и технология машиностроения: труды Американского общества инженеровмехаников. – 1969. – № 2. – С. 80–86.

5. Шарков В. П. Некоторые вопросы сейсмостойкости ячеистых гидротехнических сооружений на скальном основании: автореф. дис. … канд. техн. наук. – М.: МГМИ, 1982.

Материал поступил в редакцию 20.03.10. **Шарков Вячеслав Петрович**, кандидат технических наук, доцент Тел. 8 (499) 976-24-60

УДК 502/504:626

И. Ж. АТАБИЕВ

Федеральное государственное образовательное учреждение высшего профессионального образования «Московский государственный университет природообустройства»

ФИЛЬТРАЦИОННЫЙ РАСЧЕТ И ОБОСНОВАНИЕ ПАРАМЕТРОВ *N*-СЛОЙНОГО РАССЕИВАЮЩЕГО ЭЛЕМЕНТА ПОДЗЕМНОГО КОНТУРА ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

Рассмотрен принцип действия рассеивающего выходного элемента многослойной конструкции из п слоев (n > 2).

Коэффициент фильтрационного сопротивления, проницаемость, пъезометрические напоры, многослойная конструкция, проницаемая геомембрана.

The action of the scattering output element of the multilayer structure consisting of n number of layers (n > 2) is considered.

Coefficient of filtration resistance, permeability, hydraulic heads, multilayer structure, permeable geomembrane.

Принцип действия рассеивающего выходного элемента ступенчатой проницаемости (РВЭ-Ст) и способ расчета частного случая, когда он состоит из двух слоев дискретно проницаемых геомембран, изложен автором в работах [1, 2]. Многослойная конструкция из n(n > 2) слоев требует специального рассмотрения в силу трудностей составления системы n + 1 числа уравнений и сложностей ее дальнейшего разрешения (рисунок).

Искомыми следует считать следующие параметры: длины участков Δl_1 , Δl_2 ... Δl_1 ... Δl_n , каждый из которых имеет постоянную проницаемость; коэффициенты их фильтрационного сопротивления транзитному потоку по длине $\Delta \zeta_1$, $\Delta \zeta_2$, ... $\Delta \zeta_i$... $\Delta \zeta_n$; пьезометрические напоры в начале каждого участка H_1 ,

 H_2 … $H_{\rm i}$ … $H_{\rm n-1}$. Значения суммарного коэффициента сопротивления элемента ζ_{n} , коэффициента сопротивления, возникающего в конце элемента на выходе в нижний бьеф $\zeta_{\text{вых}}$, пьезометрических напоров в начале $H_{_{\rm H}} = H_{_{\rm n}}$ и в конце $H_{_{\rm K}} = h_{_{\rm Bbix}}$ определяются как в [2, 3]. Толщина грунтовых слоев t и $\Delta t = \text{const}$ принимается конструктивно, с учетом технологических особенностей, а расстояние между центрами отверстий (ширина фрагмента с одним отверстием) каждой геомембраны $l_{\phi} = \text{const}$ и размер отверстия δ определяются отдельно из условия сохранения местной фильтрационной прочности (рисунок):

$$I_1 = I_2 = \dots = I_i = \dots I_n \le I_{cn}$$
 (1)

Считая, что вдоль каждого участка падение пьезометрического напора происходит линейно, можно записать:

Гидротехническое строительство

$$H_{1} = h_{\text{Bbix}} + (H_{\text{H}} - h_{\text{Bbix}})\Delta l_{1}/l;$$

$$H_{2} = h_{\text{Bbix}} + (H_{\text{H}} - h_{\text{Bbix}})\Delta l_{2}/l;$$

$$\dots$$

$$H_{n} = h_{\text{Bbix}} + (H_{\text{H}} - h_{\text{Bbix}})\Delta l_{n}/l,$$
(2)

где l – длина всего РВЭ-Ст; $l = \Delta l_1 + \Delta l_2 + ... + \Delta l_i + ... + \Delta l_n$.

