УДК 502/504:627.5:532.57

Н.В. ХАНОВ, А.Г. ЖУРАВЛЁВА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», г. Москва, Российская Федерация

МВУЙЕКУРЕ ЖАН КЛОД

Государственный университет Бурунди, факультет инженерных наук», г. Бужумбура

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ КРЕПЛЕНИЙ НИЖНЕГО БЬЕФА ТРУБЧАТЫХ ВОДОВЫПУСКОВ С ГАСИТЕЛЯМИ УДАРНОГО ДЕЙСТВИЯ

Рассмотрены задачи проектирования и строительства креплений нижнего быефа с помощью гасителей энергии ударного действия за концевыми частями трубчатых водовыпусков. Уточнены геометрические размеры многосекционного гасителя ударного действия для заданного расхода, дано обоснование расположения его основных частей. Предложено в конце многосекционного гасителя использовать элементы усиленной шероховатости на рисберме и порог в ее конце для достижения равномерного распределения скоростей за рисбермой. Даны методика их расчетного обоснования и проектирования, прогноз развития воронки местного размыва; определена длина участка дополнительного крепления.

Гасители энергии ударного действия, трубчатые водовыпуски, строительство креплений нижнего бьефа гасителей энергии.

Введение. Использование конструкций креплений нижнего бьефа трубчатых водовыпусков с гасителями ударного действия считается надежным, когда конкретно определены геометрические параметры всех составляющих элементов. Эта идея является основной при устройстве и эксплуатации концевых частей трубчатых водовыпускных сооружений, оборудованных многосекционными гасителями ударного действия. Отказ от лабораторных экспериментов многосекционного гасителя ударного действия может привести к тяжелым последствиям, вызывающим частичное или полное разрушение сооружения [1-3].

Цель исследований. Совершенствование конструкций многосекционного гасителя ударного действия и детальное изучение кинематической структуры потока за сооружением, а также разработка методик их расчетного обоснования и проектирования.

Методология и методы исследований. На основании анализа ранее выполненных работ концевых частей трубчатых водопропускных сооружений, оборудованных гасителями ударного действия, было установлено, что конструкция водовыпуска нуждается в совершенствовании, в более глубоком изучении специфики кинематической структуры потока как в самом сооружении, так и в его нижнем бьефе [3]. Было принято решение о необходимости исследований как гидравлических условий работы нижнего бьефа, так и переформирований дна канала ниже водовыпуска.

Одним из основных направлений лабораторных исследований являлось изучение кинематической структуры потока за многосекционным гасителем ударного действия в случаях отсутствия элементов искусственной шероховатости и порога на рисберме, а также с использованием элементов искусственной шероховатости и порога, расположенных на рисберме, при различных пропускаемых расходах [3].

Исследуемый многосекционный гаситель ударного действия в полном составе был изготовлен из оргстекла толщиной 10 мм. Модель состояла из трех камер (рис. 1), каждая из которых имела следующие размеры: ширина одной секции $b_{_{s}}$ = 230 мм; длина гасителя l = 330 мм; высота гасителя h = 175 мм. Кроме геометрических параметров гасителя, были приняты следующие размеры элементов шероховатости и порога: ширина одного элемента $b_{1} = 30$ мм; расстояние между элементами равно ширине одного элемента $W_i = 30$ мм; расстояние между рядами элементов L = 98,5 мм; высота элемента $h_2 = 16$ мм; число рядов элементов $N_r = 4$; количество элементов на рисберме в одном ряду N = 12 шт.; высота порога J = 42 мм; ширина порога понизу $g_{2} = 105$ мм; ширина порога поверху m = 21 мм. В ходе лабораторных исследований необходимо было определять гранулометрический состав грунта для моделирования размыва [3, 4].

