СОВРЕМЕННЫЕ НАПРАВЛЕНИЯ МОДЕЛИРОВАНИЯ УРОЖАЙНОСТИ ЗЕРНОВЫХ КУЛЬТУР

Архипова Марина Юрьевна, профессор департамента статистики и анализа данных, НИУ ВШЭ

Аннотация. Представлена методика статистического моделирования и прогнозирования урожайности зерновых культур с использованием новых цифровых возможностей и методов машинной обработки данных.

Ключевые слова: моделирование, нейросетевые модели, урезанная выборка, зерновые культуры, прогнозирование.

Сельское хозяйство является одной из важнейших отраслей народного хозяйства и основным поставщиком продуктов питания и сырья для многих промышленности. Сельскохозяйственный отраслей сектор России последнее обновление время переживает И подъем благодаря интенсификации и применению современных инновационных технологий, контролю за состоянием полей с помощью космических фотоснимков на основе систем компьютерного зрения. Вместе с тем, остается еще широкий пласт задач, требующий оперативного решения. Оной из таких задач является разработка новых моделей и методов, позволяющих прогнозировать основные результирующие показатели развития сельского хозяйства и обладающих преимуществом по сравнению с существующими моделями. Для повышения точности прогнозных моделей необходимо опираться на широкий спектр доступных статистических показателей новый современный инструментарий [1].

Цель исследования заключалась в разработке методики статистического моделирования и прогнозирования результативности производственно-финансовой деятельности в сельском хозяйстве на примере растениеводства. Современные исследования в этой сфере охватывают поиск новых источников информации и обоснование методических платформ и статистических моделей, позволяющих повысить точность и надежность традиционных моделей прогнозирования урожайности полей.

Следует отметить, что, не смотря на значимость выделенной проблемы для развития сельского хозяйства и обеспечения продовольственной безопасности страны, в России ощущается недостаток исследований, посвященных выделенной проблематике.

Для решения поставленных задач в работе использовались данные по сельскохозяйственным полям, расположенным в муниципальных образованиях регионов России. Отметим, что регионы России, также, как и количество наблюдений от каждого региона, выбирались пропорционально

Список независимых переменных

П	TT	Г	***
Переменная	Название	Един. измерения	Истоник
X3	Чернозем	1 – да, 0 – нет	https://www.etomesto.ru
X4	NDVI на начало лета	%	https://eos.com
X5	NDRE на начало лета	%	https://eos.com
X6	NDVI на конец лета	%	https://eos.com
X7	NDRE на конец лета	%	https://eos.com
X8	Минимальная температура	t°C	https://eos.com
X9	Максимальная температура	t°C	https://eos.com
X10	Максимальные осадки	MM	https://eos.com
X11	Вывоз твердых коммунальных отходов в год	тысяча кубометров на душу населения	https://www.gks.ru
X12	Доля растениеводства в сельском хозяйстве	%	https://www.gks.ru
X13	Доля сельского населения	%	https://www.gks.ru
X14	Наличие города	1 – да, 0 – нет	https://www.gks.ru
logX15	Среднемесячная зарплата во всех секторах	ln(руб)	https://www.gks.ru
logX16	Среднемесячная зарплата в сельскохозяйственном секторе	ln(pyő)	https://www.gks.ru
X17	Количество тракторов	шт / га	https://www.gks.ru
X18	Минеральные удобрения	шт / ha	https://www.gks.ru
X19	Доля посевной площади от площади МО	%	https://www.gks.ru
logX20	Сельское население на 1 января 2018 г.	ln(количество людней)	https://www.gks.ru
logX21	Объем инвестиций в основной капитал (без учета бюджетных средств) на душу населения	ln(pyő)	https://www.gks.ru
X22	Специализированные продуктовые магазины на душу населения	единицы на душу населения	https://www.gks.ru
X23	Загрязнение воздуха (превышение индекса загрязнения атмосферы больше 7)	0 – да, 0 – нет	https://www.igce.ru
X24	Загрязнение воздуха (превышение предельно допустимой концентрации)	1 – да, 0 – нет	https://www.igce.ru
X25	S на снежном покрытии	г / км2∙мес	https://www.meteorf.ru
X26	N на снежном покрытии	кг / км2∙мес	https://www.meteorf.ru
X27	ph на снежном покрытии	рН	https://www.meteorf.ru
X28	Качество воды водоемов, % по классам загрязнения 4 и 5	% водных ресурсов	https://www.gidrohim.com
X29	Инсоляция	кВт/м2	https://solargis.com/
1147	тисолиции	ND 1/ 1/12	11ttps://boidingib.com/

В качестве основных типов моделей для прогнозирования урожайности зерновых культур были рассмотрены следующие модели.

