ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ ВОДНЫХ РАСТВОРОВ СИНТЕТИЧЕСКИХ МОЮЩИХ СРЕДСТВ

В. М. Корнеев

ФГБОУ ВО «Российский государственный аграрный университет – MCXA имени К. А. Тимирязева», г. Москва, Российская Федерация

Аннотация. В статье приведены свойства моющих средств. Рассмотрено влияние моющих средств на эффективность очистки. Изложены технологические режимы процесса очистки.

Ключевые слова: загрязнения; моющие средства; очистка; технологический режим; эффективность.

TECHNOLOGY OF APPLICATION OF AQUEOUS SOLUTIONS OF SYNTHETIC DETERGENTS

V. M. Korneev

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation

Abstract. The article describes the properties of detergents. The influence of detergents on cleaning efficiency is considered. The technological regimes of the cleaning process are outlined.

Keywords: pollution; detergents; cleaning; technological mode; efficiency.

В процессе эксплуатации и хранения сельскохозяйственной техники на наружных поверхностях машин и рабочих поверхностях деталей откладываются различные виды загрязнений, которые не только препятствуют качественному проведению контрольно-регулировочных работ, но и снижают эксплуатационную надежность и ресурс машин. В этой связи особую актуальность приобретают вопросы обеспечения качества очистки в ремонтнообслуживающем производстве [1].

Эффективность очистки во многом определяется видом моющего средства и технологическими режимами процесса (концентрация моющего средства в моющем растворе, температура моющего раствора, продолжительность очистки). При выборе

моющего средства необходимо учитывать особенности технологического процесса очистки, состав и свойства загрязнений, физикомеханические свойства материалов объектов очистки [2].

Из-за разнообразного состава реальных загрязнений наиболее эффективными и наиболее распространенными для их удаления являются синтетические моющие средства (СМС), основу которых составляют смеси щелочных солей и поверхностно-активных веществ (ПАВ). Препараты МС-15, МС-17, МС-18, МС-26, МС-37 применяют для удаления масляно-грязевых, смолистых и асфальтено-смолистых отложений с поверхностей деталей из черных и цветных металлов. Очищенные детали не коррозируют и не требуют ополаскивания [3].

Растворы СМС обладают высокой абсорбционной способностью, что определяет устойчивость мелкодиспергированных частиц загрязнений против их обратного оседания (ресорбции) на очищенную поверхность детали.

Моющее средство МС-15 предназначено для очистки машин, агрегатов и деталей от грязе-масляных отложений, растительных остатков, смазочных материалов, асфальтено-смолистых отложений в моечных машинах погружного типа с интенсивным возбуждением моющего раствора концентрацией 15...20 г/л и температурой 75...85°C.

Моющее средство МС-17 целесообразно применять в выварочных ваннах, в погружных моечных машинах шлюзового типа, вибрационных, роторных, циркуляционных и других моечных машинах с концентрацией 15...20~ г/л и температурой раствора 80...85°C.

Моющее средство МС-18 предназначено для очистки ремонтируемых объектов в струйных моечных машинах с давлением в напорном трубопроводе 0,6...1,0 МПа, концентрацией 10...15 г/л и температурой 75...80°C.

При очистке в струйных моечных машинах можно использовать также MC-17, с концентрацией 7...10 г/л, MC-37 - 10...15 г/л.

Моющие средства MC-26 и MC-26M предназначены для очистки ремонтируемых объектов от смолистых и масляных загрязнений в любых моечных установках с концентрацией $10...25 \, \Gamma/\pi$, температурой раствора $70...75 \, ^{\circ}$ C. MC-26 позволяет удалять старые лакокрасочные материалы с деталей из цветных

металлов и сплавов при концентрации 50...70 г/л и температуре раствора 90...95°C.

Моющее средство МС-37 рекомендуется для использования при очистке деталей от масляных и смолистых отложений.

СМС следует растворять в предварительно подогретой до 50...60°C воде.

В установках струйного типа при давлении свыше 0,4...0,5 МПа во избежание в первый период пенообразования рекомендуется СМС заправлять за 2...3 приема.

При этом уровень воды в ванне с моющим раствором должен быть ниже кромки на 0,5...1,0 м для создания пенного пространства. Через 3....4 ч работы моечной машины с накоплением в ванне загрязнений пенообразование моющего раствора резко снижается. В этом случае производят дозаправку моющего средства и воды до нормы.

Причиной недостаточной эффективности моющего раствора и качества очистки может быть низкая температура раствора и недостаточная его концентрация, плохое возбуждение раствора, малое время очистки, неправильный выбор моющего средства для данной технологической операции.

