4.2. Биологические и технологические особенности подготовки и использования медоносных пчел типа «Московский» карпатской породы на продуктивном медосборе с липы (Маннапов А.Г., Храпова С.Н., Антимирова О.А.)

4.2.1. Осеннее выращивание расплода и наращивание силы пчелиных семей

К продуктивному медосбору с липы в условиях учебно-опытной пасеки РГАУ-МСХА имени К.А. Тимирязева пчелиные семьи «Московского» породного типа карпатской породы готовили с осени предыдущего года (2017-2018-2019 гг.). Динамика изменения печатного расплода и яйценоскости пчелиных маток при осеннем наращивании силы семей по вариантам опыта, представлены в таблице 4.3 и на рис. 4.2.

 Таблица 4.3

 Динамика печатного расплода при осеннем наращивании пчел

Группы семей и	Количество расплода по датам учета, М±m, квадратов					
виды	Фон	06.IX	18. IX	30. IX	12. X	24. X
подкормок	20. VIII					
1-я, сахарный	70,0	85,0	110,0	121,0	116,0	10,0
сироп -	± 0.70	±1,08	$\pm 1,20$	±0.93	±1,16	±0,52
контроль						
2-я, сахарный	69,0	115,0	130,0	138,0	133,0	18,0
сироп + CoSO4	± 0.77	±1,76***	±2.38***	±2.82***	±2.09***	±0,52**
3-я, сыто	68,0	132,0	145,0	152,0	139,0	25,0
медовое +	± 0.81	±2.00***	±1,89***	±1,58***	±1,93***	±0,57***
CoSO ₄						
4-я, сыто	69,0	148,0	155,0	180,0	167,0	32,0
медовое +	± 0.67	±1,61***	±1,94***	±2.23***	±1,13***	±0,87 ***
Нэнни 2 с						
пребиот.						
+CoSO ₄						

Примечание: Здесь и далее в таблицах: * - $P \ge 0.95$; ** - $P \ge 0.99$; *** - $P \ge 0.999$ по сравнению с контрольной группой.

Проведение стимулирующих подкормок пчелиных семей дачей сыта медового сопровождалось более высоким приростом темпа выращивания

расплода, и в особенности, при даче сыта медового в композиции с $CoSO_4$ + «Нэнни 2 с пребиотиком».

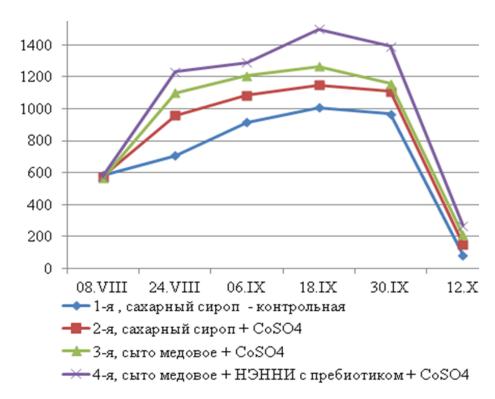


Рисунок 4.2. – Динамика яйценоскости пчелиных маток, яиц/сутки

Так, наиболее высокие темпы прироста выращиваемого расплода здесь регистрировали к третьему и четвертому срокам наблюдений. По сравнению с фоновым уровнем данный параметр по срокам наблюдений повысился – в 2,14; в 2,25; в 2,61 и в 2,42 раза.

Темп прироста расплода в 3-й группе пчелиных семей, также был высоким, но их численное значение незначительно уступали таковым данным 4-й группы, однако были выше цифровых значений 2-й группы, и особенно 1-й группы. Динамика выкармливания расплода коррелировала с яйценоскостью пчелиных маток контрольной и опытных групп. Так на графике (рис. 4.2) среднесуточной яйценоскости пчелиных маток по вариантам опыта можно отметить, что здесь выделяются четко различимые три периода подъема и два периода спада уровня оцениваемого показателя. В интервале с 8 по 24 августа среднесуточная яйценоскость продуктивно

увеличивается в 3-й, и, особенно в 4-й группе. Превышение первоначального уровня здесь составила по 3-й группе в 1,94 раза, а в 4-й группе – в 2,14 раза (в контроле – в 1,21 раза).

Среднесуточная яйценоскость пчелиных маток к 18 сентября достигла своего пикового уровня. Так к указанному сроку наблюдений она увеличилась в контрольной группе, по сравнению с первоначальным значением, на 425 шт./сутки, во 2-й группе — на 575 шт./сутки, в 3-й группе — на 700 шт./сутки, в 4-й группе — 925 шт./сутки, соответственно. Кратность превышения откладываемых яиц пчеламатками за описываемый период составил по 1-й группе в 1,73 раза, по 2-й группе — в 2,0 раза, по 3-й группе — в 2,23 раза, по 4-й группе — в 2,61 раза.

