Достоверность разработанных моделей подтверждается высокими значениями коэффициентов детерминации (R^2 =0,981) и значениями стандартной ошибки уравнений (SE=±6,9%). О достаточно высокой значимости влияния показателей климата на продуктивность свидетельствуют расчетными значениями t-критерия Стьюдента (t>t₀₅=1,96), специально указанные в области построения рисунков 1, 2.

Таким образом, полученные уравнения регрессии, статистически доказывают и наглядно демонстрируют закономерное воздействие на продуктивность (запас) древостоев наряду с таксационными показателями (средней высоты и сомкнутости) также и климатических характеристик, что естественно распространяется на биологическую продуктивность лесных экосистем в целом.

Библиографический список

- 1. Хлюстов В.К., Васенев И.И., Ганихин А.М. Районирование территории ЦФО по комплексу лесоводственно-климатических показателей // АгроЭкоИнфо. 2020 №2. -
- http://agroecoinfo.narod.ru/journal/STATYI/2020/2/st_206.pdf
- 2. Хлюстов В.К., Елекешева М.М. Лесотипологическая и таксационная классификация пойменных насаждений Урала. Научно-справочное издание. Уральск. 2018. 280 с.

УДК 614.771

ИСПОЛЬЗОВАНИЕ СИСТЕМЫ ТЕМРО READ ДЛЯ ОПРЕДЕЛЕНИЯ ИНДИКАТОРОВ САНИТАРНОГО СОСТОЯНИЯ ПОЧВЫ

Куркина Марина Викторовна, доцент кафедры фундаментальной медицины, ФГАОУ ВО «Балтийский федеральный университет имени Иммануила Канта»

Малыхина Лариса Валериевна, доцент кафедры зоотехнии, ФГБОУ ВО «Калининградский государственный технический университет»

Аннотация. Проверялась возможность использования системы TEMPO Read, предназначенной для исследования пищевых продуктов, для определения санитарно-показательных микроорганизмов в почвенных образцах. Полученные результаты по содержанию мезофильных аэробов, колиформных бактерий, E.coli, Staphylococcus aureus позволили оценить санитарное состояние почвы.

Ключевые слова: санитарно-показательные микроорганизмы, почва.

Почва является главным резервуаром и естественной средой обитания микроорганизмов, которые принимают участие в процессах формирования и

очищения почвы, а также круговорота веществ в природе [1]. В составе аммонифицирующие, микрофлоры обнаруживаются нитрифицирующие, азотфиксирующие, целлюлозоразрушающие бактерии, актиномицеты, микроскопические грибы, a также микроорганизмы, участвующие в круговороте серы, железа, фосфора и др.[2]. С выделениями человека и животных, с фекально-бытовыми сточными водами в почву попадают патогенные и условно-патогенные микроорганизмы. Они могут стать причиной различных заболеваний: ботулизма, столбняка, газовой гангрены, сибирской язвы, бруцеллеза, лептоспироза, кишечных инфекций и др. [3].

Для оценки качества почвы по микробиологическим показателям с целью определения пригодности почвы для размещения жилых домов, детских учреждений, водопроводных сооружений и мест отдыха, проводят санитарно-бактериологическое Обнаружение исследование почвы. исследуемых образца санитарно-показательных микроорганизмов В свидетельствует значениях, превышающих допустимые нормы, 0 загрязнении почвы выделениями человека и животных.

Для определения санитарно-показательных микроорганизмов используют классический метод, основанный на выделении микроорганизмов на различных питательных средах с последующим подсчетом выросших колоний. Полученные результаты выражают в колититре, перфрингенс-титре и в КОЕ разных групп микроорганизмов в 1 грамме почвы.

Целью данной работы явилось определение санитарно-показательных микроорганизмов в почвенных образцах с помощью прибора TEMPO Read. Данный прибор предназначен для подсчета индикаторов качества в пищевых продуктах. Работа системы **TEMPO®** основана на классическом микробиологическом методе. Система состоит из двух эргономичных рабочих станций: станция пробоподготовки и станция учета результатов. На станции пробоподготовки выполняется заполнение карты TEMPO® смесью питательной среды с образцом исследуемого материала. Питательные среды TEMPO® обеспечивают быстрый рост бактерий и содержат флуоресцентный индикатор. Карта TEMPO® представляет собой миниатюрный вариант метода наиболее вероятного числа (НВЧ), который включает три ряда пробирок. На станции учета результатов определяется количество КОЕ/г в исходном материале. На основании количества и размера положительных лунок (флуоресцирующих или нефлуоресцирующих) прибор TEMPO Read с рассчитывает помощью статистических методов количество микроорганизмов в исходном образце [4]. В настоящей работе проверялась возможность использования данной системы для определения санитарнопоказательных микроорганизмов в почвенных образцах.

Объектами исследования служили парки города Калининграда – парк Центральный, парк Южный и парк Макса Ашманна, в каждом из которых, были заложены по одному ключевому участку. Отбор почвенных проб, их

хранение и транспортировку осуществляли в соответствии с ГОСТом [5]. Пробы почв отбирали методом «конверта» с глубины 10 см, помещали их в стерильные пергаментные пакеты, наклеивали этикетки с указанием места и времени отбора почв и доставляли в лабораторию микробиологии и биотехнологии БФУ им И. Канта.

