Известия ТСХА, выпуск 5, 1986 год

УДК 633.11+633.13:632.954

МЕТАБОЛИЗМ 2,4-Д У ПШЕНИЦЫ И ЯЧМЕНЯ ПОСЛЕ ОБРАБОТОК ГЕРБИЦИДОМ РЯДА ПОКОЛЕНИЙ

Н. Н. ПАВЛОВА, Т. А. НАЗАРОВА, В. А. ЗИНЧЕНКО (Кафедра химических средств защиты растений)

Установлены существенные различия в динамике метаболизма 2,4-Д у пшеницы и ячменя в зависимости от кратности обработок гербицидом семенных репродукций.

Последействие многолетних обработок на метаболизм 2,4-Д наиболее четко проявилось через 3 сут после нанесения на лист меченого гербицида. Оно выразилось у пшеницы в уменьшении процента гидроксилированных, а у ячменя — негидроксилированных конъюгатов 2,4-Д. Гидроксилирование гербицида в ячмене Московском 121 шло интенсивнее, чем в пшенице Саратовской 29. Через 7 сут содержание гидроксилированных метаболитов 2,4-Д составляло у пшеницы 34,9—40,9 %, а у ячменя — 53,5—57,4 %.

Устойчивость растений к гербициду 2,4-Д во многом определяется скоростью его метаболизма. Так, у пшеницы и ячменя, относящихся к устойчивым растениям, уже через 7 сут после обработки 2,4-Д остается лишь 2 % гербицида, а остальная его часть включается в состав водорастворимых метаболитов [8]. Среди последних выделяют метаболиты, лабильные в щелочной среде (эфиры 2,4-Д и различных углеводов) и стабильные в ней (конъюгаты с пептидами 2,4-Д, ее гидроксилированные метаболиты или их глюкозиды) [4, 10]. В пшенице и ячмене процесс этерификации протекает интенсивно в первую неделю после нанесения гербицида [5]. Важным путем метаболизма 2,4-Д в злаках является арилгидроксилирование. Часть гербицида, не успевшая трансфор-

мироваться, передвигается в направлении точек роста и может сохраняться в растениях до конца вегетационного периода, оставаться в семенах. Чаще всего остатки 2,4-Д обнаруживаются в соломе, но могут быть и в зерне [2, 3, 6, 7, 11, 12]. Остатки 2,4-Д в семенах вызывали деформацию проростков в 1-м поколении [10, 13].

Нами было установлено, что многолетние обработки ряда поколений пшеницы и ячменя послевсходовыми гербицидами оказывают длительное последействие на культуры и изменяют их реакцию на применяемый гербицид [1]. В связи с этим важно выяснить, связано ли последействие обработок в поколениях с содержанием остатков активного вещества в посевном материале и одинаково ли идет трансформация 2,4-Д у растений, ряд поколений которых подвергался обработкам этим гербицидом, и у обрабатываемых им впервые.

Методика

Изучение метаболизма меченной углероду 2,4-Д у ячменя и пшеницы проводилось во ВНИИ фитопатологии. Посевной материал (урожая 1983 г.) брали с трех вариантов полевых опытов1: 1) контрольного (пересев без применения гербицидов); 2) 1 год обработки гербицидом (гербицид применяли только в 1983 г.); многолетние обработки гербицидом (у ячменя в течение 6 лет, у пшеницы — 11 лет).

Пшеницу и ячмень выращивали в почвенной культуре до фазы кущения в естественных условиях (июнь 1984 г.). Затем на хорошо развитый у ячменя второй, а у пшеницы — на третий лист каждого растения наносили по 10 мкг 2,4-Д — 2 — С (удельная активность 219 мкюри/г) в 50 мкл 20 % этанола с 0,1 % твина 40. Обработанные растения в течение первых 24 ч находились в камере с 95 % относительной влажностью, затем для них поддерживали следующие условия: длина дня 16 ч, температура воздуха днем 25°, ночью 15°, влажность 60 %.

Через 1, 2, 3 и 7 дней после обработки убирали по 10 растений в каждом варианте в 3-кратной повторности. Непроникший гербицид смывали с обработанных листьев 20 % этанолом. Анализируемые растительные ткани (отдельно обработанные листья и всю остальную надземную часть) замораживали в жидком азоте, гомогенизировали в течение 2 мин, затем экстрагировали холодным 80 % ацетоном (10 мл на 1 г массы сырой ткани).