Результаты исследований и рекомендации. Результаты исследований предложенной конструкции гасителя с элементами шероховатости и порогом на рисберме (рис. 1в) показали более надежные результаты с точки зрения гидравлических условий работы со значениями коэффициента Кориолиса $\alpha = 1,0 \div 1,2$ [3] в сравнении с моделями исследований без искусственных шероховатостей (рис. 16), где значения $a = 1,0 \div 1,5$ [3] и значения коэффициента кинетической энергии, полученные А. Мосбахом, которые изменялись в диапазоне $a = 1,0 \div 1,5$ [5].

Рис. 1. Варианты исследованных моделей многосекционного гасителя (вид в плане):
а) забральная балка для всех секций расположена на одинаковом расстоянии a + d
от торцевой стенки; б) центральная забральная балка расположена на расстоянии 2,5 D_{mp}
от торцевой стенки, а крайние забральные балки – на удалении a + d;
в) конструкция гасителя с элементами шероховатости и порогом на рисберме

ПРИРОДООБУСТРОЙСТВО

На основании анализа полученных лабораторных экспериментальных результатов, включающих в себя изучение кинематической структуры потока, процессов размыва в нижнем бьефе, эффективность работы конструкции многосекционного гасителя ударного действия, а также определение рациональной длины крепления за сооружением, нами предложены новые рекомендации по устройству концевых частей трубчатых водовыпускных сооружений. Расчетные размеры конструктивных элементов гасителя энергии ударного действия и крепления его нижнего бьефа рекомендуется определять по следующим зависимостям:

$$\begin{split} L_{p\bar{6}} &= 1,435 \ b_{;;} \ h = 0,750 \ b_{;;} \ a = 0,333 \ b_{;;} \\ c &= 0,375 \ b_{;;} \ d = 0,167 \ b_{;;} \ e = 0,108 \ b_{;;} \\ f &= 0,500 \ b_{;;} \ P_{_{1}} = 0,140 \ b_{;}; \ P_{_{2}} = 0,087 \ b_{;;} \quad (1) \\ P_{_{3}} &= 0,087 \ b_{;;} \ S_{_{1}} = 0,422 \ b_{;;} \ S_{_{2}} = 0,090 \ b_{;;} \\ S_{_{3}} &= 0,05 \ b_{;} \ h_{_{9}} = 0,25h_{_{\mu,6,cp}}; \ l_{_{\mu p}} = (1,0...1,5) \ l_{_{\mu p}}, \end{split}$$

где $L_{pb.}$ – длина рисбермы; b_{p} – ширина гасителя, которую выбирают в зависимости от расчетного расхода Q_p одного гасителя (в соответствии с рисунком 2); h_s – высота одного элемента повышенной шероховатости; $h_{n.6.cp.}$ – средняя глубина потока в нижнем бьефе; l_{xp} – длина крепления участка дополнительного дна за сооружением; l_{np} – длина прыжка.

При этом необходимо сначала определить ширину гасителя в зависимости от расчетного расхода Q_p (рис. 2) или по предложенной зависимости [5, 6]:

$$\frac{b_{\Gamma}}{D_{rp}} = 2,641 F_r^{0,284},\tag{2}$$

где b_{Γ} – ширина гасителя; D_{TP} – диаметр трубы; F_r число Фруда на входе потока в гаситель; $F_r = \frac{V^2}{g D_{TP}}$; V – скорость потока на выходе из трубы.

Центральную П-образную забральную балку гасителя ударного действия по результатам наших исследований целесообразно расположить на расстоянии $2,5 \cdot D_{mp}$ от торцевой стенки, а крайние – на расстоянии a + d (рис. 3). Для защиты дна отводящего русла (канала) от размыва за многосекционным гасителем ударного действия длину рисбермы рекомендуется принимать как

$$L_{p6} = (1, 4...1, 5) b_{2}, \qquad (3)$$

где $b_{_{e}}$ – ширина многосекционного гасителя ударного действия.

