARY

The set of new 3H(lH)-1,3,4-benzo- and naphto[a]triazepins, variously 2-, 5- and 7-substituted, have been synthesized by heat-promoted destruction of 1- and 2-imidoiltetrazoles. Nature of substituents affects the route of reaction as well as the 3H-lH-tautomerism of triazepines formed, was shown by PMR spectroscopy and crystallographic analysis of pair different structures discussed.