жизни. Он писал картины маслом, в основном северные пейзажи. Скульптуру Н. Бегичева, которую он вылепил, он мечтал установить на месте гибели этого выдающегося человека, близ мыса Входной в Пясинском заливе Карского моря. После посещения вместе с Г. П. Дементьевым Монголии, где они увлеклись легендами о снежном человеке, он слепил серию масок снежного человека, образ которого был навеян монгольскими легендами и рассказами. Эти маски экспонировались в Зоологическом музее МГУ. С.М. Успенский внес большой вклад в биологическую науку, в изучение и освоение русской Арктики [2]. Им опубликовано более 350 статей, брошюр и книг.

В 1996 году Савва Михайлович Успенский умер после продолжительной и тяжелой болезни от рака легких.

Библиографический список

- 1. Каледин, А.П. Охотничья Россия/ Каледин А.П., Чехарин В.И. // Библиографический справочник: подред. Каледина А.П. М.: ООО «ПТП Эра». МГООиР.– 2011.– С. 277
- 2. Сыроечковский, Е.Е. Памяти профессора Саввы Михайловича Успенского/ Казарка: бюллетень рабочей группы по гусеобразным Северной Евразии. –1997. №3. С 403–405

УДК 637.12.071

ПОКАЗАТЕЛИ БЕЗОПАСНОСТИ МОЛОКА-СЫРЬЯ

Остроухова Вера Ивановна, доцент кафедры молочного и мясного скотоводства ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Семак Анна Эдуардовна, доцент, заведующая кафедрой морфологии и ветеринарно-санитарной экспертизы ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Ананьева Татьяна Васильевна, доцент кафедры молочного и мясного скотоводства ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Аннотация. Молочные продукты имеют высокую ценность в питании человека и особую социальную значимость. Сырье для их производства должно подвергаться строгому ветеринарно-санитарному контролю по показателям качества и безопасности. По результатам проведённых исследований подтверждено соответствие показателей безопасности молока-сырья, полученного от разных хозяйств-поставщиков, требованиям нормативных документов.

Ключевые слова: молоко, молочные продукты, безопасность, антибиотики, тяжелые металлы, пестициды, микотоксины, радионуклиды.

Процессы производства молока-сырья нередко осуществляются в условиях загрязнения окружающей среды вследствие высоких техногенных нагрузок. Показатели безопасности молока, поступающего на переработку, зависят от многочисленных зоотехнических и технологических факторов. На каждом этапе производства, первичной обработки, хранения и транспортировки молочного сырья не исключены нарушения.

Поэтому основной задачей становится рациональная организация входного ветеринарно-санитарного контроля молока-сырья с целью обеспечения его безопасности в соответствии с требованиями нормативных документов ТР ТС 021/2011 «О безопасности пищевой продукции» (с изменениями на 8 августа 2019 года) и ТР ТС 033/2013 «О безопасности молока и молочной продукции» (с изменениями на 19 декабря 2019 года) для производства экологически чистых продуктов питания [1,2].

Определение остатков потенциально опасных веществ в молоке-сырье проводили в условиях молочного завода, входящего в компанию АО «Вимм-Билль-Данн» (г. Москва). Поставщики молока-сырья – 5 хозяйств, расположенных в Вологодской и Ярославской областях.

Испытания, входящие в рамки входного контроля молока-сырья осуществлялись В специализированной лаборатории, оборудованной необходимыми средствами контроля, измерений и техники, отвечающими требованиям ГОСТ ISO/IEC 17025-2019 Общие требования к компетентности испытательных и калибровочных лабораторий (Переиздание) в соответствии с общепринятыми методиками. Лаборатория входного контроля молочного завода аккредитована Государственной санитарно-эпидемиологической проведения службой на право исследований, характеризующих гигиенические показатели качества и безопасности молока-сырья [3].

В соответствии с программой производственного ветеринарносанитарного контроля один раз в шесть месяцев в молоке-сырье контролируют остаточные количества тяжелых металлов, пестицидов, микотоксинов и радионуклидов в соответствии с требованиями нормативных документов.

Для здоровья потребителей значительную опасность представляют остаточные количества антибиотиков в молочных продуктах. Остатки ветеринарных препаратов в сырье нарушают течение технологических процессов при изготовлении молокопродуктов, ингибируют заквасочную микрофлору. В сырье всех поставщиков антибиотиков групп левомицетина, тетрациклина, стрептомицина и пенициллина не обнаружено, что предполагает успешную организацию зоотехнической и ветеринарной работы на животноводческих комплексах [4].

Тяжелые металлы оказываются в молоке коров в ходе аккумуляции в почве, воде и кормах. Поступив в организм человека с молочными продуктами токсиканты кумулируются с отдаленным эффектом действия, проявляющимся в наследственных заболеваниях, умственных расстройствах, мутациях. Результаты исследования молока-сырья позволяют судить о

благоприятной санитарно-гигиенической и экологической обстановке, условиях кормления и содержания лактирующих коров (табл. 1).