Рис. 2. Графики минимально допустимой (1) и максимальной рекомендуемой (2) ширины камеры гасителя энергии ударного действия конструкции Бюро мелиорации: а) по данным Бюро мелиорации; б) с пересчетом координат графика (а) в метрическую систему

Размеры элементов шероховатости (рис. 3) рекомендуется определять по зависимостям (4), (5) и таблице, предложенным университетом штата Колорадо. Зная ширину одной секции многосекционного гасителя и диаметр трубы, необходимо:

1) сначала определить число рядов элементов шероховатости поперек потока по зависимости

$$N_r = \frac{b_2}{D_{mp}};\tag{4}$$

2) затем по таблице и значению N_r определить ширину $b_{_{g}}$ одного элемента шероховатости по зависимости $\frac{b_{_{g}}}{D_{_{mp}}}$, а расстояние между элементами принять равным ширине одного элемента;

3) подсчитать количество элементов Nв одном ряду на рисберме, так как ширина её постоянна и принята равной ширине гасителя;

4) определить расстояние L между рядами элементов по зависимости

$$L_{p\delta_{i}} = 2D_{\mathrm{TD}_{i}} + L \cdot N_{r}, \tag{5}$$

где $L_{p\bar{0}}$ – длина рисбермы;

5) по таблице 1 определить значение коэффициента лобового сопротивления C_n в соответствии с полученным значением N_r , затем найти высоту элементов шероховатости по зависимости $\frac{L}{h_s} = C_n$. При соблюдении условия, что высота элементов искусственной шероховатости в нижнем бьефе гасителя должна составлять от 0,31 до 0,91 от средней глубины потока, предлагаем также определять высоту одного элемента по зависимости

$$h_{a} = 0,25 \cdot h_{\mu,\delta,cp},\tag{6}$$

где $h_{{}_{\!\!H,{}_{\!\!G,cp.}}}$ – средняя глубина потока в нижнем бьефе;

6) расположить первый ряд элементов искусственной шероховатости на расстоянии $2D_{_{TP}}$ от начала рисбермы для предотвращения отложения наносов на выходе из гасителя.

Размеры порога на краю рисбермы необходимо определять по зависимости, рекомендованной Н.П. Розановым для определения размеров зубьев Ребока [7], так как концевые пороги в плане можно располагать как нормально направлению течения, так и под углом к нему. Высота порога определяется по зависимости

$$J = (0, 15...0, 2)q\sqrt{\Delta h},$$
(7)

где Δh – высота концевого порога рисбермы; q – удельный расход. Ширина порога по подошве $g_{_{g}} = 2,5 J$; ширина порога по верху $m = \frac{1}{2} J$.

Длину крепления участка дополнительного дна за сооружением рекомендуется определять по формуле, предложенной Б.Ф. Карауловым, К.И. Россинским, И.А. Кузьминым:

$$l_{_{KD}} = (1, 0...1, 25) \cdot l_{_{DD}}.$$
 (8)

При этом, с учетом анализа полученных нами результатов экспериментов лабораторных исследований, целесообразно принимать

$$l_{\kappa n} = (1, 0...1, 3) \cdot l_{nn}, \tag{9}$$

где l_{np} – длина прыжка, которую можно определять по эмпирической формуле, например, предложенной А. Сафранец [8, 9]:

$$l_{\mu\nu} = 4,5 \cdot h^{*},$$
 (10)

где h[»] – глубина потока в конце вальца.

Размеры элементов многосекционного гасителя ударного действия, полученные расчетным путем, рекомендуется округлять до целого числа из удобства проектирования сооружения.

Для прогнозирования местного размыва за многосекционным гасителем ударного действия с элементами шероховатости и порогом на рисберме прежде всего целесообразно определить значение допускаемых скоростей по формуле Б.И. Студеничникова для подбора размываемого грунта:

$$v_{\text{доп}} = 3,6\sqrt[4]{h_2 d_{\text{ср}}}$$
 при соотношении $\frac{h_2}{d_{\text{ср}}} \le 600;$ (11)

где $\mathbf{h}_{_2}$ – бытовая глубина потока в канале; $\mathbf{d}_{_{\mathrm{cp}}}$ – средний диаметр частиц грунта.

