- 3. ГОСТ 12.2.002-91 «Система стандартов безопасности труда (ССБТ). Техника сельскохозяйственная. Методы оценки безопасности».
- 4. ФГБУ Владимирская МИС: [Электронный ресурс]. В., 2020. URL: http://vladmis.ru/.
- 5. Дрямов С.Ю. Контроль обеспечивает качество техники / С.Ю. Дрямов, А.В. Стадник // Сельский механизатор. 2020 № 8. С. 12-14.

УДК 625.143

ПРИМЕНЕНИЕ ЧИСЛЕННЫХ МЕТОДОВ К ИССЛЕДОВАНИЮ РЕЛЬСОВОГО КРЕПЛЕНИЯ

Александрова Маргарита Юрьевна, доцент кафедры механики, ФГБОУ ВО «Самарский государственный технический университет»

Солдусова Екатерина Александровна, доцент кафедры процессов и аппаратов перерабатывающих производств, ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

Аннотация. Приведен численный и аналитический расчет усовершенствованной конструкции рельсового крепления для заземления опоры контактной сети (РК-65). Определены усилия в месте контакта рельс—пружина. Результаты расчета используются для определения надежности и ресурса контактного элемента.

Ключевые слова: рельсовое крепление, метод конечных элементов, надежность

Элементы рельсового крепления для заземления подвержены динамическим нагрузкам высокой интенсивности. Для определения надежности и ресурса конструкции необходим проектное исследование на жесткость и усталость.

В работе исследовалась усовершенствованная конструкция рельсового крепления для заземления опоры контактной сети (РК-65), схема которой представлена на рисунке 1, а.

Упругая часть крепления должна позволять производить монтаж рельсового соединения, при этом по месту контакта «упругая часть скобы - рельс» должно обеспечиваться необходимое усилие.

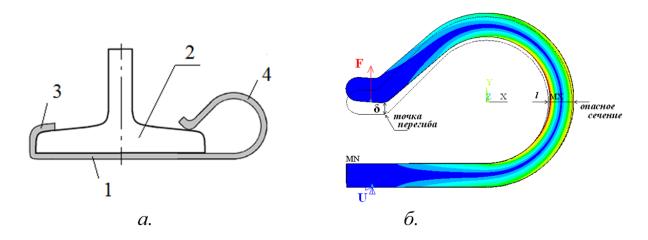


Рис.1. Усовершенствованная модель рельсового крепления:

а) рельсовое крепление: скоба 1, рельс 2, замок 3, упругая часть 4; б) схема нагружения модели и напряженно деформированное состояние крепления под нагрузкой

Исходными данными расчета являются механические свойства материала и геометрия крепления: модуль упругости $2,1\cdot 10^5\,\mathrm{M\Pi a}$, коэффициент Пуассона; 0,3; $a=6\,$ см, $b=0,5\,$ см, $R=1,55\,$ см — размеры поперечного сечения и радиус упругой части скобы.

Зависимость между усилием F и вертикальным перемещением δ - натягом в точке контакта определялась расчетным путем по участку упругой части с помощью интеграла Максвелла-Мора [1]. Численный расчет проводился методом конечных элементов в программном комплексе Ansys [2]. Схема нагружения и напряженно деформированное состояние конечно-элементной модели показаны на рисунке 1, δ .

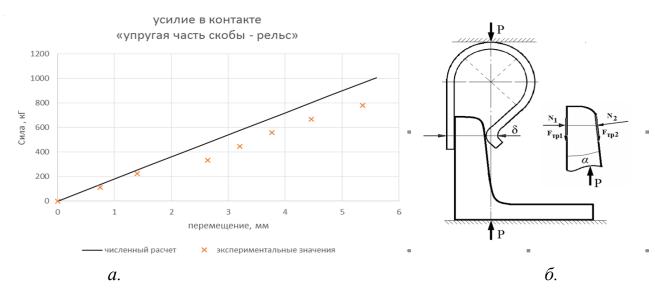


Рис. 2. Результат численного расчета и эксперимента:

а) схема испытания и усилие крепления N1 и N2 на наклонной плоскости рельса; б) график зависимости между силой усилием F и перемещением δ модели

На графике, построенном по численным расчетам, перемещению δ =4,5 мм соответствует величина силы 850 кгс (рис. 2, а), что на 6% меньше значения 908 кгс, полученного путем интегрирования вдоль упругой части скобы.

В эксперименте упругая часть скобы вдавливалась силой P в элемент рельса. Усилие в контакте «упругая часть скобы - рельс» определялось из условия равновесия части рельса.

$$\begin{cases} N_1 - N_2 \cos \alpha + F_{mp2} \sin \alpha = 0 \\ P - F_{mp1} - F_{mp2} \cos \alpha - N_2 \sin \alpha = 0 \end{cases}$$
 Откуда следует
$$N_2 = \frac{P}{0.9659f + 0.2588 - f(0.2588f - 0.9659f)}$$

При коэффициенте трения f=0,1 и угле наклона рельса $\angle \alpha = 15^{o}$ усилие в месте контакта составило $N_2=2,23P$.

Значения силы вдавливания P определялись по результатам испытания, которые приведены в таблице. При посадке пружины на рельс ее деформация составляет \approx 4,5 мм, которые суммируем с начальным значением δ = 21,55 мм при P=0. Получаем δ = 26 мм, P=300 кгс. Таким образом, усилие по месту контакта рельс-пружина составляет N_2 =700 кгс. Значения усилия, полученные экспериментально показаны на графике рисунка 2, а

 Таблица

 Результаты испытания – зависимость перемещения б от силы Р

 0
 50
 100
 150
 200
 250
 300
 350
 400

Р, кгс	0	50	100	150	200	250	300	350	400
δ, мм	21,55	22,30	22,95	24,19	24,75	25,32	26,01	26,91	27,85

На основании изложенного следует считать, что численная модель справедливо оценивает перемещения крепления и усилия в контакте с рельсом. Данный подход позволяет произвести проектный расчет рельсового крепления для заземления.

Библиографический список

- 1. Дедов, Н.И. Сопротивление материалов: учеб. пособие / Н.И. Дедов [и др.]; Самар.гос.техн.ун-т, Механика.- 2-е изд., испр. и доп..- Самара, 2019. 219 с.
- 2. Бруяка, В.А. Инженерный анализ в ANSYS WORKBENCH: учеб.пособие/ В.А. Бруяка [и др.]; Самар.гос.техн.ун-т.- Самара. 2010. Ч.1. 270 с.