 1 Опыт с ячменем проведен В. Г. Небытовым в 1978—1983 гг. на селекционно-генетической станции ТСХА. Гербицид (40 % аминная соль 2,4-Д) вносили в фазу кущения в рекомендованной дозе — 2 кг/га.

Опыт с пшеницей проведен Ю. П. Таболиной на Карабалыкской сельскохозяйственной опытной станции Кустанайской области в 1971—1983 гг. Гербицид 33 % к. э. эфиров (C_7 — C_9) 2,4-Д внесен в ту же фазу в дозе $1~\rm kr/ra$.

Гомогенат фильтровали через стеклянный фильтр и остаток промывали 80 % ацетоном. Объединенные ацетоновые экстракты очищали от примесей (пигментов и пр.) гексаном, после чего гексан отделяли, а очищенный ацетон упаривали на роторном испарителе до водной фазы, которую подкисляли 1 н. НС1 до рН 3 и трижды экстрагировали диэтиловым эфиром (общий объем диэтилового эфира равен объему водной фазы). Диэтиловый эфир, содержащий свободную 2,4-Д, упаривали и наносили на тонкий (0,25 мм) слой силикагеля g, дважды хроматографировали в системе гексан — диэтиловый эфир — муравьиная кислота (50:50:2). Выделяли радиоактивные зоны с Rf 0,1; 0,5 и 0,7.

Водную фазу доводили концентрированной HC1 до 2 н. концентрации и гидролизовали 1 ч на кипящей бане. После охлаждения проводили экстракцию диэтиловым эфиром (трижды, как и в первом случае). Диэтиловый эфир упаривали и также хроматографировали на тонком слое силикагеля. Выделяли радиоактивные зоны с Rf 0,35 и 0,5, соответствующие разгидролизованным гидроксилированным производным — 4-OH-2,3-дихлорфеноксиуксусной кислоты, и с Rf 0,7 — 2,4-дихлорфеноксиуксусной кислоты.

Местоположение радиоактивных веществ на хроматограммах определяли радиометром ПП-8 с торцовым счетчиком Г-25БФЛ. О количестве гербицида и его метаболитов в каждой из фракций экстракта судилч по радиоактивности, определенной на жидкостном сцинтилляционном спектрометре SL-40 (Интертехник) с использованием толуолдиоксанового раствора (смесь толуол — диоксан — метанол 5:4:1, содержащая 0,15 % РОРОР, 0,75 % РРО и 2,4 % нафталина).

Математическую обработку данных проводили дисперсионным методом после перевода процентов в показатели $\phi=2$ агсsin $\slashed{\gamma}P$ [9]. Остаточные количества гербицида в зерне определяли по методу Д. И. Чканикова и сотр. [7].

Результаты

Применение аминной соли 2,4-Д в посевах ячменя в условиях 1983 г. привело к снижению массы сорняков почти в 10 раз и обеспечило повышение урожайности на 7 ц/га (табл. 1). Однако в варианте обрабо-

Вариант	Урожай- ность, ц/га	Кустист	гость, шт.	Число ко колосе	олосков в е, шт.	Длина колоса, см	Масса 1000 зе- рен, г
		общая	продук- тивная	общее	нераз- витых		
Контроль Обработка 2,4-Д	38,0	6,1	5,5	22,5	3,2	8,0	38,8
1 год 6 лет НСР ₀₅	45,0 42,2 2,0	5,7 5,9	5,4 5,4	22,1 23,1	3,2 3,9	8,1 8,0	39,8 37,0

 Π р и м е ч а н и е . Урожайность ячменя при высеве элитных семян — 38,2 ц га, при высеве таких же семян и обработке посева 2,4-Д в 1983 г. — 43,8 ц/га.

ток 6 поколений культуры, несмотря на такое же снижение засоренности, прибавка была существенно ниже — только 4,2 ц/га. Пересев культуры в опытах в течение 6 лет не оказал отрицательного влияния на урожайность (ср. урожайность элитных посевов). Следовательно, указанное выше снижение прибавки урожая обусловлено последействием гербицида на защищаемые растения.

