ИНСТИТУТ ЗООТЕХНИИ И БИОЛОГИИ

УДК 636.082.2.

КАЧЕСТВО СПЕРМОПРОДУКЦИИ БЫКОВ-ПРОИЗВОДИТЕЛЕЙ И ВОСПРОИЗВОДИТЕЛЬНАЯ СПОСОБНОСТЬ КОРОВ

Абдурасулов Абдугани Халмурзаевич, профессор кафедры сельского хозяйства $E\Gamma\Phi$, $Om\Gamma Y$

Муратова Рахима Темирбаевна, доцент, зав. кафедрой сельского хозяйства $E\Gamma\Phi$, $Om\Gamma Y$

Жумаканов Калысбек Туратбекович, институт биотехнологии НАН КР **Анохин Константин Валентинович,** старший научный сотрудник, КыргНИИЖиП

Аннотация. Изучены качественные и количественные показатели спермопродукции быков-производителей разных пород, содержащиеся на Элевере Биотехнологического центра. Проведена производственная проверка по изучению оплодотворяемости коров, осемененных криоконсервированным семенем, подготовленного по нашей технологии.

Ключевые слова: быки-производители, породы, качество спермопродукции, замороженное семя, оплодотворяемость.

В целях качественного преобразования и увеличения продуктивности скота в племенных хозяйствах применяется искусственное осеменение коров [1]. На элевере Биотехнологического центра приучены к садке на искусственную вагину 10 быков-производителей. В Биоцентре получено 1432,0 мл спермопродукции, с активностью свежеполученного семени 7,55 баллов.

Сперму от быков-производителей получали на искусственную вагину и оценивали по следующим показателям: объем, цвет, запах, активность движения и концентрация спермиев. Количество эякулята, активность, количество замороженных спермодоз и их активность после оттаивания представлено на таблице 1.

Из таблицы 1 видно, что наибольший объем эякулята у быкапроизводителя Буян — 324,0 мл, затем в убывающем порядке Символ - 278,0 мл, Капрон - 197,0 мл, Ставок - 191,0 мл, Лал — 121,0, Монтана - 81,0 мл, Азарт - 68,0 мл, Бурый - 39,0 мл, Смелый - 21,0 мл.

Выявлено, что между качеством семени быков-производителей и породной преднадлежностью существует определенная взаимосвязь. Качество спермы, в пределах изучаемых пород с большим объемом, высокой активностью и концентрацией, характеризует быков-производителей алатауской, затем голштино-фризской, герефордской пород.

Показатели спермопродукции у быков-производителей различных пород (n=11)

		Общий	Объем	Средний	Кол-во	Средний
		объем	эякулята в	балл	заморо-	балл
Кличка	Порода	ЭЯКУЛЯ-	среднем,	свежеполу-	женных	заморож
быков	Породи	та мл	м±m	ченного	спермодоз	оттаян.
OBIROD		14 11131	171—111	семени,	спермодоз	семени
				M±m		COMCIII
Буян 6166	алатау-я	324	4,9±0,12	$7,4\pm0,03$	2800	3,4
Азарт	алатау-я	68	4,2±0,17	$7,4\pm0,03$	790	3,4
Карапузик	гереф	112	7,03±0,19	7,1±0,01	565	3,1
Лал 309	г/фриз	121	5,5±0,12	$7,8\pm0,05$	685	3,8
Капрон 1177	г/фриз	197	4,4±0,15	$7,4\pm0,03$	1970	3,4
Ставок 1219	г/фриз	191	2,4±0,09	$7,4\pm0,03$	1880	3,4
Символ 985	Абангус	278	4,6±0,11	7,5±0,04	3445	3,5
Бурый 09665	Гереф.	39	3,5±0,09	7,8±0,01	495	3,9
Смелый	гереф	21	3,5±0,09	$7,8\pm0,02$	-	3,8
9160						
Монтана	Абанг	81	3,5±0,14	$7,9\pm0,04$	-	3,6
00929						
Всего		1432	-	-	12630	-
В среднем		-	4,35	7,55	-	3,53

Активность свежеполученного семени у быков-производителей составляет $7,51\pm0,05$ балла, с колебанием 7,4-7,9 баллов. Больше всего замороженно семени от быков Буяна 6166 (алатауской породы - 2800) и Капрона 1177 (голштино-фризкой пород) – 1970спермодоз.

Самая высокая активность замороженно-оттаянных спермиев оказалось у быков-производителей Бурый - 3,9, Лала — 3,8 и Смелый — 3,8 балла, а наименьшая у Карапузика - 3,1 балла. Средний балл активности семени у быков составил — 3,53 балла, что соотвествует требованиям стандарта.

