Трудно оценить огромное научное наследство Николая Михайловича Кулагина. Наряду с такими теоретическими проблемами зоологии, как старение организмов, эволюция животных и многие другие, Н.М.Кулагин изучил и разработал многие вопросы животноводства, пчеловодства, энтомологии, охраны природы, шелководства, звероводства, охотничьего хозяйства и других отраслей сельскохозяйственной зоологии.

Среди в более чем 500-ах опубликованных работах профессора Н.М.Кулагина — фундаментальные научные исследования, монографии, статьи, брошюры.

Умер Николай Михайлович Кулагин в Москве 1 марта 1940 г. Похоронен на Введенском кладбище.

Библиографический список

- 1. Кузнецов Б.А. Николай Михайлович Кулагин / Б.А. Кузнецов, Е.П. Островская. М.: Тип. ТСХА, 1960. 54 с.
- 2. Книпович Н.М. Кулагин, Николай Михайлович // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). СПб. С. 1890-1907.
- 3. Кулагин Николай Михайлович // Большая советская энциклопедия: [в 30 т.] / гл. ред. А. М. Прохоров. 3-е изд. М.: Советская энциклопедия. С. 1969-1978.

УДК 597.423:639.331.4

ЗАВИСИМОСТЬ СКОРОСТИ ЭМБРИОНАЛЬНОГО РАЗВИТИЯ ШИПА (ACIPENSER NUDIVENTRIS) ОТ УСЛОВИЙ ЗИМОВКИ ПРОИЗВОДИТЕЛЕЙ

Бубунец Эдуард Владимирович, начальник отдела ФГБУ «Центральное управление по рыбохозяйственной экспертизе и нормативам»

Жигин Алексей Васильевич, профессор кафедры аквакультуры и пчеловодства, ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Лабенец Александр Владиславович, заведующий лабораторией воспроизводства и селекции рыб, ВНИИР - филиал ФГБНУ ФИЦ ВИЖ им. Л.К. Эрнста.

Аннотация. В сравнительном аспекте изучены температурные параметры зимовки производителей шипа (Acipenser nudiventris) в условиях аквакультуры и состоянии естественной свободы. Установлена определенная зависимость между этими показателями и скоростью эмбрионального развития.

Ключевые слова: шип, производители, зимовка, инкубация, эмбриональное развитие.

Целю исследований являлось определение температурных границ и длительности периода зимовки производителей шипа в тепловодном рыбоводном хозяйстве (Московская обл.), исключающие нарушения их генеративной функции. Ранее нами были показаны отличия температурного режима на этом хозяйстве по ряду критериев, в том числе по зимнему содержанию производителей в диапазоне К-I (0,0-7,9°C) [1]. Для производителей из естественных популяций взяты усреднённые данные по гидрологическому посту в районе г. Астрахань.

Изучались температура воды в период зимовки производителей, инкубации, а также оплодотворённая икра шипа (A. nudiventris). Инкубация икры проводилась в аппаратах «Осётр», выдерживание предличинок в пластиковых бассейнах ИЦА-2. Продолжительность зимовки производителей рассчитана с 1 ноября предыдущего года до начала их вывода на нерестовые воды. Производителей бассейны, температуры шипа оборудованные терморегуляцией за 2-3 недели перед началом нерестовой компании. Зимний диапазон температур разбит на три интервала: < 3,9°C; 4,0- 8.0° C; $\geq 8.1^{\circ}$ C. С по результатам биопсийного тестирования производители шипа из тепловодного хозяйства разделены на группы (Ш 1 и Ш 2) с учетом условий и продолжительность зимовки, и проинъецированы нированным методом.

Продолжительности зимовки от 5 (Ш 2) до 6 (Ш 1) месяцев, диапазон температуры составил 3,0-19,0°С при средних 7,5-8,8°С. Доля суммы набранного тепла в диапазоне $\leq 3,9$ °С зафиксирована только в группе Ш 2 (3,6%), в интервале 4,0-8,0°С она составила примерно 50%, $\geq 8,1$ °С - 48-51% от общей за зимовку (табл. 1). Температура выше 8°С фиксировались как в начале, так и на завершающих этапах зимовок. Несмотря на различия продолжительности и условий зимовки, при использовании ряда инновационных приемов [2; 3; 4] от производителей получены половые продукты вполне удовлетворительного рыбоводного качества.

Таблица 1

Условия зимовки производителей шипа

Группа	Период зимовки				Количество °С/д за зимовку с						
					температурами						
	сут.	°C/д	M±m, °C	Lim, °C	≤3,9°C	4,0-8,0°C	≥ 8,1°C				
Тепловодное хозяйство											
Ш 1	174	1523	8,8±1,0	5,2-19,0	0	747	776				
Ш 2	154	1162	7,5±0,8	3,0-14,5	42	560	560				
р. Волга, усреднённые данные по декадам за 1964-1968 гг.											
ВШ	215	841,0	3,9	1,0-16,5	149	285	407				

Оценка условий зимовки производителей в режиме пищевой депривации, в р. Волга (В Ш) проведена в том же интервале с 1 ноября до наступления нерестовых температур у *A. nudiventris* - 16,0°C. Для вычислений использовали фактический термический режим с усреднёнными

данными по декадам. В реке период с температурами $1,0^{\circ}$ С длился ~ 182 дня, и до наступления нерестовых температур для шипа проходит 210-220 дней. За 7,2 месяца зимовки температура воды варьирует от 1,0 до 16,5 °C, при среднем значении 3,9 °C. Доля суммы набранного тепла в диапазоне до 4° С составляет 17,7%, от 4,0 до $8,0^{\circ}$ С -33,9 %, выше $8,0^{\circ}$ С -48,4 %.