Рекомендуется также наблюдать донные скорости, вызывающие удлинение воронки размыва; найти из донных скоростей максимальное значение для оценки качественной картины размыва за рисбермой, при этом определить параметры воронок местного размыва путем обработки полученных лабораторных данных с использованием следующих со-

ПРИРОДООБУСТРОЙСТВО

отношений, предложенные в работе Мосбах Абдельхалим:

$$\frac{h_{er}}{h_{r}} = f \left[\frac{(v_{max} - v_{\partial on})}{\sqrt{gd_{necka}}} \right];$$
(12)

$$\frac{L_{er}}{b_2} = f \left[\frac{(v_{max} - v_{\partial on})}{\sqrt{gd_{nec\kappa a}}} \right];$$
(13)

$$\frac{b_{er}}{b_2} = f \left[\frac{(v_{max} - v_{\partial on})}{\sqrt{gd_{necka}}} \right], \tag{14}$$

где $h_{\scriptscriptstyle er}$ – максимальная глубина фокуса воронки местного размыва; $L_{\scriptscriptstyle er}$ – длина воронки вдоль направления

течения; b_{er} – ширина воронки в плане; b_2 – ширина многосекционного гасителя в плане; v_{max} – максимальная осредненная скорость потока на плановой эпюре скоростей после крепления; h_r – бытовая глубина потока в отводящем канале.

На основании полученных результатов по зависимостям (12), (13) и (14) целесообразно нанести кривые, которые можно использовать с учетом соотношения ($v_{max} - v_{gon}$)/ $\sqrt{gd_{cp}}$, чтобы определить значения максимальной глубины фокуса воронки местного размыва h_{er} , длины воронки вдоль по течению L_{er} и ее ширины в плане b_{er} .

Рис. 3. Предлагаемая схема многосекционного гасителя ударного действия с элементами шероховатости и порогом на рисберме

Таблица 1

WB/Wo			2 to 4			5			6			7		8
W1/Wo			0.57			0.63			0.6			0.58		0.62
Nr			4	5	6	4	5	6	4	5	6	5	6	6
N			14	17	21	15	19	23	17	22	27	24	30	30
ble	h/Y _A	L/h	Коэффициент лобового сопротивления $\mathrm{C}_{_{\!\scriptscriptstyle \Pi}}$											
Прямоугольн	0.91	6	0.32	0.28	0.24	0.32	0.28	0.24	0.31	0.27	0.23	0.26	0.22	0.22
	0.71	6	0.44	0.40	0.37	0.42	0.38	0.35	0.40	0.36	0.33	0.34	0.31	0.29
	0.48	12	0.60	0.55	0.51	0.56	0.51	0.47	0.53	0.48	0.43	0.46	0.39	0.35
	0.37	12	0.68	0.66	0.65	0.65	0.62	0.60	0.62	0.58	0.55	0.54	0.50	0.45
Круглые	0.91	6	0.21	0.20	0.48	0.21	0.19	0.17	0.21	0.19	0.17	0.18	0.16	-
	0.71	6	0.29	0.27	0.40	0.27	0.25	0.23	0.25	0.23	0.22	0.22	0.20	-
	0.31	6	0.38	0.36	0.34	0.36	0.34	0.32	0.34	0.32	0.30	0.30	0.28	-
	0.48	12	0.45	0.42	0.25	0.40	0.38	0.36	0.36	0.34	0.32	0.30	0.28	-
	0.37	12	0.52	0.50	0.18	0.48	0.46	0.44	0.44	0.42	0.40	0.38	0.36	-

Расчетные значения элементов шероховатости

Примечание. $W_0 = D_{TP} - диаметр одной трубы, мм; <math>W_{_B} = b_{_T} - ширина одной из секций гасителя, мм; <math>W_1 = b_{_3} -$ ширина одного элемента шероховатости, мм; L -расстояние между рядами элементов, мм; $Y_A -$ глубина потока на выходе из рисбермы.

