ВЛИЯНИЕ ИЗМЕНЕНИЙ КЛИМАТА НА ЭКСПЛУАТАЦИЮ ХВОСТОХРАНИЛИЩ

Зайцев А.И., Институт мелиорации, водного хозяйства и строительства ФГБОУВО РГАУ-МСХА имени К.А. Тимирязева

Аннотация. В данной работе рассматриваются риски при эксплуатации хвостохранилищ в связи с возможными климатическими изменениями, на примере хвостохранилища Ярославского горнообогатительного комбината (ЯГОКа).

Ключевые слова: хвостохранилище, гидротехнические сооружения, изменение климата, природоохранное строительство, охрана окружающей среды, промышленная экология.

Введение. Необходимость учета погодных условий при проектировании, строительстве и эксплуатации гидротехнических сооружений неоспорима, особенно в условиях климатических зон России, т.к. при различных внешних условиях износ сооружений разное.

Согласно современным научным тенденциям невозможно спорить с фактом изменения климата. В условиях Дальнего Востока, где расположен ЯГОК, это подтверждается все большим перепадом температур в течение года за последние годы. Кроме того, согласно существующей статистике, на территории Российской Федерации увеличивается количество опасных природных явлений — если к началу XXI века ежегодное их число было около 150, то к сегодняшнему дню их количество увеличилось до 500. При сохранении данного тренда, в ближайшем будущем количество таких явлений вплотную приблизиться к 1000, что будет замечено существующими природными и антропогенными системами.

Увеличение диапазона внешних условий и изменение их интенсивности ставят задачу более надёжного подхода к выполнению условий безопасности и надежности сооружений.

Объектом исследования являются хвостохранилища Ярославского горно-обогатительного комбината (ЯГОК), которые располагается в климатической области муссонного климата умеренных широт и характеризуется теплым, богатым осадками летом и холодной сухой зимой, что обуславливает чрезвычайно широкий перепад температур за год.

Для рассматриваемых хвостохранилищ ЯГОК-а №3 и №4, по данным 2014 года, наблюдались следующие максимальные нагрузки:

- штормовой ветер со скоростью 25 м/сек и более. Повторяемость 5 раз в 10 лет. С 1936 по 1998 год 24 раза отмечались ветра со скоростями 24÷28 м/сек, 4 ветра со скоростями 29÷33 м/сек и 2 ветра со скоростями 34÷40 м/сек;
- сильный дождь (количество осадков 50 мм и более в течение 12 часов и менее). Повторяемость 5 раз в 10 лет. С 1936 по 1998 год отмечалось 25

дождей с количеством осадков 50÷80 мм и 5 дождей с количеством осадков 80÷160 мм. Наибольшая повторяемость приходится на август;

- сильный снегопад (количество осадков 20 мм и более в течение 12 часов и менее). Повторяемость 2 раза в 10 лет. С 1963 по 1998 год отмечалось 12 сильных снегопадов с количеством осадков 20÷60 мм;
- дождевые паводки (р. Абрамовка) наблюдаются в августе сентябре. Высота их $1,5\div2,5$ м, наибольшая 3,6 м отмечалась в 1943 году. Интенсивность подъема уровня воды достигает 2,2 м/в сутки (1965 год), обычная $0,8\div1,3$ м/в сутки. Повторяемость больших паводков 1 раз в 5 лет, катастрофических 1 раз в 15 лет.
 - диапазон температур от -46°C до +38°C, скорость ветра до 40 м/с, воздействие снежного покрова толщиной до 41 см.

Расширение диапазона этих характеристик может привести к различным нарушениям в эксплуатации, снижением срока службы, авариям.

Методом исследования является экологический мониторинг. Для предотвращения негативных последствий необходимо уделить большее внимание наблюдениям за состоянием окружающей среды, климатическими отклонениями и их влиянием на надёжность и долговечность сооружений.

Наиболее вероятная возможная авария - гидродинамическая и, согласно расчетам, в результате неё пострадают 2 человека из числа персонала ЯГОК. Урон, нанесенный окружающей среде, будет существенен, так как хвосты, содержащиеся в хвостохранилище, будут вынесены в природную среду, раз лившись по окружающей территории, что безусловно ухудшит экологическую ситуацию в Приморье.

При увеличении интенсивности выпадающих осадков, а также при увеличении количества ливней, муссонов и снегопадов уменьшается полезный объём хвостохранилищ из-за необходимости обеспечения безопасной эксплуатации и недопущения гидродинамических аварий.

Также стоит внимание уделить недопущению обрушения наращенных дамб из-за разжижения консолидированных хвостов в дамбах наращивания и их основаниях вследствие продолжительных осадков.

При эксплуатации наблюдалось пыление чаши хвостохранилища, а в случае сохранения преобладающих направлений ветра и увеличении скорости ветра пыль и увеличении частоты возникновения таких ветров отлетающая с поверхности хвостохранилищ, будет оседать в прилегающих районах. Расширение диапазона температур, что также наблюдается сегодня повсеместно, в том числе и в Приморском крае, будет способствовать внутренним разрушениям тела дамбы хвостохранилищ. Увеличение осадков вследствие изменения климата, может привести к заполнению ёмкости хвостохранилищ и переливу воды через гребень ограждающих дамб, с их разрушением и появлением гидродинамической аварии.

Выводы. Увеличение запаса прочности сооружения и увеличение превышения отметки гребня ограждающей дамбы над хвостами должно предотвратить наиболее опасную гидродинамическую аварию. Вместе с этим снижается полезный объём, что приводит к увеличению издержек при

добыче полезных ископаемых.

Для предотвращения увеличения рисков необходимо искусственно повышать устойчивость подпорных сооружений, и надёжность системы целом. Наиболее эффективным методом снижения пыления будет применение орошения для хвостохранилищ (установка мелиоративной системы, которая включает в себя перфорированные трубы и датчики, реагирующие на внешние условия; для орошения целесообразно будет использовать воду, осветлённую (очищенную) из хвостохранилищ).

Для снижения внешних нагрузок необходимо следить за состоянием реки, расположенной в непосредственной близости с рассматриваемым объектом и, следовательно, взаимосвязана с данной природной технической системой.

На сегодняшний день невозможно точно предсказать климатические изменения не только на глобальном, но и на локальном уровне, особенно на продолжительный период. Таким образом, на данный момент, мы можем лишь предполагать с той или иной долей вероятности, какие мероприятия будут необходимыми для сохранения жизнеспособности существующих природных и антропогенных систем. Однако, зная существующие тенденции и соответственно среагировав, мы можем не только сохранять эту жизнеспособность, но и снижать возможные риски.

В ближайшем будущем (до 20 лет вперёд), наиболее вероятным представляется устройство к существующим хвостохранилищам дополнительных установок по сгущению пульпы, которые существенно уменьшают требуемый полезный объём накопителей, но увеличивают издержки предприятия.

В более отдалённой перспективе (20 – 50 лет), с учётом постоянно увеличивающего количества опасных природных явлений, наиболее экономичным выглядит высокоэффективное удаление воды из пульпы (сгущение пульпы) или переход на сухое складирование отходов производства.

Библиографический список

1.Зимнюков В.А., Зборовская М.И., Белавкин А.В. Учет экологических факторов при оценке жизненного цикла гидротехнических сооружений. В сборнике: ЭКОЛОГИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СИСТЕМЫ. Сер. "ECOLOGICAL STUDIES, HAZARDS, SOLUTIONS" Отв. редакторы: С.В. Котелевцев, С.Н. Орлов, О.М. Горшкова, С.А. Остроумов. Москва, 2015. С. 23-27.