Известия ТСХА, выпуск 1, 1985 год

УДК 635.25:631.563

ВЛИЯНИЕ ОЗОНИРОВАНИЯ НА СОХРАНЯЕМОСТЬ ЛУКА-РЕПКИ

А. М. МУСТАФА, А. Е. ЧЖАО

(Кафедра технологии хранения и переработки плодов и овощей)

Имеющиеся данные о результатах влияния обработки лука озоном на сохраняелука репки противоречивы. Так, мость в опытах Файтельберга-Бланка В. Р. с сотрудниками [6, 7], проведенных в Одесском сельскохозяйственном институте, общие потери лука, обработанного озоном, в конце хранения составили 1 %, а не обработанного — 9,7 %. При этом, как утверждают авторы статей, понижалась активность дыхания луковиц и замедлялось развитие на их поверхности микроорганизмов. В то же время в исследованиях, проведенных в Канаде [11], обработка озоном вегетирующего лука понижала его урожайность и ослабляла устойчивость ко всем видам Botrytis (В. squamosa, В. allii М. и В. cinerea Pers.).

Методика

Исследования проводились в 1977/78 и 1978/79 гг. с луком сорта Тимирязевский. В опыте был применен трубчатый озонатор [3], в котором кислород воздуха под действием высокого электрического разряда превращался в озон. Насыщенный озоном воздух с помощью компрессора подавался в полиэтиленовые емкости объемом 0,5 м³, где находился стандартный по размеру и качеству лук репка. Изучаемые в опыте варианты различались по экспозиции и кратности обработок, а также по концентрации озона (табл. 1).

В период хранения в камере холодильника поддерживалась температура от +0,5

Таблица 1 Варианты обработок лука озоном

Вариант	Продолжительность обра б отки, мин	Концентрация О₃, мг/м³	Қоличество обра б оток	
1	10	3,5	Еженедельно	
2	20	5,0	»	
3	30	6,5	»	
4	30	6,5	В начале и конце хранения	
5	10	3,5	То же	
гроль — бе	з обработки	<u></u>		

Изменение содержания химических веществ в луке во время хранения в феврале (верхние цифры), и апреле (нижние) по сравнению с исходным (в среднем за 1977/78 и 1978/79 гг.)

Варианты (концентрация О ₃ , мг/м³ и периодичность обработки)	Общие сухие вещества, %	Сумма сахаров, %	Caxaposa, %	Редуцирую- щие сахара, %	Аскорбиновая кислота, мг%
Контроль 3,5, еженедельно 5,0	-1,0 -2,5 -1,1 -3,2 -1,6 -4,0 -2,2 -4,6 -1,2 -2,8 -1,0	-0,8 -2,4 -0,9 -2,7 -1,4 -3,1 -1,9 -3,7 -1,0 -2,8 -0,9	-1,1 -3,7 -1,6 -4,3 -2,0 -4,7 -2,6 -5,2 -1,7 -4,5	+0.3 $+1.5$ $+0.7$ $+1.8$ $+0.7$ $+1.8$ $+0.7$ $+0.7$ $+0.7$ $+0.7$ $+0.5$	$\begin{array}{c} -1,9 \\ -0,3 \\ -2,2 \\ +0,2 \\ -3,0 \\ +0,7 \\ -4,1 \\ +1,6 \\ -1,9 \\ +0,2 \\ -1,8 \end{array}$

Таблица 3. Сохраняемость (%) лука репки сорта Тимирязевский (хранение с октября по май)

		Потери			
Вариант (концентрация О ₃ , мг/м ⁸ и периодичность обработки)	Проросший	убыль массы	ы загнивший общие Выход товар- вого лука		
	0	лыт 1977/78 г	г.		
Контроль (без обработки)	0,0	8,7	13,1	21,8	78,2
3,5, еженедельно	1,7	12,2	15,0	27,2	72,8
5,0 »	5,0	14,5	22,0	36,5	63,5
6,5 »	6,3	17,2	26.3	43,5	56,5
6,5, в начале и конце	0,0	- : ,	,-	,-	
хранения	5,0	12,4	20,5	32,9	67,1
3,5, в начале и конце	-,-	,	,-	,-	,-
хранения	0.9	11,7	17,0	28,7	71,3
HCP ₀₅	_	1,3	1,3		_
S	_	0,4	0,4	_	_
*	C) пыт 1978/79 г	Τ.		
Контроль (без обработки)	0,8	9,2	10,2	19,4	80,6
3,5, еженедельно	3,4	14,8	12,0	26,8	73,2
5,0 »	6,2	16,7	24,5	$\frac{20,0}{41,2}$	58,8
6,5 »	8,0	18,8	31,0	49,8	50,2
6,5, в начале и конце	0,0	10,0	01,0	10,0	55,-
хранения	4,3	14,1	20,0	34,1	65,9
3,5, в начале и конце	.,0	,.	20,0	· · · · ·	
хранения	1,3	13,9	18,6	32,5	67,5
HCP ₀₅	 .	1,4	1,1	 ,-	_
	_	0.5	0,4	_	_
S- x		- 7 -	-,-		

до $+2.5^{\circ}$, относительная влажность воздуха 70-75%. В каждом варианте опыта было заложено на хранение 60 кг лука в 3-кратной повторности.

Контроль за содержанием озона в воздухе проводился по методике Д. И. Менделеева [2]. Метод основан на способности озона как сильного окислителя выделять йод из КЈ. Реакция протекает в кислой среде по уравнению

$$O_3+6 \text{ KJ}+6 \text{ HCl} \rightarrow 3 \text{ J}_2+6 \text{ KCl}+3 \text{ H}_2\text{O}.$$

Поскольку количество О₃ эквивалентно количеству йода, то по содержанию йода

можно определить количество ${\rm O}_3$ в исследуемом объеме.