Эффективность и качество очистки повышаются с увеличением температуры раствора.

Температура очистки является одной из важнейших технологических характеристик раствора синтетических моющих средств. Поэтому температуру поддерживать нужно в оптимальных пределах.

Концентрация моющего раствора так же, как и температура, оказывает влияние на эффективность и качество очистки. Если растворы используются согласно технологическим рекомендациям, изложенным выше, то повышение концентрации не всегда приводит к улучшению моющего действия. В этом случае целесообразнее увеличить продолжительность очистки. Увеличение времени пребывания очищаемых деталей в рабочей зоне при высокой температуре способствует размягчению загрязнений, что повышает эффективность их отмыва.

Некоторые виды загрязнений в виде отложений тугоплавких смазок, осадков и смолистых отложений обладают слабой жидкотекучестью и структурно-механическими свойствами, поэтому их

очистка в установках струйного типа затруднительна и продолжительна. К тому же, как правило, эти загрязнения находятся в труднодоступных для очистки местах: глухих и сквозных отверстиях, глубоких карманах и т.д. Очистку деталей от этих загрязнений следует проводить в погружных моечных машинах и выварочных ваннах. Ванный способ очистки позволяет повысить температуру моющего раствора до 95...100°С. В результате этого смолистые отложения приобретают жидкотекучесть, легко деформируются под действием поверхностных и выталкивающих сил и внешних механических воздействий. При этом наибольший эффект (20 г/л) достигается с использованием МС-15, МС-17, МС-26 и МС-37.

Один из способов повышения качества очистки, на которой следует обратить внимание, — это отделение сильно загрязненных деталей из общего потока. Такие детали в зависимости от вида загрязнений подвергают различным способам предварительной обработки в растворителях, в концентрированных щелочных растворах или очищают вручную, а затем направляют на производственную линию очистки.

Очень часто детали засыпаются в поддон и корзины беспорядочно, без правильной укладки, что снижает эффективность и качество очистки. Детали целесообразно навешивать на специальные подвески или укладывать с просветом для обильного обмыва моющим раствором.

Для эффективной работы установок струйного типа необходимо ежедневно прочищать сопла душевого устройства, раствор фильтровать, а плавающие по поверхности нефтепродукты следует собирать и удалять.

Растворы СМС особой опасности в использовании не представляют, но поскольку они используются сильно нагретыми (75...85°С), то их попадание на кожу недопустимо. При случайном попадании на кожу раствор следует удалить холодной водой. Длительный контакт с моющими растворами может вызвать обезжиривание кожного покрова рук. Для предупреждения этого явления рекомендуется перед работой смазывать руки защитным силиконовым кремом.

При засыпании порошка СМС в емкость моечной машины возможно образование пылевого облака. В таких случаях следует

применять средства индивидуальной защиты: очки, респиратор или марлевую повязку, перчатки.

Таким образом, синтетические моющие средства на основе поверхностно-активных веществ обладают способностью понижать свободную энергию жидкости и увеличивать ее смачивающую способность, что характеризует химическую активность моющего раствора [4].

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Корнеев, В. М. Технология ремонта машин / В. М. Корнеев, И. Н. Кравченко, Д. И. Петровский. М.: ИНФРА-М, 2018. 314 с.
- 2. Тельнов, Н. Ф. Технология очистки сельскохозяйственной техники / Н. Ф. Тельнов. М. : Колос, 1983. 256 с.
- 3. Рекомендации по применению моющих средств для очистки машин и деталей при ремонте. М. : ГОСНИТИ, 1984. 97 с.
- 4. Митрохина, Е. В. Совершенствование технологического процесса мойки деталей при ремонте техники в сельском хозяйстве: 05.20.03: диссертация на соискание ученой степени кандидата технических наук / Митрохина Екатерина Владимировна, 2021. 140 с.
- 5. Дидманидзе, О. Н. Технический сервис в АПК / О. Н. Дидманидзе, В. М. Корнеев. М. : ООО «УМЦ «Триада», 2015. 110 с.

Об авторе:

Корнеев Виктор Михайлович, доцент кафедры технического сервиса машин и оборудования ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К. А. Тимирязева» (127434, Российская Федерация, г. Москва, ул. Тимирязевская, д. 49), кандидат технических наук, доцент.

About the author:

Victor M. Korneev, associate professor of the Department of Technical Service of Machinery and Equipment, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy (127434, Russian Federation, Moscow, Timiryazevskaya St., 49). Cand.Sc. (Engineering), associate professor.