относительное соотношение различных групп микроорганизмов в кишечной популяции. Каловую нагрузку определяли взвешиванием препарированных задних кишок на аналитических весах.

Расширение гнезда пчелиных семей в процессе опытов производили рамками с вощиной в соответствие со схемой опытов. Вощину получали на линии по производству вощины «Маргарите — 1», которая установлена в лаборатории переработки воска учебно-опытной пасеки.

Полученные данные подвергались статистической обработке методами вариационной статистики с проверкой достоверности результатов с использованием t-критерия Стьюдента и уровня значимости (Р) с использованием специально разработанных компьютерных программ.

4.1. Сравнительные показатели экстерьера пчел типа «Московский» карпатской породы (Маннапов А.Г., Храпова С.Н., Антимирова О.А.)

В исследованиях сотрудников кафедры пчеловодства МСХА им. К.А. Тимирязева (в настоящее время кафедра аквакультуры и пчеловодства РГАУ-МСХА имени К.А. Тимирязева) указывается на необходимость постоянного контроля породности пчел по биоморфологическим параметрам.

В этой связи корифей и патриарх по исследованию карпатских пчел В.А. Губин обосновал необходимость создания биоморфологического стандарта для характеристики разводимых пород пчел Европы и выделения среди них экотипов и популяций определенных пород пчел. При этом осознавая пагубность бесконтрольной метизации пчел различных пород он (Губин В.А.) отмечал, что «Было бы ошибкой считать, что морфологии пчел вообще и морфологическому стандарту в частности, уделяется излишне большое внимание, и что их роль и значение на самом деле не так уж велики». Это указывает на прозорливость ученого, так как даже сегодня становится ясно, последствия беспланового, случайного И неконтролируемого скрещивания, опасность, становящаяся настоящее время все более серьезной в связи с массовыми кочевками и

межрегиональными перевозками пчелиных семей и пакетов, может быть уменьшена только при постоянном контролировании чистопородности. Следует заметить, что недостаточный морфологический контроль и, тем более, его полное игнорирование, могут привести к последствиям, аналогичным тем, которые отмечены в настоящее время в России по сохранению и репродукции среднерусских пчел, или в Нижней Австрии относительно штамма «Скленар» от карники - стандарта, наоборот, уклоняющихся по параметрам, в сторону темных европейских пчел. В последнем случае отмечают не только снижение параметра кубитального индекса, основного породоопределяющего морфологического признака медоносных пчел, но и усиление агрессивности пчел этого штамма.

Отмечая селекционную работу с карпатскими пчелами, Аветисян Г.А., Губин В.А. и Маннапов А.Г. указывают, что из-за сложности разведения в чистоте племенных линий карпатских пчел в регионах и областях, где в изобилии разводят другие породы пчел, исключительно большое значение должен иметь отбор по продуктивности, внешним качественным признакам и экстерьеру особей.

Данные, представленные в таблице 4.1 показывают, что рабочие особи «Московского» типа карпатской породы пчел, имеют обшие биоморфологические показатели ДЛЯ карпатских пчел. Однако отличаются в лучшую сторону по качественным характеристикам и количественным параметрам от исходной и базовой популяций. Окраска тела пчел (качественный показатель) у описываемого породного типа достигла максимального уровня - 98,1%. Масса тела пчел, стала больше как по сравнению с данным параметром, регистрируемым у пчел исходной популяции, а также отмечаемому по требованию стандарта. Длина хоботка пчел увеличился, по сравнению с показателем стандарта на 0,27 мм, а с исходной популяцией – на 0,39 мм.

Экстерьер пчел типа	«Московский к	карпатской породы
---------------------	---------------	-------------------

	Карпатская		Исходная		Породный тип	
Показатель	порода (стандарт)		популяция		«Московский»	
	M <u>±</u> m	C _v , %	<u>+</u> m	C _v , %	<u>M</u> <u>±</u> m	C _v , %
Окраска тела, %, серая	96,0	_	90,0	-	98,1	_
Масса тела, мг	104,3±0,17	4,5	103,5±0,30	5,9	108,5±0,35**	4,2
Длина хоботка, мм	$6,57\pm0,02$	2,9	6,45±0,01	1,8	6,84±0,01**	1,5
Ширина 3-го тергита,	$4,60\pm0,02$	1,8	4,60±0,02	2,1	4,62±0,01	2,4
MM						
Кубитальный индекс, %	39,7±1,98	9,5	43,6±0,35	6,1	38,46±1,35**	8,3
Тарзальный индекс, %	52,6±0,29	4,14	53,29±0,26	3,0	52,50±0,95	5,5
Дискоидальное						
смещение, %:	92,6		91,4		97,9***	
положительное						
нейтральное	3,6		4,2		-	
отрицательное	3,8		4,4		1,1	
Форма задней границы						
воскового зеркальца 5-го						
стернита, выгнутая, %	100,0	-	100,0	-	100,0	-

Примечание. * - P \geq 0,95; ** - P \geq 0,99; *** - P \geq 0,999 по сравнению с исходной популяцией.