Выводы

1. Предложенные методики проектирования и строительства креплений нижнего бьефа за сооружением (многосекционный гаситель и рисберма с элементами шероховатости и порогом на ней) говорят о возможности их широкого использования для прогноза работы концевого участка трубчатых водопропускных сооружений.

2. Исследование переформирования нижнего бъефа за сооружением принятой нами конструкции позволило выявить характерные выгодные отличия его работы в сравнении с переформированиями русла за предложенными ранее гасителями аналогичной конструкции. Даже при использовании одинаковых методик расчетов результаты наших исследований с гидравлической точки зрения оказались более предпочтительными, чем в исследованиях Мосбаха Абдельхалима.

3. Результаты исследований предложенной конструкции гасителя с элементами шероховатости и порогом на рисберме показали надежные результаты с точки зрения гидравлических условий работы со значениями коэффициента Кориолиса $\alpha = 1,0 \div 1,2$ в сравнении с моделями первой серии исследований, где значения $\alpha = 1 \div 1,5$.

Можно отметить, что решена сложная задача обеспечения более эффективной работы нижнего бьефа, особенно при несимметричном пропуске расхода; наличие элементов шероховатости и порога на рисберме окончательно обеспечивало хорошее растекание потока при всех открытиях секций и лучшую энергогасящую способность конструкции.

4. В целом можно отметить, что выполненные комплексные исследования многосекционного гасителя энергии с элементами шероховатости и порогом на рисберме обеспечивают его устойчивость и позволяют установить диапазон рационального применения сооружения, а также усовершенствовать методику его расчетного обоснования.

Библиографический список

1. Большаков В.А., Константинович Ю.М., Попов В.Н. и др. Справочник по гидравлике. 2е изд., перераб. и доп.; Под ред. В.А. Большакова. Киев: Вища шк. головное изд-во, 1984. 343 с.

2. Большаков В.А. Справочник по гидравлике. Киев: Издательское объединение «Вища школа», 1977. 280 с.

3. **Мвуйекуре Ж.К.** Экспериментальное обоснование параметров гасителей ударного действия трубчатых водовыпусков: Дис. ...канд. техн. наук. М., 2016. 157 с.

4. Гурьев А.П., Козлов Д.В., Ханов Н.В., Верхоглядова А.С. Моделирование скального грунта при исследованиях местных размывов в нижнем бьефе водосброса № 2 Богучанской ГЭС // Приволжский научный журнал. 2011. № 3. С. 88-93.

5. **Мосбах А.** Совершенствование конструкций и методик расчетов концевых частей трубчатых водопропускных сооружений с многосекционными гасителями ударного действия: Дис. канд. техн. наук. М., 1993. 159 с.

6. Петров Е.Ф. Гаситель энергии ударного действия в концевых частях трубчатых водопропускных сооружений: Дис. канд. техн. наук. М., 1990. 242 с.

7. Гидротехнические сооружения: Учебное пособие; Под ред. Н.П. Розанова. М.: Агропромиздат, 1985. 432 с.

8. **Ухин Б.В., Мельников Ю.Ф.** Инженерная гидравлика: Учебное пособие; Под ред. Б.В. Ухина. М.: Издательство АСВ, 2011. 344 с.

9. Зуйков А.Л., Волгина Л.В. Гидравлика: Учебник для вузов: В 2 т. Т. 2: Напорные и открытые потоки. Гидравлика сооружений. М.: Изд-во МГСУ, 2015. 424 с.

Материал поступил в редакцию 17.01.2017 г.