На отрезке времени с 18 по 30 сентября на графике регистрируется угасание темпа среднесуточной яйценоскости пчелиных маток, как в контрольной, так и опытной групп.

Осеннее наращивание физиологически молодых пчел происходило на фоне увеличения силы семей (табл. 4.4). В 1-й группе (контрольная) при стимулирующей подкормке рост силы семей происходит на 3,5 улочек, составляя 12,6 улочек, который при постановке в зимовку стабилизируется на уровне 12,0 улочек. Во 2-й группе он повышается до 13,9 улочек (на 5,1 улочек), в 3-й группе – до 15,8 улочек (на 6,7 улочек), в 4-й группе – до 16,0 улочек (на 6,7 улочек). Это позволило во 2-й группе сформировать 12 отводков в зиму с запасными матками, в 3-й и 4-й группах – по 21 шт.

Пчелы осенней генерации успешно принимают подсаживаемых пчеломаток в сформированные отводки при непрямом способе подсадки с использованием клеточки Титова и, особенно, при обработке маток перед подсадкой феромоном Унирой.

Таблица 4.4

Качественное состояние пчелиных семей после стимулирующих подкормок перед постановкой в зимовку (n=21 в каждой группе)

Группы семей	Сила семей, улочек		Сформиров	ано	При постановке в зимовник:	
	в начале опыта, на 15.08	в конце опыта, на 25.10	отводков на зиму, шт.	всего, шт.	сила семей, улочек	кол-во кормового меда, кг
1-я, контрольная	9,0±0,6	12,6±0,4	-	-	12,0±0,4	20,5±0,7
2-я, опытная	8,8±0,8	13,9±0,7 *	С 2-3 семей по 1 отводку на 4 рамки	12	12,0±0,5	20,7±0,6
3-я, опытная	9,1±0,2	15,8±0,6 **	по 1 отводку на 4 рамки с семьи	21	12,0±0,6	20,3±0,75
4-я, опытная	9,3±0,5	16,0±0,5 ***	По 1 отводку на 4 рамки с семьи	21	12,0±0,3	20,5±0,63

Так по результатам опыта при подсадке маток в клеточке Титова отводками было принято от 50,0 до 71,0%, а при обработке маток, заселяемых в клеточки Титова феромоном Унирой – 100%.

4.2.2. Изменение уровня интерьерных показателей и резервных веществ в организме пчел осенней генерации на фоне стимулирующих подкормок

Установлено, что у рабочих пчел при подготовке к зимовке повышается живая масса. У пчел осенней генерации из 1-й группы, она превышала аналогичный параметр летних пчел на 2,1 мг, 2-й группы — на 3,2 мг, 3-й группы — на 8,1 мг и 4-й группы — на 10,2 мг. Максимальный уровень описываемого параметра, регистрируемого в 4-й группе, превосходил, аналогичный показатель контрольной группы (1-я группа), в 1,08 раза, 2-й группы — в 1,06 раза, 3-й группы — в 1,02 раза, по сравнению с летней генерацией — в 1,1 раза (см. табл. 4.5).

Таблица 4.5

Живая масса и интерьерные показатели рабочих особей осенней генерации при подготовке к зимовке на фоне стимулирующих подкормок

	Генерации пчел, их возраст и группы					
Показатели	Летняя,	Осенняя, 24-30 сут.				
	24-30 сут.	1- контроль	2	3	4	
Масса рабочих пчел, мг	104,70	106,8	107,90	112,80*	114,90***	
Объем гемолимфы, мм ³	4,30	5,20	5,23	5,70	5,90*	
Содержание гемоцитов в	15542,0	13457,0	13654,0	14875,0**	15215,0***	
1 мм ³ гемолимфы						
Содержание азота, мг	2,15	2,37	2,40	2,70**	2,90**	
Содержание жира, мг	0,70	1,80	1,90	2,20**	2,26***	
Степень развития	2,80	3,70	4,20**	4,80**	4,90***	
жирового тела, баллов						

Аналогичная тенденция регистрировалась нами в отношении объема гемолимфы и содержанию азота, жира и степени развития жирового тела. Так, применение в качестве стимулирующей подкормки сыты медовой с «Нэнни 2 с пребиотиком» и сернокислым кобальтом способствовало повышению у пчел осенней генерации, по сравнению с летней и 1-й контрольной группой: массы рабочих пчел на 7,6 и 9,74 %, объема гемолимфы - на 13,46 и 37,2%, содержания азота и жира на 22,36 и 25,6%, степени развития жирового тела - на 75,0 и 32,4%.