О том, что рабочие особи «Московского» типа имеют более массивное тело, указывает показатель ширины 3-го тергита - 4,62 мм. Кубитальный индекс по биоморфологическому стандарту согласно В.А. Губина, подтверждает породную принадлежность описываемых пчел к карпатской породе. При этом он наиболее типичен у пчел «Московского» типа, составляя 38,46% (2,6 абс. значение), тогда как у исходной популяции он равен 43,6%, указывая на близость данного параметра, регистрируемого у серых горных кавказских пчел.

У пчел «Московского» породного типа произошло консолидирование параметра дискоидального смещения жилкования. Он в 97,9% случаях был положительным. При этом форма задней границы воскового зеркальца пятого стернита, в 100,0% случаев была выгнутой, что характеризовала проявление их генотипа, как карпатских пчел, так и их чистопородность.

Сохранность семей пчел типа «Московский» за исследуемый период (2017-2019гг.) постоянно возрастала. У исходной популяции она была самой низкой по уровню, а в базовом варианте (стандарт) она была выше на 9,0 единиц, и составила 94,0% (см. табл. 4.2). В 2019г. она достигла максимума,

составив 99,0%. По данным наших опытов, в процессе зимовки исходная популяция израсходовала в расчете на улочку пчел по 2,3 кг кормового меда, а базовый вариант (стандарт) 2,1 кг. У пчелиных семей типа «Московский» за 2017-2019 гг. он был меньше на 600 - 700 г. При этом каловая нагрузка в толстой кишке у рабочих особей описываемого породного типа была также меньше, чем в исходной популяции, на 6,5 - 7,6 мг и колебалась в пределах 27,3-28,4 мг.

Таблица 4.2
Показатели зимовки пчелиных семей различных генотипов в среднем на 1 пчелиную семью (n = 50)

	Сохран-	Расход	Ослабление	Количество		Каловая	Активность
	ность	корма	семей,			нагрузка в	каталазы
Генотипы	семей,	на улочку	улочек	Str.	E. coli,	толстой	перед
пчел	%	пчел, кг		faseium,	lgKOE/g	кишке в	выставкой,
				lgKOE/g		конце	мл O_2
						зимовки, мг	
Карпатская,	94,0	$2,1\pm0,05$	1,87±0,09	$1,31\pm0,02$	4,30±0,37	$31,7\pm1,90$	21,5±1,40
стандарт							
Исходная	85,0	$2,3\pm0,06$	$2,2\pm0,10$	1,00±0,04	$6,3\pm0,52$	$34,9\pm2,11$	$28,0\pm2,30$
популяция	100	100	100	100	100	100	100
Породный тип «Московский»							
2017 г.	97,5	$1,6\pm0,03$	1,8±0,09	1,37±0,07	4,2±0,42	28,4±1,67	19,5±1,20
2018 г.	97,8	$1,5\pm0,05$	1,7±0,06	1,42±0,06	4,1±0,37	27,3±0,86	18,6±1,07
2019 г.	99,0	1,6±0,03	$1,7\pm0,04$	1,41±0,05	4,12±0,4	27,8±0,73	19,4±1,04
% 2019г. к	116,4	69,56	72,73	141,00	63,49	77,36	62,14
исх. попул.							

Самое минимальное ослабление за исследованные годы регистрировали у пчел породного типа «Московский». В конце зимовки у пчелиных семей описываемого типа микроорганизмов str. faseium в кишечнике было больше на 41,0%, а уровень Е. coli был, наоборот, меньше - 4,1-4,12 lgKOE/g. При этом активность каталазы регистрируемый, в пределах, от 18,6 до 19,5 мл О₂, пропорционально сочеталась с каловой нагрузкой толстой кишки, указывая на приспособленность к зимовке пчелиных семей нового породного типа «Московский» карпатской породы к условиям центральной полосы России.