Сведения об авторах

Ханов Нартмир Владимирович, доктор технических наук, заведующий кафедрой гидротехнических сооружений, профессор, ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, 127550, г. Москва, ул. Большая Академическая, 44; тел.: 8 (499)976-00-15; e-mail: nvkhanov@yahoo.com.

Журавлева Анна Геннадьевна (ZhuravlevaAnna), кандидат технических наук, профессор, доцент, ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, 127550, Москва, ул. Б. Академическая, д. 44; тел.: +79169460766; e-mail: annagg@mail.ru.

Мвуйскуре Жан Клод, candidate of technical sciences, professor lecturer, «Ph.D», National University of Burundi «U.B», Bujumbura 1550, Avenue de l'UNESCO № 2; tel.: +(257) 22222059; e-mail: mvuyek@mail.ru.

N.V. KHANOV, A.G. ZHURAVLEVA

Federal state budget educational institution of higher education «The Russian state agrarian university – MAA named after C.A. Timiryazev», Moscow, Russian Federation

MVUYEKURE JEAN CLAUDE

State university Burundi, department of engineering sciences, Buzhumbura

RECOMMENDATIONS ON DESIGNING AND CONSTRUCTION OF DOWNSTREAM MOUNTING OF TUBULAR OUTLETS WITH IMPACT-ACTION ENERGY ABSORBERS

Problems of design and construction of downstream mounting by means of impact-action energy absorbers behind tubular outlets are considered. Geometric dimensions of a multiplesection impact-action absorber for the given flow are specified, there is given a substantiation of the location of its main parts. It is proposed to use elements of reinforced roughness at the end of the multi-section absorber on the apron and threshold at its end to achieve a uniform distribution of velocities behind the apron. There is given a method of their rated substantiation and design, prognosis of the funnel development of local erosion, the length of the additional fastening is determined.

Impact-action energy absorbers, tubular outlets, construction of downstream fastening of energy absorbers.

References

1. Boljshakov V.A., Konstantinovich Yu.M., Popov V.N. and others. Spravochnik po hydravlike. 2e izd., pererab. i dop.; Pod red. V.A. Boljshakova. Kiev: Buna shk. Golovnoe izd-vo, 1984. 343 s. Boljshakov.

2. **Boljshakov V.A.** Spravochnik po hydravlike. Kiev: Izdateljskoe objedinenie «Вища shkola», 1977. 280 s.

3. **Mvujekure J.C.** Experimentaljnoe obosnovanie prametrov gasitelej udarnogo dejstviya trubchatyh vodovypuskov: Dis. ...cand. tehn. nauk. M., 2016. 157 s. 4. **Gurjev A.P., Kozlov D.V., Khanov N.V., Verhoglyadova A.S.** Modelirovanie skaljnogo grunta pri issledovaniyah mestnyh razmyvov v nizhnem bjefe vodosbrosa № 2 Boguchanskoj GES // Privolzhsky nuchny zhurnal. 2011. № 3. S. 88-93.

5. **Mosbah A.** Sovershenstvovanie konstructsij i metodik raschetov kontsevyh chastej trubchatyh vodopropusknyh sooruzhenij s mnogosectsionnymi gasitelyami udarnogo dejstviya: Dis. cand. tehn. nauk. M., 1993. 159 s.

6. **Petrov E.F.** Gasitelj energii udarnogo dejstviya v kontsevyh chastyah trubchatyh

vodopropusknyh sooruzhenij: Dis. cand. tehn. nauk. M., 1990. 242 s.

7. Hydrotehnicheskie sooruzheniya: Uchebnoe posobie; Pod red. N.P. Rozanova. M.: Agropromizdat, 1985. 432 s.

8. **Ukhin B.V., Meljnikov Yu.F.** Inzhenernaya hydravlika: Uchebnoe posobie; Pod red. B.V. Ukhina. M.: Izdateljstvo ASV, 2011. 344 s.