Таблица 1

Содержание токсичных элементов в молоке-сырье, (мг/кг)

Поставщик	Токсичные элементы			
	Свинец	Мышьяк	Кадмий	Ртуть
Поставщик №1	Менее 0,01	Менее 0,01	Менее 0,005	Менее 0,002
Поставщик №2	Менее 0,01	Менее 0,01	Менее 0,005	Менее 0,002
Поставщик №3	Менее 0,01	Менее 0,01	Менее 0,005	Менее 0,002
Поставщик №4	Менее 0,01	Менее 0,01	Менее 0,005	Менее 0,002
Поставщик №5	Менее 0,01	Менее 0,01	Менее 0,005	Менее 0,002
Показатель по				
TP TC	Не более 0,1	Не более 0,05	Не более 0,03	Не более 0,005
021/2011				

Согласно протоколам испытаний, остаточных количеств хлорорганических пестицидов гексахлорциклогексана (ГХЦГ - α -, β -, γ - изомеры) и ДДТ-4,4'-дихлордифенилтрихлорэтана (ДДТ) и его метаболитов в молоке-сырье обнаружено не было или они находились в ничтожно малом количестве (менее 0,05 мг/кг) [4,5].

Афлатоксины (АF) – метаболиты микроскопических грибов родов Aspergillus flavus, Penicillium и других, оказывающие канцерогенное, гепатотоксическое тератогенное, И иммунодепрессивное действие на организм человека, подлежат строгому входному контролю в сырье. Афлатоксин М₁ называют молочным микотоксином, так как токсикант выделяется молоком И обнаруживается В молочных подвергшихся технологической обработке, стерилизации, пастеризации (сухое молоко, творог, йогурт, сыр). Остаточные количества афлатоксина М₁ не превышали регламентируемых требований в 0,0005 мг в пересчете на кг молока-сырья.

К показателям безопасности молока, ветеринарно-санитарный контроль которых проводят в сырье, поступающем на переработку, относят радионуклиды стронция (90 Sr) и цезия (137 Cs). Согласно протоколам испытаний, проводившихся в независимой аккредитованной лаборатории, все образцы содержали минимальное количество радионуклидов, что свидетельствует о благополучной радиационной обстановке в регионах, производящих молоко (табл. 2). Максимальное содержание стронция (90 Sr) в молоке-сырье составило 3,045 Бк/кг, а цезия (137 Cs) – 3,6 Бк/кг, что крайне незначительно и не превышает удельной активности радионуклидов в 25 Бк/кг и 100 Бк/кг, соответственно [4,5].

Входной ветеринарно-санитарный контроль молока-сырья в условиях компании АО «Вимм-Билль-Данн», полностью обеспечивает возможность производства безопасных молочных продуктов в соответствии с требованиями нормативных документов.

Содержание радионуклидов стронция (⁹⁰Sr) и цезия (¹³⁷Cs)

в молоке-сырье, (Бк/кг)

1 / (
Цомор посториние	Радионуклиды		
Номер поставщика	стронция (⁹⁰ Sr)	цезия (¹³⁷ Cs)	
Поставщик №1	3,045	Менее 3,0	
Поставщик №2	Менее 0,1	Менее 3,0	
Поставщик №3	Менее 0,1	Менее 3,0	
Поставщик №4	Менее 0,1	3,6	
Поставщик №5	Менее 0,1	Менее 3,0	
Показатель по	Не более	Не более	
TP TC 021/2011	25 Бк/кг	100 Бк/кг	

Библиографический список

- 1. Технический регламент Таможенного союза (ТР ТС 021/2011) «О безопасности пищевой продукции» (с изменениями на 8 августа 2019 года). Электронный фонд правовой и нормативно-технической документации. Режим доступа: http://docs.cntd.ru/.
- 2. Технический регламент Таможенного союза (ТР ТС 033/2013) «О безопасности молока и молочной продукции» (с изменениями на 19 декабря 2019 года). Электронный фонд правовой и нормативнотехнической документации. Режим доступа: http://docs.cntd.ru/.
- 3. ГОСТ ISO/IEC 17025-2019 Общие требования к компетентности испытательных и калибровочных лабораторий (Переиздание). Электронный фонд правовой и нормативно-технической документации. Режим доступа: http://docs.cntd.ru/.
- 4. Меркулова, Н.Г. Производственный контроль в молочной промышленности. Практическое руководство / Меркулова, Н.Г., Меркулов М.Ю., Меркулов И.Ю. 2-е изд., перераб. и доп. СПб.: ИД «Профессия», 2017. 1024 с.
- 5. Хромова, Л.Г. Молочное дело: учебник / Л.Г. Хромова, А.В. Востроилов, Н. В. Байлова. 2-е изд., стер. Санкт-Петербург: Лань, 2020. 332 с. ISBN 978-5-8114-4971-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/129234.