Таблица 2 Контролинг воспроизводства стада крупного рогатого скота в ГПЗ «Сокулукский»

Контролируемые параметры	Оптимальные	Фактически у опытных коров		
	уровни	в среднем, гол.	колебание	
Сервис-период	60-90 дн.	64	20-145	
Индекс осеменения	1,5-3,0 дозы	1,86	-	
Межотёльный период	330-400 дн.	353	303-430	
Результат первичного осеменения	Более 60%	36	-	
вторичного осеменения	-	43	-	
третьего осеменения	-	21	-	
Процент отёлов	Более 90%	91	91	

Воспроизводство представляет собой главное звено в жизненном цикле крупного рогатого скота. Лактация по существу является его побочным продуктом, поэтому экономическая эффективность молочного скотоводства обусловлена способностью коров к воспроизводству. Реализация генетического потенциала продуктивности и ускорение селекционного

прогресса также может базироваться только на основе повышения уровня плодовитости маточного поголовья и сохранности молодняка [2].

Оптимальным считается получение от каждой коровы в течение года одного теленка. При хорошо организованном воспроизводстве, нормальном содержании, полноценном, сбалансированном по основным питательным веществам кормлении от отелившейся в начале года коровы можно в конце года получить второго теленка.

В процессе исследований обнаружилась определенная связь полового поведения животных с динамикой температуры воздуха и пиком половой активности. Показано, что если в течение 4-5 дней температура воздуха ниже среднемесячной, то происходит резкое повышение половой активности животных в стаде.

И, напротив, высокие температуры воздуха (1-2 дня), видимо не отражаются на поведении животных. Однако, оплодотворяемость коров, осемененных в жаркие дни в сочетании с высокой влажностью, ниже.

В настоящее время вопрос о взаимосвязи молочной продуктивности коров с их плодовитостью становится особенно актуальным в связи с повышением удоев в племзаводе и намечается тенденция уменьшения выхода телят, так как установлена отрицательная взаимосвязь между высоким уровнем удоя и воспроизводительными качествами.

Наилучшая продуктивность и высокий уровень воспроизводства достигается при продолжительности межотельного периода 365-385 дней, сервис-периода - 60-85 дней и сухостойного - 60 дней. В наших исследованных стадах в ГПЗ «Сокулукский» выше указанные показатели соответственно 353 дней, с колебанием 303-430 дней, сервис период 64 дней, с колебанием 20-145 дней или в пределах нормы, за исключением отдельных коров.

Опыт передовых хозяйств показывает, что воспроизводительные способности маток находятся на удовлетворительном уровне, если оплодотворяемость коров и телок от первого осеменения составляет 51-60%, хорошим результатом считается, если оплодотворяемость по первому осеменению доходит до 61-70% и отличным - 71% и выше [3].

Исходя из выше изложенного, мы пришли к следующему выводу:

В условиях госплемзаводе «Сокулукский» всего от первичного осеменения оплодотворяемость составляла 36 голов или более 60%, этот показатель по сравнению со стандартными требованиями удовлетворительный. Индекс осеменения составил 1,86. Изучены качество и патологии спермы, обнаружено, что имеются различные патологии (до 10%) при допустимой норме.

Библиографический список

- 1. Абдурасулов, А.Х. Сохранение и совершенствование генетических ресурсов сельскохозяйственных животных Киргизии / А.Х. Абдурасулов, А.К. Мадумаров, Р.Т. Муратова [и др.] / Аграрный вестник Юго-Востока. 2020. № 1 (24). С. 26-28.
- 2. Гостева, Е.Р. Воспроизводительные особенности симменталов поволжья как маркеры их адаптации к факторам среды / Е.Р. Гостева, М.Б. Улимбашев / Животноводство и кормопроизводство. 2018. Т. 101. № 4. С. 50-57.
- 3. Жумаканов, К.Т. Количественные и качественные показатели спермопродукции у быков-производителей / К.Т. Жумаканов, А.Х. Абдурасулов / Эффективное животноводство. 2017. № 5 (135). С. 24.

УДК 616-00-037:616.34

ИСПОЛЬЗОВАНИЕ БИОЛОГИЧЕСКИХ МАРКЕРОВ ДЛЯ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ КЛЕТОК ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА ДОМАШНЕЙ ПТИЦЫ

Акчурин Сергей Владимирович, доцент кафедры ветеринарной медицины, ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Акчурина Ирина Владимировна, доцент кафедры ветеринарной медицины, ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Аннотация. Разработаны пять методов люминесцентного спектрального анализа клеток для обнаружения, определения количественного содержания органических веществ в гистологических срезах и оценки функционального состояния клеток желудочно-кишечного тракта цыплят с применением флуоресцентных красителей.

Ключевые слова: люминесцентный спектральный анализ, функциональное состояние клеток, желудочно-кишечный тракт, цыплята.

Авторами разработаны пять методов люминесцентного спектрального анализа клеток для обнаружения, определения количественного содержания органических веществ в гистологических срезах и оценки функционального состояния клеток желудочно-кишечного тракта цыплят с применением флуоресцентных красителей:

• Одноволновый метод люминесцентного спектрального анализа клеток для обнаружения, определения количественного содержания нуклеиновых кислот в клетках желудочно-кишечного тракта цыплят с применением флуорохрома «Этидиум бромида» и оценки их функционального состояния [1];