9. **Zujkov A.L., Volgina L.V.** Hydravlika: Uchebnik dlya vuzov: V 2 t. T. 2: Napornye I otkrytye potoki. Hydravlika sooruzhenij.. M.: Izdvo MGSU, 2015. 424 s.

The material was received at the editorial office 17.01.2017

Information about the authors Khanov Nartmir Vladimirovich, doc-

tor of technical sciences, the head of the

УДК502/504:550.832.44:624.12:624.19:626/627

ДЖ.А. НАЗИРОВ, С.К. ДАВЛАТШОЕВ

department of hydraulic structures, professor. Federal State Budgetary Educational Institution of Higher Education «Russian Timiryazev State Agrarian University», Moscow, 127550, ul. Boljshaya Academicheskaya, 44; tel.: 8 (499)976-00-15; e-mail: nvkhanov@vahoo.com.

Zhuravleva Anna Gennadjevna, candidate of technical sciences, professor, associate professor, FSBEI HE RSAU-MAA named after C.A. Timiryazev, 127550, Moscow, ul. B. Academicheskaya, d. 44; tel.: +79169460766; e-mail: annagg@mail.ru.

Mvuyekure Jean Claude, candidate of technical sciences, professor lecturer, «Ph.D», National University of Burundi «U.B», Bujumbura 1550, Avenue de l'UN-ESCO № 2; tel.: +(257) 22222059; e-mail: mvuyek@mail.ru.

Проектно-изыскательный институт «Таджикэнергопроект», г. Душанбе, Республика Таджикистан

ИССЛЕДОВАНИЕ УПРУГИХ, ДЕФОРМАЦИОННЫХ И ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК ВМЕЩАЮЩЕГО МАССИВА КАМЕРНЫХ ВЫРАБОТОК РОГУНСКОЙ ГЭС ЛАБОРАТОРНЫМИ И ГЕОФИЗИЧЕСКИМИ МЕТОДАМИ

Участок створа Рогунского гидроузла сложен в основном крепкими малопроницаемыми песчаниками, алевролитами и аргиллитами нижнемелового возраста. Подземный машинный зал размещен на глубине 420 м на левом берегу реки Вахш под горным массивом. В инженерно-геологическом отношении характерной особенностью машинного зала является наличие литологических разностей пород: более прочных песчаников и менее прочных алевролитов. Коренные породы на участке здания ГЭС представлены толщей переслаивающихся песчаников и алевролитов нижнемелового возраста, слои которых наклонены в сторону нижнего бъефа под углом 65-75 град. Песчаники и алевролиты являются крепкими скальными грунтами: величина их сопротивления одноосному сжатию в образце равна соответственно (100-120 МПа и (60-80) МПа. Исследованы упругие, деформационные и прочностные характеристики камерных выработок, состоящих из алевролитов и песчаников, необходимых для расчетов напряженнодеформированного состояния вмещающего массива выработки, лабораторными, геотехническими и геофизическими методами. В результате исследований определены упругие, деформационные и прочностные характеристики алевролитов и песчаников, нарушенные трещиноватостью и не нарушенные трещиноватостью, а также зоны разгрузки пород, сохранный массив и относительно сохранный массив. Обобщены данные по результатам сейсмического профилирования по стенам выработки, сейсмической томографии целиков между выработками, а также сейсмического каротажа скважины. На основании полученных значений продольных и поперечных скоростей были оценены значения объемной и линейной трещинной пустотности вмещающего массива, а также определены модули деформации по второму циклу нагружения и суммарной деформации. На основании статистического анализа экспериментальных данных по составлению статических и динамических показателей деформируемости для различных типов пород выбрано уравнение, которое наилучшим образом описывает корреляционную зависимость. Соответственно для песчаников и алевролитов участка Рогунской ГЭС определены коэффициенты этого уравнения.

