ВЛИЯНИЕ ПОГОДНЫХ УСЛОВИЙ НА ЭФФЕКТИВНОСТЬ МИНЕРАЛЬНЫХ И ОРГАНИЧЕСКИХ УДОБРЕНИЙ В ОВОЩНОМ СЕВООБОРОТЕ В УСЛОВИЯХ ЗАПАДНОЙ СИБИРИ

С.М. СИРОТА*, В.А. БОРИСОВ, д. с.-х. н.**; М.А. БЕЛЯКОВ***

Метереологические условия являютважнейшими факторами внешней среды, которые в большинстве случаев играют решающую роль в формировании величины урожаев всех культур [8]. Зависимость действия удобрений от погодных условий начали отмечать в конце 40-х — начале 50-х гг. ХХ в. [6, 71. Накопленный экспериментальный материал об особенностях действия удобрений в различных погодных условиях позволил А.П. Федосееву [8] выявить, что в связи с изменчивостью факторов колебаметеорологических эффективности удобрений в Нечерноземной зоне составляют 25-60% и 35-70% в Черноземной.

Наряду с ежегодными отклонениями от среднемноголетних значений количества выпадающих осадков, сумм положительных температур и т.д. сегодня все более отчетливо стали проявляться глобальные изменения климата. На территории России они коснулись районов Западной Сибири, Поволжья и Северного Кавказа [2].

Цель нашей работы — изучить влияние погодных условий на эффективность минеральных и органических удобрений в севообороте с овощными культурами и картофелем в условиях Западной Сибири.

Методика

Для изучения использовали данные многолетнего стационарного опыта, заложенного на Западно-Сибирской овощ-

ной опытной станции в 1942-1943 гг. В опыте в 5-польном овощекартофельном различные сиссевообороте изучали темы удобрений: внесение парных элементов минерального питания, полное минеральное удобрение, органические удобрения отдельно и вместе с минеральными удобрениями. Опыт развернут во времени на двух полях. Чередование культур в севообороте: томат капуста — морковь — картофель огурец. Контролем в опыте служит вариант, в котором с 1942-1943 гг. не удобрения. опыте вносили Почва слабовыщелоченным представлена среднемощным слабовыщелоченным И черноземом. Урожайные данные группировали по величине гидротермического коэффициента (ГТК). Это позво**установить** величину прибавок лило ОТ удобрений во влажные, урожая влажные умеренно И засушливые годы. За исследуемый период влажными (ГТК > 0.8) были 25 лет (1969, 1970, 1971. 1976,1977, 1978, 1979, 1980. 1984. 1985,1986, 1987, 1988. 1991. 1993,1994, 1995, 1996. 1992, 1998. 2000, 2001, 2002, 2003, 2004), ymepenновлажными (ГТК = 0,6-0,7) — 8 лет (1968, 1973, 1975, 1981, 1982, 1989, 1999), засушливыми (ГТК < 0,5) — 2 года (1974, 1997).

Агротехника возделывания овощных культур в опыте (за исключением изучаемых факторов)соответствовала общепринятой на станции. Несмотря на наличие на станции системы ороше-

^{*} Всероссийский научно-исследовательский институт селекции и семеноводства бвощных культур.

^{**} Всероссийский научно-исследовательский институт овощеводства.

^{***} Западно-Сибирская овощная опытная станция ВНИИО.

ния, поливы на опытном участке проводили нерегулярно только в критические для культур моменты. Свидетельством этому является низкий запас продуктивной влаги в почве (< 20 мм) в слое 0-20 см во многие годы исследований.

Результаты и их обсуждение

Отзывчивость овощных культур картофеля на минеральные и органиудобрения наблюдалась только во влажные, но и засушливые годы. В таблице представлены данные об урожайности культур как в абсо-(т/га), так и относительных урожая (%). показателях Долю удобрений, сформированную за счет рассчитывали из отношения:

$$A = \frac{B}{C} \times 100\%,$$

где В — прибавка урожая от удобрений, τ /га; С — общий урожай на удобренном варианте, τ /га.

Урожайность томата, капусты, картофеля по мере уменьшения количества осадков за вегетационный период неуклонно снижалась как на удобренном, так и на неудобренном фонах. При этом изменялась и отзывчивость культур на удобрения. Прибавка урожая плодов томата от одной и той же дозы минеральных удобрений в засушливые годы оказалась в 1,3 раза меньше, чем во влажные, соответственно капусты в 1,6 и картофеля — в 2,4 раза. На фоне органических удобрений негативное действие засухи было менее выражено, чем в вариантах с минеральными удобрениями. Так, отзывчивость томата на органические удобрения снизилась в засушливые годы по сравнению с влажными годами всего в 1,1 раза и при этом прибавка урожая плодов томата была одинаковой как на фоне минеральных, так и на фоне органиудобрений. Аналогичная денция имела место и в опыте с капустой, однако ее отзывчивость на минеральные удобрения была выше, чем на органические, на 8,6%.

Несколько иной была реакция растений картофеля на минеральные и

Влияние погодных условий на урожайность культур (т/га) в стационарном опыте Западно-Сибирской овощной опытной станции ВНИИО (1968-2004 гг.)