Продолжительность периода инкубации. При оценке продолжительности зародышевого развития от оплодотворения до стадии единичного вылупления взяты нормативные данные для *A. nudiventris*.

Известно, что в одной и той же партии икры от осеменения до определённой стадии, эмбрионы развиваются не вполне синхронно, сроки перехода от стадии к стадии варьируют в пределах 10% продолжительности периода развития. Приведённые в таблице 2 данные получены по первым 10-20 предличинкам, освободившимся из оболочек.

За период инкубации температура воды в аппаратах с икрой шипа варьировала от 15 до 20°С. Известно, что теплоёмкость эмбриогенеза составляет примерно 50-100°С/д. Полученные нами результаты отличаются большей продолжительностью инкубации по времени от нормативной для природных популяций для шипа на 27,9% (Ш 2).

Таблица 2

Термический режим инкубации икры шипа

Группа	Температура	Продолжительность инкубации				
	инкубацин	Факт		Норма		
	M±m	Lim	°С/д	°С/ч	°C/д	°С/ч
Ш 1	18,50±1,94	17,0-20,0	Отход на	19 стадии	67,1	1610
Ш 2	16,22±1,39	15,0-18,4	89,9	2157	70,3	1687

В группе (Ш 1) при средней температуре 18,5°С продолжительность инкубации теоретически должна была составить 67,1°С/д. Несмотря на зимовку в комфортных условиях, за 174 дня сумма тепла в зимний период составила 1523°С/д, и произошла остановка в развитии эмбрионов на 19 стадии. Вероятным является влияние таких факторов, как наличие высоких температур на завершающем этапе зимовки, а также инкубация за пределами верхних допустимых границ.

Известно, что длительное пребывание рыбы за границами оптимального интервала температур (4-5°С) приводит к ухудшению её физиологического состояния и, как следствие, к снижению качества половых продуктов [5]. В группе Ш 2 при средней температуре инкубации 16,2°С температурный диапазон в зимний период содержания производителей был более узкий (варьировал в пределах от 3,0 до 14,5°С) и короче по продолжительности - 154 сут. Сумма тепла до начала нерестовых мероприятий составила 1162°С/д. В данном случае, выявлено отклонение в сторону увеличения более суток продолжительности инкубации от данных, для производителей из естественных популяций.

Кратко резюмируя анализ результатов инкубации, можно отметить, что у шипа, при укороченной и комфортной «тёплой» зимовке (3-15 °C) зафиксировано увеличение продолжительности инкубации более суток от данных, указанных для особей из естественных популяций.

Выводы

Анализ доступных источников позволяет предположить, что производители шипа из р. Волга при средней температуре воды до нереста 3,9 °C способны находится в режиме пищевой депривации до 7,5 месяцев.

Можно отметить, что у шипа при укороченной (154 сут.) и комфортной «тёплой» зимовке (3-15 °C) зафиксировано увеличение продолжительности инкубации более суток, от указанных для особей из естественных популяций.

Библиографический список

- 1. Бубунец, Э.В. К вопросу об оценке температурных условий при культивировании осетровых в тепловодных хозяйствах / Э.В. Бубунец // Рыбное хозяйство $2017. \mathbb{N} 2. \mathbb{C}. 75-79.$
- 2. Лабенец, А.В. Влияние синтетического нанопептида на сперматогенез у осетровых рыб / А.В. Лабенец, Г.Д. Капанадзе, Э.В. Бубунец // Биомедицина. 2014.- № 2.- С. 51-55.
- 3. Бубунец, Э.В. Инновационная модель комбинированного стимулирования овуляции у осетровых рыб и цитометрические особенности продуцируемых ооцитов / Э.В. Бубунец, А.О. Ревякин, А.В. Лабенец // Биомедицина. 2014. № 4. С. 65-69.
- 4. Бубунец, Э.В. Совершенствование биопсийного метода определения стадии зрелости гонад у рыб при искусственном воспроизводстве / Э.В. Бубунец, А.Г. Новосадов, А.В. Жигин, А.В. Лабенец // Рыбное хозяйство − 2020. № 3. С. 101-108.
- 5. Чебанов, М.С. Руководство по искусственному воспроизводству осетровых рыб / М.С. Чебанов, Е.В. Галич. Анкара: ФАО, 2013. 325 с.

УДК 631.147:001:636.52/58.033

ПРИОРИТЕТНЫЕ НАПРАВЛЕНИЯ РЕСУРСОСБЕРЕЖЕНИЯ В ПРОМЫШЛЕННОМ ПТИЦЕВОДСТВЕ

Буяров Александр Викторович, доцент кафедры экономики и менеджмента в АПК, ФГБОУ ВО Орловский ГАУ

Буяров Виктор Сергеевич, профессор кафедры частной зоотехнии и разведения с.-х. животных, ФГБОУ ВО Орловский ГАУ

Аннотация. В настоящее время перед отраслью поставлена задача повышения эффективности функционирования птицеводческих предприятий за счет внедрения новых ресурсосберегающих технологий, позволяющих снизить затраты на производство яиц и мяса птицы, повысить конкурентоспособность отрасли.