Определение индикаторов санитарного состояния почв проводили с помощью системы учета микроорганизмов TEMPO Read, которая позволяет в автоматизированном режиме подсчитать количество мезофильных аэробов, колиформных бактерий, *E.coli, Staphylococcus aureus.* Данные по количественному содержанию санитарно-показательных микроорганизмов представлены в таблице.

Таблица Количественное содержание санитарно-показательных

микроорганизмов в почве парков города Калининграда

Группа микроорганизм	Центральный парк			Южный парк			Парк Макса Ашманна		
ОВ	весн	лето	осен	весн	лето	осен	весн	лето	осен
	a		Ь	a		Ь	a		Ь
Staphylococcus aureus, KOE/r	40	<10	<10	<10	<10	<10	<10	$\begin{bmatrix} 2,1*1 \\ 0^2 \end{bmatrix}$	<10
E.coli, КОЕ/г	<10	<10	<10	<10	2,3*1 0 ²	$1,5*1$ 0^2	<10	$3,7*1$ 0^2	$1,0*1 \\ 0^2$
Колиформные бактерии, КОЕ/г	<10	4,1*1 0 ³	1,1*1 0 ³	81	1,8*1 0 ³	1,0*1 0 ³	80	>4,9 *10 ³	2,3*1 0 ³
Мезофильные	>4,9	>4,9	>4,9	>4,9	>4,9*	>4,9	>4,9	>4,9	>4,9
аэробы, КОЕ/г	*10 ⁵	*10 ⁵	*10 ⁵	*10 ⁵	10^{5}	*10 ⁵	*10 ⁵	*10 ⁵	*10 ⁵

Проведенные исследования показали, что золотистый стафилококк (*Staphylococcus aureus*) был обнаружен в парке Центральном в весенний период в количестве 40 колониеобразующих единиц на грамм почвы и в парке Макса Ашманна в летний период $-2.1*10^2$ КОЕ/г.

Кишечная палочка (E.coli) выявлена в почвенных образцах, отобранных в летний и осенний периоды в парке Южном и в Макса Ашманна парке. Причем в летний период количественное содержание E.coli было соответственно в 1,5 и 3,7 раза выше, чем в осенний период.

Колиформные бактерии обнаружены в почве всех исследованных парков, однако в парке Макса Ашманна их количество значительно превышало содержание колиформных бактерий других парков.

Мезофильные аэробы присутствовали в большом количестве во всех почвенных образцах, что свидетельствует о загрязненности почвы.

Таким образом, использование системы TEMPO Read, предназначенной для исследования санитарного качества пищевых продуктов, позволило определить санитарно-показательные микроорганизмы

в почвенных образцах. На основании полученных результатов можно оценить санитарное состояние почв парков города Калининграда и сделать заключение о том, что все исследованные парки по количеству мезофильных загрязненные, аэробов относятся К категории ПО содержанию бактерий Staphylococcus E.coli, колиформных наиболее aureus, И загрязненным является парк Макса Ашманна.

Библиографический список

- 1. Мосина, Л.В. Основы экотоксикологии: учебное пособие / Л.В. Мосина. М.: Изд-во РГАУ МСХА, 2013. 100 с.
- 2. Куркина, М.В. и др. Сравнительный анализ групп микроорганизмов в естественных и антропогенно-измененных бурых лесных почвах Калининградского полуострова / М.В. Куркина, А.С. Ващейкин, В.П. Дедков, А.Г. Красноперов // Вестник Балтийского федерального университета им. Иммануила Канта. Вып.7: Сер. Естественные науки. Калининград: Изд-во БФУ им. И. Канта, 2013. С.8 14.
- 3. Бондаренко, К.В. Оценка санитарного состояния водоемов города Калининграда / К.В. Бондаренко, М.В. Куркина // Молодежный научный форум: Естественные и медицинские науки. Электронный сборник статей по материалам XLIII студенческой международной заочной научно-практической конференции. Москва: Изд. «МЦНО». 2017. № 3 (42) С. 6-10 / [Электронный ресурс] Режим доступа. URL: http://www.nauchforum.ru/archive/MNF nature/3(42).pdf
- 4. TEMPO® прибор для автоматического подсчета индикаторов качества [Электронный ресурс] Режим доступа: https://www.biomerieux-russia.com/
- 5. ГОСТ 17.4.4.02-2017 «Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа» от 30 ноября 2017 г.

УДК 636.087.2:579.64

ФУНКЦИОНАЛЬНЫЕ ПРОДУКТЫ НА БАЗЕ ВТОРИЧНОГО СЫРЬЯ АПК

Сидоренко Олег Дмитриевич, профессор кафедры микробиологии и иммунологии ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязевва

Аннотация. обсуждаются биологические технологии переработки вторичного сырья и отходов агропромышленного комплекса в цельные коммерческие продукты, энергоносители, кормовые добавки и т.п. В результате переработки меняется молекулярная структура трансформируемого субстрата, появляются продукты нового типа.