С уменьшением летной деятельности у пчел осенней генерации в гемолимфе понижается содержание гемоцитов. Так он был меньше, по сравнению с аналогичным значением осенних пчел, по 1-й группе в 1,15 раза (на 2085 гемоцитов), по 2-й – в 1,14 раза (на 1888 гемоцитов), по 3-й – в 1,04 раза (на 667 гемоцитов), по 4-й группе – в 1,02 раза (на 327 гемоцитов).

При этом жировое тело пчел летней генерации можно характеризовать как промежуточное, между расходным и пополняемым, но с низкой степенью развития, оцениваемого по шкале А. Маурицио в 2,8 балла.

Совсем иная картина, по степени развитости, регистрируется в отношении жирового тела у рабочих особей осенней генерации на фоне стимулирующих подкормок. Самого максимального уровня развитости он достиг у рабочих пчел 4-й группы, которые получали в качестве стимулирующей подкормки сыто медовое в комплексе с CoSO₄ и «Нэнни 2 с пребиотиком» – 4,9 балла.

4.2.3. Содержание заменимых и незаменимых аминокислот в гемолимфе рабочих особей осенней генерации

У рабочих пчел при подготовке к зимовке, при применении в качестве подкормки комплекса молочной смеси с пребиотиком происходит увеличение в гемолимфе заменимых и незаменимых аминокислот (табл. 4.6). Заметное изменение среди незаменисмых аминокислот регистрировали, в отношении лизина в 1,8; гистидина в 2,32; аргинина в 2,84; глютаминовой аминокислоты в 1,26 и триптофана в 1,47 раза.

Таблица 4.6 Содержание некоторых незаменимых аминокислот в гемолимфе рабочих особей осенней генерации при подготовке к зимовке, мкмоль/л

	Генерации пчел и их возраст и группы					
Аминокислоты	Летняя,	Осенняя, 24-30 сут.				
	24-30 сут.	1	2	3	4	
Лизин	1832,15	2786,30	2841,35**	3018,10***	3294,27***	
Гистидин	971,60	1595,47	1763,10**	2142,45***	2257,63***	
Аргинин	711,05	1683,20	1713,60*	1875,30***	2019,58***	
Глютамин	1113,20	1214,82	1254,39	1361,21***	1412,23***	
Триптофан	587,23	786,38	801,26	814,15	866,45	

Среди заменимых аминокислот регистрировали снижение аспарагиновой к-ты, особенно сильным данный процесс был в 1-й и 2-й группах. Несколько замедленным снижение темпа данной кислоты было в 3-й, и особенно в 4-й группах. В то же время уровень остальных заменимых аминокислот, наоборот, возрастало, но в меньшей степени, чем незаменимые (за исключением тирозина) – повышение аланина было в пределах 1,32 раза, пролина – 1,93 раза. Кратность увеличения тирозина составило 5,54 раза.

4.2.4. Состояние интерьерных показателей рабочих особей перед завершением зимовки пчелиных семей

Результаты исследований подтвердили наше предположение о том, что пребиотик растительного происхождения Orafti Synergy 1 обеспечивает нормализацию пищеварения, объема гемолимфы и содержанию в ней гемоцитов, уровню азота и жира в организме зимущих пчел, снижению накапливания непереваренных остатков корма в толстом отделе кишечника и активности фермента каталазы. К завершению зимовки интерьерные показатели рабочих пчел превышали контроль: по объему гемолимфы в 1,32; содержанию гемоцитов в 1,28; азота и жира в 1,56 и 2,33; степени развития жирового тела в 1,63 раза и способствуют снижению активности каталазы и каловой нагрузки толстой кишки в 1,04 и в 1,09 раза. Что также подтверждается минимальным ослаблением пчелиных семей к концу зимовки, в пределах, одной улочки -8,33%, высокой сохранностью живой массы рабочих особей – 108,6 мг (в контроле 98,2 мг) и минимальным потреблением кормового меда - 7,0 кг (контроль 11,1 кг). А также состоянием глоточных желез пчел-кормилец в ранневесеннем и поздневесеннем периодах развития семей.

4.3. Подготовка пчел типа «Московский» карпатской породы к продуктивному медосбору с липы (Маннапов А.Г., Храпова С.Н., Антимирова О.А.)

4.3.1. Смена в пчелиных семьях осенних пчел на весеннюю генерацию

Состояние пчелиных семей контрольной и опытных групп, на начало опытов после весеннего облета, представлено в таблице 4.7.