<u>Западно-Сибирской овощной опытной станции ВНИИО (1968-2004 гг.)</u>																
Куль- тура	Годы															
	влажные					умеренно влажные					засушливые					HCР ₀₅ , т/га
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	
Томат	31,4	37,4	36,4	<u>6,0</u> 5,0	<u>16,0</u> 13,7	36,9	43,4	39,6	<u>6,5</u> 2,7	15,0 6,8	15,3	20,0	19,9	4,7 4,6	23,5 23,1	1,2- 4,0
Капуста	44,6	80,2	67,1	35,6 22,5	44,4 33,5	44 ,9	77,8	71,1	32,9 26,2	<u>42,3</u> 36,8	34,0	56,7	49,6	<u>22,7</u> 15,6	40,0 31,4	2,9 <u>–</u> 11,3
Мор- ковь	36,9	43,3	41,7	<u>6,4</u> 4,8	14,8 11,5	36,7	44,1	47,2	<u>7,4</u> 10,5	16,8 22,2	-	- .	-	-	-	2,3– 9,0
Карто- фель	•	31,4	29,4	<u>8,5</u> 7,5	27,1 25,5	14,7	20,6	18,2	<u>5,9</u> 3,5	28,6 19,2	16,2	19,8	22,4	<u>3,6</u> 6,2	$\frac{18,2}{27,7}$	1,3 5,1
Огурец	21,2	26,9	24,6	<u>5,7</u> 3,4	21,2 13,8	27,7	36,1	33,4	8,4 5,7	23,3 17,1	29,9	36,8	36,0	<u>6,9</u> 6,1	18,7 16,9	0,7– 4,2

Примечание. 1) на томате HCP $_{05}$ — 1,2–7,0 т/га; на капусте — 2,9–11,3 т/га; на моркови — 2,3–9,0 т/га; на картофеле — 1,3–5,1 т/га; на огурце — 0,7–4,2 т/га.

^{2) 1—} урожайность овощей и картофеля без удобрений; 2 — урожайность при внесении оптимальной дозы минеральных удобрений: томат $N_{60}P_{135}K_{60}$, капуста $N_{90}P_{90}K_{90}$, морковь $N_{40}P_{30}K_{60}$, картофель $N_{30}P_{60}K_{60}$, огурец $N_{60}P_{90}K_{60}$; 3 — урожайность при внесении оптимальной дозы органических удобрений: томат — 20,0 т/га, капуста — 30,0 т/га, морковь — 20,0 т/га, картофель — 40,0 т/га, огурец — 50,0 т/га; 4 — прибавка урожайности от удобрений (т/га): в числителе минеральные удобрения, в знаменателе органические удобрения; 5 — прибавка урожайности (%): в числителе минеральные удобрения, в знаменателе органические удобрения.

органические удобрения в зависимости влагообеспеченности. Bo влажные годы отзывчивость картофеля на минеорганические удобрения ральные и была практически одинаковой. В умеренно влажные годы прибавка урожая картофеля OT минеральных удобрений была выше, чем от органических. В засушливые годы, напротив, отзывчивость картофеля была наибольшей на фоне органических удобрений. вполне объяснимо тем, что во влажные годы достаточный запас продуктивной влаги в почве делает доступным для растений элементы минерального питания независимо от формы, в которой они внесены.

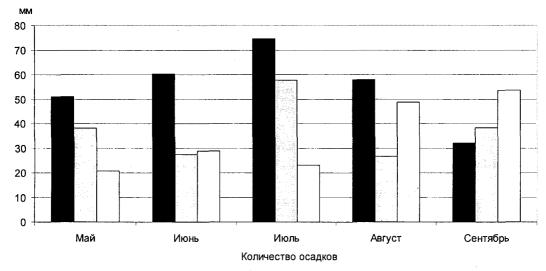
В то же время количество влаги в почве в умеренновлажные годы явно недостаточно для перехода элементов питания из органических удобрений в почвенный раствор и превращение их в доступные формы, и при этом минеральные удобрения имеют преимущество перед органическими — прибавка урожая соответственно 5,9 и 3,5 т/га,.

В засушливые годы наблюдается явное преимущество почв с высоким содержанием органических веществ и их способность аккумулировать и по мере потребности растений отдавать им запасы продуктивной влаги, чем обусловлена прибавка урожая клубней картофеля — 6,2 т/га.

Большое значение гумуса в улучшении физических свойств почв, регулировании водного, воздушного и теплового режимов, повышении биологической активности и буферности почв, их сопротивляемости неблагоприятным воздействиям отмечено и в литературных источниках [1, 3, 4].

Морковь за годы исследований выращивали лишь в условиях влажных и умеренновлажных лет. Поэтому изменение гидротермических условий вегетационного периода и их влияние на урожай моркови не имеет такого контраста, как на другие культуры. Вместе с тем полученные данные позволяют говорить о тенденции повы-

шения отзывчивости растений моркови к минеральным и особенно к органическим удобрениям в умеренно влажные годы.