Пшеница Саратовская 29 в полевых опытах возделывалась на слабозасоренных участках (после черного пара). В 1983 г. урожайность ее составила: в контроле — 13,6 ц/га, в варианте 1 год обработки гербицидом — 11,9, в варианте с 11-летними обработками — 12,3 ц/га. Различия по вариантам были несущественными. Урожайность элиты в этом году — 13,9 ц/га; следовательно, пересев пшеницы в течение 11 лет не ухудшил посевных и урожайных качеств сорта.

В семенах не было обнаружено активного вещества препаратов.

Меченая 2,4-Д, нанесенная на листья, уже в первые сутки практически полностью поглощалась растениями, о чем свидетельствует низкая радиоактивность смывов с листьев.

Преобладающая часть гербицида подвергалась трансформации уже в первые же сутки. В обработанном листе пшеницы оставалось 9,0— 9,6 % свободной (неизменной) 2,4-Д, в ячмене — 11,9—13,8 %. К 7-м суткам содержание свободной 2,4-Д уменьшилось до 3,6—4,0 % и 1,8-2,3 % (табл. 2 и 3).

При первичном воздействии гербицида на контрольные растения пшеницы Саратовской 29 (табл. 2) 47,0 % 2,4-Д находилось в связанном состоянии без гидроксилирования кольца, а 32,6 % — подвергалось гидроксилированию. Предполагается [8], что эти метаболиты представляют собой нетранспортирующиеся продукты детоксикации гербицида и способствуют выведению его из обмена веществ. Благодаря связыванию 2.4-Д в малоподвижные комплексы 89—92 % радиоактивности приходилось на обработанный лист и только 8—11 % — на другие части растения.

Существенные отклонения в метаболизме гербицида у пшеницы, материнские растения которой обрабатывались 2,4-Д 1 год, обнаружились уже через сутки после нанесения на листья радиоактивного продукта, а при многолетних (11 лет) обработках семенных репродукций — через 3 и 7 сут. Так, в первом случае гербицид в большей степени связывался в конъюгаты без одновременного гидроксилирования, на что указывает уменьшение почти на 10 % гидроксилированных производных 2.4-Д в обработанном листе в первые сутки. В последующие сроки отбора проб различия в соотношении фракций 2,4-Д в контрольных растениях и обрабатывавшихся гербицидом 1 год сгладились.

Через 7 сут после обработки обнаружились существенные различия в содержании связанной и гидроксилированной 2,4-Д в листьях пшени-

	Время после нанесения 2,4-Д, сут								
	1			3			7		
Состояние	вариант обработок гербицидом семенных репродукций								
2,4-Д	контроль	1 год	11 лет	конгроль	1 год	11 лет	контроль	1 год	11 лет
Суммарная радиоактивность тканей 10 растений, тыс. имп/мин									
	11 947	12 876	12 463	11 251 1	2 329 12	2 601	11 287	11 736	10 842
В % к суммарной радиоактивности тканей Обработанный лист									
Свободное Связанное	9,6 47,0	9,6 58,6 ^{+a}	9,0 52,0	4,5 49,5	2,9 50,2	2,5 56,9	3,6 55,5	3,0 61,2	4,0 49,3 + 6
Гидроксилиро- ванное В сумме	32,6 89,2	23,7 ^{-a} 91,9	29,4 90,4	35,6 89,6	30,4 83,5	26,2 ^{-a} 85,6	26,9 86,0	23,8 88,0	33,6 ⁺⁶ 86,9
За пределами обработанного листа									
Свободное Связанное Гидроксилиро-	3,9 3,6	2,8 2,6	3,1 3,5	1,8 3,2	3,0 4,9		1,3 4,7	0,7 4,3	0,8 5,0
ванное В сумме	3,3 10,8	2,7 8,1	3,0 9,6	5,4 10,4	8,6 16,5	6,3 14,4	8,0 14,0	7,0 12,0	7,3 13,1
		1	и целом	растени	И				
Свободное Связанное Гидроксилнро-	13,5 50,6	12,4 61,2 ^{+a}	12,1 55,5	6,3 52,7	5,9 55,1	4,8 62,7 ⁺ a	4,9 60,1		4,8 54,3 ⁻⁶
ванное	35,9	26,4-a	32,4	41,0	39,0	32,5—a	34,9	30,8	$40,9^{+6}$
HCP ₀₅ — 0,2 (по	показателю (ф)								

 Π р и м е ч а н и е . Здесь и в табл. 3 $\pm a$ —существенное увеличение или уменьшение по сравнению с контролем; ± 6 —существенное увеличение или уменьшение по сравнению с обработкой 1 год.