Химический состав лука определяли в декабре, феврале и апреле по общепринятым методикам; содержание растворимых сухих веществ — рефрактрометром РЛ, общих — высушиванием навески при температуре 105° до постоянной массы, аскорбиновой кислоты — титрованием реактивом Тильманса (по Мурри), сахаров — феррицианидным методом [9].

Сохраняемость лука оценивали в конце хранения (май) по убыли массы и числу загнивших луковиц. Наряду с этим учитывали количество проросшего лука.

	Содержание сухого вещества в начале храния	Убыль массы за время хранения	Вт. ч.	
Варианты (концентрация О _в , мг/м ³ и периодичность обработки)			су хого вещ е ства	воды
Контроль	155,9	89,5	2 4, 9	64,6
3,5, еженедельно	155,2	135,0	32,2	102,8
5,0 »	155,4	156,0	40,2	115,8
5,5 »	155,4	180,0	46,2	133,8
5,5, в начале и в конце хранения	154,7	132,5	28,2	104,3
3,5, в начале и в конце хранения	155.1	128.0	26.1	101,9

Результаты исследований

Во время хранения в луковицах, обработанных озоном, расход сухих веществ и сахаров был выше, чем в контроле. Потери этих веществ повышались от варианта с наименьшей концентрацией озона к вариантам с более высокой его концентрацией (табл. 2).

В то же время у лука, обработанного озоном, содержание аскорбиновой кислоты оказалось более высоким, что согласуется с более ранним началом ростовых процессов в обработанных луковицах. Имеется ряд работ, в которых указывается на повышение содержания витамина С в растущих органах и тканях [1, 8].

Лук, обработанный озоном, прорастал тем сильнее, чем выше была его концентрация при обработке (табл. 3). Это, очевидно, и явилось причиной повышенного расхода у луковиц сухих веществ и, в частности сахаров, на дыхание и другие физиологические процессы.

В нашем опыте очень четко прослеживается корреляция между концентрацией озона, прорастанием, потерями от микробиологической порчи и убылью массы луковиц.

Озонирование, вероятно, не оказало подавляющего влияния на жизнедеятельность возбудителей заболеваний (шсиковую и донцевую гнили, бактериозы), в то же время такая обработка приводила к понижению устойчивости лука к заболеваниям.

Соответственно повышению концентрации озона у луковиц в опытных вариантах повышались потери и от убыли массы.

Из табл. 4 видно, что у лука в контрольном варианте, который лучше сохранился, потери сухих веществ и воды были меньше, чем у луковиц, обработанных озоном.

Водный баланс растительных тканей тесно связан с их устойчивостью к патогенным микроорганизмам [4]. Как правило, заболевание растений сопровождается более или менее значительным обезвоживанием тканей.

Потеря воды растительной тканью приводит к смещению активности ферментов в сторону усиления процессов гидролиза, вызывает необратимые изменения в системе коллоидов протоплазмы и отклонения от нормального обмена веществ. Как показали исследования [5], лежкие сорта лука расходуют воду значительно медленнее и экономнее, чем сорта, не выдерживающие длительного хранения. Корреляция между водоудерживающей способностью лука и его сохраняемостью была установлена также в работе [10].

Таким образом, следует заключить, что обработка лука озоном, который является сильным окислителем, способствует выходу луковиц из состояния физиологического покоя, стимулирует их прорастание, увеличивает расход сухих веществ и сахаров, повышает потери от убыли массы и микробиологической порчи. В связи с этим обработка лука репки озоном не может быть рекомендована в качестве приема, повышающего его сохраняемость.

ЛИТЕРАТУРА

1. Львов С. Д., Гуцевич Г. К., Пантелеев А. Н. О функциональном значении витамина С для растения. — Учен. зап. ЛТУ, сер. биол. наук, 1945, вып. 5, № 75.— 2. Менделеев Д. Химия. Т. 1. М., 1931.— 3. Мустафа А. М. Влияние сочетаний минеральных удобрений, сроков уборки, размера луковиц и озонирования на качество лука репки, его устойчивость к возбудителю шейковой гнили и сохраняемость. — Автореф. канд. дис. М., 1982. – 4. Рубин Б. А., Арциховская Е. В. Биохимия и физиология иммунитета растений М.: Высшая школа, 1968, с. 155-326. — 5. Рубин Б. А. О способах оценки лука к длительному хранению. — Вестн. по овощеводству и картофелеводству, 1940, № 4, с. 31—35.— 6. Файтельберг-Бланк В. Р., Быкова Е. В., Орлова А. В. и др. Улучшения сохранности картофеля и лука при помощи ионизиро-

ванного воздуха. — Вестн. с.-х. науки, 1979, № 4, с. 110—112. — 7. Файтельберг-Бланк В. Р., Орлова А. В., Авербух Р. А. и др. Хранение лука и картофеля в ионизированном воздухе. — Картофель и овощи, 1977, № 12, с. 34. — 8. Чикалова Е. А. Биосинтез аскорбиновой кислоты в растениях в зависимости от фазы развития и некоторых факторов внешней среды. — Автореф. канд. дис. Иваново, 1961. — 9. Широков Е. П. Практикум по технологии хранения и переработки плодов и овощей. М.: Колос, 1974, с. 28—41; 59-62.—10. Woodman R. M., Barnal Barnall H. R. — Annals of Appliea Biology, 1937, vol. 24, p. 219-235. - 11. Wurasch R.T., Hofstra G. — Proceedings of the Canadian Phytopathological. Society, 1976, N 43, p. 36.

Статья поступила 13 июня 1984 г.