Растения томата, капусты, феля, несмотря ИХ существенные на физиологические различия (в очередь по отношению к влаге), проявили практически одинаковую денцию на отзывчивость к минеральным и органическим удобрениям при изменении гидротермических условий. Максимум прибавки урожая получен от внесения удобрений во влажные годы и минимум — в засушливые.

В то же время у культуры огурца одинаковой влагообеспеченности максимальная урожайность и отзывчивость на удобрения была в засушливые годы. Рост урожая плодов отмечен во всех вариантах с уменьшением увлажненности вегетационного да. Так, если во влажные годы уроплодов огурца в варианте удобрений составил 21,2 т/га, то в засушливые годы — 29,9 т/га. Отзывчивость культуры огурца на минеральные и органические удобрения также имела тенденцию к росту в умеренные и засушливые годы.

Объяснение столь, казалось бы, противоречивому факту мы найдем, если обратимся к рисунку, где показано распределение осадков в годы с различным увлажнением.

Во влажные годы Западной ДЛЯ Сибири характерно общее увеличение количества осадков в летние месяцы: июнь — 60,3, июль — 74,7 и август — 58,1 мм. В умеренно влажные годы максимальное количество осадков отмечено в мае, июле, соответственно 38,3 и 57,9 мм. В засушливые годы при недостаточном увлажнении июне, июле количество осадков личивалось в августе и сентябре и было практически равным или больше, чем во влажные годы.

При этом сумма среднемесячных температур в засушливые годы в мае выше, чем во влажные годы, на 51°C,

■ во влажные годы □ в умеренные годы □ в засушливые годы

Распределение осадков по месяцам в годы с различной водообеспеченностью

в июне, июле ниже на 41,9 и 11,1°C соответственно. В августе сумма среднемесячных температур возросла до 558,4°C, что выше, чем во влажные годы, на 25,5°C. К тому же в засушливые годы отмечались более высокие температуры и в сентябре.

При повышенной влажности почвы и воздуха во влажные годы создаются условия для проявления и распространения инфекционных заболеваний, таких как мучнистая и ложномучнистая роса, к которым огурец сортов сибирской селекции или неустойчив, или имеет слабую устойчивость. К моменту плодоношения (конец июля — начало августа) в эти годы обычно отмассовое мечалось поражение растений огурца, что негативно сказывалось на продуктивности культуры.

В засушливые годы растения огурнедостаток ца, испытывая влаги июне и июле, вместе с тем имели не пораженную болезнями листовую верхность В период плодоношения (август - сентябрь), когда благоприятные температурный влажностный режимы, реализовывали свой потенциал продуктивности.

Следует отметить, что отзывчивость огурца на минеральные удобрения выше, чем на органические, во все годы наблюдений.

Выводы

- 1. Применение минеральных и органических удобрений на слабовыщелоченном среднемощном и слабовыщелоченном черноземе юга Западной Сибири обеспечивает достоверный прирост урожаев овощных культур и картофеля во влажные, умеренно влажные и засушливые годы.
- 2. Эффективность минеральных удобрений по сравнению с органическими выше во влажные и умеренно влажные годы на томате, картофеле, огурце, капусте, а на последней культуре и в засушливые годы.
- 3. В засушливые годы эффективность минеральных и органических удобрений на огурце и томате практически одинаковая, а на картофеле органические удобрения в условиях засухи имеют преимущество перед минеральными удобрениями.
- 4. Наиболее отзывчивой культурой на удобрения во все годы исследований

была капуста — прирост урожая от удобрений более 30%.

5. В годы с разной водообеспеченностью распределение осадков по месяцам вегетационного периода неодинаковое: во влажные годы максимальное количество их выпадало в мае, июне, июле, августе и минимальное — в сентябре. В умеренно влажные годы максимальное количество осадков приходилось на май, июль и сентябрь, в засушливые годы — соответственно на август и сентябрь.

ЛИТЕРАТУРА

1. Александрова Л.Н., Юрлова О.В. Методы определения оптимизации содержания гумуса в пахотных дерновоподзолистых почвах (на примере почв Ленинградской области) // Почвоведение, 1981. №8. С. 21 — 28. — 2. Лады-

кин В.М. Температура почвы как один из факторов, определяющих эффективность удобрений // Почвоведение, 1951. № 9. С. 557-561. — **3.** Державин Л.М. Применение минеральных удобрений в интенсивном земледелии. М.: Колос, 1992. — 4. *Егоров В.В.* Некоторые вопросы повышения плодородия почв / / Почвоведение, 1981. № 10. С. 71-79. — 5. Кононова М.М. Органическое вещество и плодородие почвы // Почвоведение, 1984. № 8. С. 6—20. — 6. Пронъко В.В., Корсак В.В., Дружинин $A.\Phi$. Влияние погодных условий и агротехнических приемов на эффективность удобрений в степном Поволжье // Агрохимия, 2004. № 8. С. 20-26. — 7. Соколов А.П. Почвенный покров и география эффективности удобрений // Почвоведение, 1947. № 1. С. 16-26. — **8.** Федосеев А.П. Погода и эффективность удобрений. Л.: Гидрометиоиздат, 1985.