цы, обрабатывавшейся гербицидом 1 год и 11 лет. В листьях контрольных растений негидроксилированные конъюгаты 2,4-Д превышали гидроксилированные соответственно срокам отбора проб на 14,4; 13,9 и 28,6 %. а растений варианта многолетних обработок — на 22,6; 30,7 и 15,7 %. Процент связанной 2,4-Д без гидроксилирования превышал процент гидроксилированной в 1,5—2,5 раза.

В ячмене, как и в пшенице, уже в первые сутки после обработки значительная часть 2,4-Д (84—87 %) задерживалась в обработанном листе (табл. 3). Отношение связанной без гидроксилирования к гидроксилированной 2,4-Д в большинстве случаев у ячменя было более низким, чем у пшеницы, и колебалось от 1,7 до 0,7. Различия метаболизма 2,4-Д в контрольных растениях и обрабатывавшихся гербицидом 6 лет наиболее четко проявились через 3 сут после обработки. Содержание связаной 2,4-Д в листьях контрольных растений было в 1,7 раза (или на 20,4 %) больше, чем гидроксилированной, тогда как в листьях ячменя, обрабатывавшегося 6 лет, содержание их было одинаковым. Через 7 сут после нанесения меченого препарата и в контроле, и в варианте многолетних обработок гербицидом гидроксилированных форм 2,4-Д было больше, чем связанных без гидроксилирования.

Ячмень — более чувствительная к 2,4-Д культура, чем пшеница. Известно, что причины устойчивости растений к галоидфеноксикислотам различны, а фитотоксическое действие их зависит от содержания свобод-

	Время после нанесения 2,4-Д, сут								
	1		2			3	7		
Состояние 2.4-Д	вариант обработок гербицидом семенных репродукций								
,	контроль	6 лет	контроль	6 лет	контроль	6 лет	контроль	6 лет	
	тыс. имп	тыс. имп/мин							
	9723	9394	9704	9441	9072	7763	9286	8148	
В % к суммарной радиоактивности тканей Обработанный лист									
Свободное Связанное Гидроксилиро- ванное В сумме	11,9 41,6	13,8 38,9	8,8 45,8	7,6 49,0	5,8 50,8	6,3 36,4 ^{-a}	1,8 36,7	2,4 37,8	
	33,5 87,0	31,3 84,0	32,6 78,2	28,7 85,3	30,4 87,0	38,5 81,2	51,7 90,2	45,2 85,4	
	3a	предел	ами обрабо	танного	листа				
Свободное Связанное Гидроксилиро-	7,7 2,4	6,7 6,2	3,8 3,4	2,8 5,9	2,6 4,4	2,4 7,3	1,0 3,1	1,3 5,4	
ванное В сумме	2,9 13,0	3,1 16,0	5,6 12,8	10,0 18,7	6,0 13,0	9,1 18,8	5,7 9,9	7,9 14,6	
		В	целом раст	ении					
Свободное Связанное Гидроксилиро-	19,6 44,0	20,5 45,3	12,6 49,2	10,4 54,9	8,4 55,2	8,7 43,7-a	2,8 39,8	3,7 43,2	
ванное	36,4	34,2	38,2	34,7	36,4	47,6+a	57,4	53,1	
HCP ₀₅ — 0.2 (по показате.	лю ф)			<u>-</u>				
							-		

ного и подвижного гербицида. Через сутки после обработки содержание свободной 2,4-Д в растениях ячменя составляло 19,6—20,5 %, а пшеницы — 12,1—13,5 %.

Ранее [8] отмечалось, что ячмень обладал более выраженной способностью гидроксилировать 2,4-Д, чем пшеница и кукуруза. Это подтверждается нашими данными. Через 7 сут после обработки и в пшенице, и в ячмене преобладающая часть гербицида (95—97 %) находилась в связанном состоянии, но гидроксилированных форм в пшенице было 34,9 и 40,9 %, а в ячмене — 57,4 и 53,5 % (контроль и многолетние обработки соответственно). Важно отметить, что в первые сутки соотношение негидроксилированных и гидроксилированных метаболитов 2,4-Д у контрольных растений пшеницы и ячменя было близким, в дальнейшем процент гидроксилированных форм в пшенице не изменялся, а у ячменя возрастал.