объему продукции растениеводства данного региона в 2018 г. (удельному весу продукции растениеводства в продукции сельского хозяйства по категориям хозяйств по субъектам РФ). Это обеспечило выбор регионов, в которых продукция растениеводства является важной частью сельского хозяйства и экономики региона в целом. Исследование было проведено по данным Росстата². Также в ряд моделей была добавлена информация космических фотоснимков вегетации полей. Космические фотоснимки вегетации полей имеют специфическую структуру: различные элементы снимков соответствуют речкам, пересушенным участкам, постройкам, незасеянным участкам и т. д., что может быть использовано при моделировании.

Для построения модели урожайности сельскохозяйственных культур использовалась одна зависимая (эндогенная) переменная Y_1 - урожайность в рублях на гектар засеянных территорий муниципального округа. Данную переменную исследователи часто включают в анализ в качестве зависимой переменной, так как она отражает продуктивность поля, как в физическом объеме, так и в денежном выражении (см., например, работу Salvati L. et al. [2]. Перечень отобранных для анализа независимых (экзогенных) переменных (X_i) представлен в таблице 1.

- 1. Традиционные модели, основанные на методе наименьших квадратов (OLS). Выбор этой формы модели был определен исходя из ряда статей, посвященных прогнозированию урожайности сельскохозяйственных культур (см., например, работы [3].
 - 2. Нелинейные регрессионные модели.
- 3. Регрессионные модели по урезанной выборке (truncated regression). Преимуществом последней модели является возможность избежать ошибки прогнозирования отрицательных значений, которые могут быть получены с использованием традиционных регрессионных моделей (OLS). Выбор данной модели опирался на результаты, полученные в исследовании Basso F. et al. [4].
- 4. Нейросетевые модели. Выбор нейросетей в работе не случаен. В последние годы их использование набирает все большую популярность и признание среди исследователей и аналитиков в связи с высокой предсказательной способностью и возможностью интерпретации промежуточных результатов.

Сопоставление качества эконометрических моделей и нейронных сетей проводилось на основе средней квадратичной ошибки (MSE) [5], которая

_

² Росстат - gks.ru

является одна из самых распространённых функций потерь для решения задач такого рода.

В результате построения моделей и анализа полученных результатов были получены ответы на основные исследовательские вопросы. Так, было статистически доказано, что спутниковые фотоснимки являются значимым фактором для прогнозирования урожайности поля муниципалитета и повышают точность прогнозных моделей.

Сопоставление эконометрических моделей и моделей нейронных сетей позволило сделать выбор в пользу последних, которые показали лучшие результаты по прогнозированию урожайности сельскохозяйственных культур для муниципальных образований сельскохозяйственных регионов.

Библиографический список

- 1. Архипова М.Ю., Смирнов А.А. Современные направления прогнозирования урожайности сельскохозяйственных культур на основе использования эконометрических моделей // Вопросы статистики № 5. 2020. C.81-92.
- 2. Salvati L. et al. Exploring the relationship between agricultural productivity and land degradation in a dry region of Southern Europe //New Medit. -2010. T. 9. No. 1. C. 35-40.
- 3. Мхитарян В.С., Архипова М.Ю., Дуброва Т.А., Миронкина Ю.Н., Сиротин В.П. Анализ данных: учебник для академического бакалавриата. Сер. 58 Бакалавр. Академический курс (1-е изд.) М.: Издательство Юрайт, 2019. 490 с.
- 4. Basso F. et al. Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: an example covering the Agri basin (Southern Italy) // Catena. -2000. -T. 40. -N0. 1. -C. 19-35.
- 5. De la Casa A. et al. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot // ISPRS journal of photogrammetry and remote sensing. 2018. T. 146. C. 531-547.

УДК 332.055.2, 311.3/.4

ИЗМЕНЕНИЕ КЛИМАТА И ИНКЛЮЗИВНОЕ РАЗВИТИЕ СЕЛЬСКОГО ХОЗЯЙСТВА В РЕГИОНАХ РОССИИ

Зинченко А.П., член-корр. РАН, д.э.н., профессор ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Демичев В.В., к.э.н., доцент $\Phi \Gamma FOY$ ВО $P\Gamma AY$ -МСХА имени К.А. Тимирязева