Наибольшие различия метаболизма 2,4-Д в контрольных растениях и обрабатывавшихся гербицидом много лет наблюдались на третьи сутки, а впоследствии они сглаживались. Видимо, последействие многолетних обработок семенных репродукций сказывается не на характере метаболизма 2,4-Д, а на его скорости.

Выводы

1. Обнаружены существенные различия в динамике метаболизма 2,4-Д у пшеницы и ячменя, обрабатываемых гербицидом впервые и после многолетних обработок семенных репродукций.

Последействие многолетних обработок наиболее четко проявилось через 3 сут после нанесения на лист меченого гербицида. Оно вырази-

лось у пшеницы в уменьшении процента гидроксилированных производных, а у ячменя — негидроксилированных конъюгатов 2,4-Д.

2. Содержание свободной 2,4-Д через сутки после обработки составляло у ячменя 19,6—20,5 %, у пшеницы — 12,1—13,5 % (к общей радиоактивности. Гидроксилирование гербицида в ячмене Московском 121 шло интенсивнее, чем в пшенице Саратовской 29. Через 7 сут содержание гидроксилированных метаболитов 2,4-Д составляло у пшеницы 34,9—40,9 %, а у ячменя — 53,5—57,4 %.

ЛИТЕРАТУРА

1. Зинченко В. А. Модификационная изменчивость у зерновых культур, индуцированная гербицидами. — Изв. ТСХА, 1986, вып. 2, с. 13—26. — 2. Майерьбоде Г. Гербициды и их остатки / Пер. с нем. — М.: Мир, 1972. — 3. Назарова Т. А., Павлова Н. Н., Макеев А. М., Чкаников Д. И. Транспорт и метаболизм 2,4-Д в растениях ячменя разного возраста. — Химия в сельск. хоз-ве, 1978, № 11, с. 34—36. — 4. Назарова Т. А., Павлова Н. Н., Макеев А. М., Чкаников Д. И. Аминокислотные конъюгаты 2,4-Д в злаковых растениях. — Физиол. растений, 1980, вып. 27, № 4, с. 740—745. — 5. Назарова Т. А. Метаболизм 2,4-Д в злаковых растениях. — Автореф. канд. дис. М., 1984. — 6. Чкаников Д. И., Макеев А. М., Павлова Н. Н., Назарова Т. А. Остатки 2,4-Д в пшенице и кормовых злаках. — Химия в сельск. хоз-ве, 1978, № 5, с. 51—54. — 7. Чкаников Д.И., Макеев А.М., Павло-

ва Н. Н., Назарова Т. А., Ч м и л ь В. Д. Определение остатков в со-T. A., ломе и зерне злаковых растений. — Химия в сельск. хоз-ве, 1981, № 5, с. 60—63. — 8. Чкаников Д. И., Макеев А. М., Павлова Н. Н., Назарова Т. А. О метаболизме 2,4-Д в культурных злаках. — Физиол. растений, 1982, т. 29, № 3, с. 542—549. — **9.** У р б а х В. Ю. Биометрические методы. — М.: 1964. — **10.** Эйдельнант Н. М., Мостовая В. И. Исследование зависимости внешних признаков аномального растения от сохранения в нем интактной 2,4-Д. — Химия в сельск. хоз-ве, 1970, № 9, c. 54—57. — 11. Beitz H., Stock M. Ruckstand in der Pflanzenpro-duktion. — Nachrichten — Pflanzenschutz DDR, 1980, Bd,, H. L., S. 133-137. -**12.** Cessna A. L. — J. Agric. Food Chem., 1980, N 6, vol. 28, p. 1229-1232. — 13. Corbett J. R., Miller Ch. S. — Weeds, vol. 14, N 1, 1966.

Статья поступила 9 января 1986 г.

SUMMARY

Essential differences are found in 2.4-D metabolism dynamics in wheat and barley depending on frequency of treating seed reproductions with the herbicide.

The aftereffect of long-term treatments on 2.4-D metabolism was most clearly seen in three days after applying the labelled herbicide on the leaf. In wheat it was shown in lower percentage of hydroxylated 2.4-D conjugants, while in barley — in lower percentage of nonhydroxylated ones. In barley Moskovsky 121 hydroxylation was more intensive than in wheat Saratovskaja 29. In 7 days the content of hydroxylated 2.4-D metabolites in wheat made 34.9—40.9 %, and in barley — 53.5—57.4 %.