С другой стороны, пьезометрические напоры в начале участков должны соответствовать проницаемости слоев, но так, чтобы соблюдалось условие (1), поэтому

$$H_{1} = I_{cr} t \zeta_{A};$$

$$H_{2} = I_{cr} t (\zeta_{A} + \zeta_{E});$$

$$\dots$$

$$H_{n} = I_{cr} t [\zeta_{A} + (n-1)\zeta_{E}],$$
(3)

где $\zeta_{\rm A}$ — фильтрационное сопротивление, оказываемое потоку при сквозной фильтрации воды в нижний бьеф через верхнюю геомембрану фрагмента РВЭ-Ст длиной $\zeta_{\rm \phi}$ с одним отверстием; $\zeta_{\rm B}$ — фильтационное сопротивление, которое испытывает поток, проходящий в грунтовой прослойке между двумя слоями геомембран того же фрагмента [2].

После приравнивания правых частей соответствующих уравнений систем (2) и (3) удается исключить из решения зачения промежуточных напоров *H*_i, тогда

$$\Delta l_{1} = l \left(I_{cr} t \zeta_{A} - h_{BMX} \right) / \left(H_{H} - h_{BMX} \right);$$

$$\Delta l_{1} = l \left(I_{cr} t (\zeta_{A} + \zeta_{B}) - h_{BMX} \right) / \left(H_{H} - h_{BMX} \right);$$

$$\Delta l_{n} = l \left(I_{cr} t [\zeta_{A} - (n-1)\zeta_{B}] - h_{BMX} \right) / \left(H_{H} - h_{BMX} \right).$$
(4)

Система (4) содержит n + 1 неизвестное: Δl_1 , Δl_2 ... Δl_n и *l*. Однако каждое значение $\Delta \zeta_i$ может быть определено по формуле [3]. С учетом этого возможна другая система:

$$\Delta l_{1} = \sqrt{t_{np1} \cdot T} \operatorname{arsh} \frac{\sqrt{(c_{1}+1)^{2} + d_{1}^{2} - 1} - (c_{1}+1)d_{1}}{1 - d_{1}^{2}};$$

$$\Delta l_{2} = \sqrt{t_{np2} \cdot T} \operatorname{arsh} \frac{\sqrt{(c_{2}+1)^{2} + d_{2}^{2} - 1} - (c_{2}+1)d_{2}}{1 - d_{2}^{2}};$$
(5)

$$\Delta l_{\rm n} = \sqrt{t_{\rm np \, n} \cdot T} {\rm arsh} \frac{\sqrt{(c_{\rm n} + 1)^2 + d_{\rm n}^2 - 1 - (c_{\rm n} + 1)d_{\rm n}}}{1 - d_{\rm n}^2},$$

где

$$\begin{split} c_{1} &= \Delta \zeta_{1} / \zeta_{\text{bbix}}; \ d_{1} &= \sqrt{t_{\text{mp.1}} / T_{1}} / \zeta_{\text{bbix}}; \\ c_{2} &= \Delta \zeta_{2} / \zeta_{\text{bbix}}; \ d_{2} &= \sqrt{t_{\text{mp.2}} / T_{2}} / \zeta_{\text{bbix.1}}; \\ & \\ c_{n} &= \Delta \zeta_{n} / \zeta_{\text{bbix,n-1}}; \ d_{n} &= \sqrt{t_{\text{mp.n}} / T_{n}} / \zeta_{\text{bbix,n-1}}, \end{split}$$

где $t_{np.1} = t\zeta_A k_0/k_p$, $t_{np,2} = t(\zeta_A + \zeta_B)k_0/k_p$...; $t_{np,n} = t[\zeta_A + (n-1)\zeta_B]k_0/k_p$ приведенная толщина каждого участка РВЭ [2, 3]; k_0 и k_p – коэффициенты фильтрации соответственно грунта основания и грунта верхней пригрузки и прослоек геомембран РВЭ-Ст; $\zeta_{_{\rm BMX},1} = \zeta_A$, $\zeta_{_{\rm BMX},n.1} = \zeta_A + (n-2)\zeta_B$ – коэффициент сопротивления при выходе фильтрационного потока в нижний бьеф в конце каждого участка РВЭ-Ст.

Если уравнение системы (5) записать сокращенно $\Delta l_i = f(\Delta \zeta_i)$, а затем рассмотреть совместно с (4), то новая система уравнений примет следующий вид (значения Δl_i удалось исключить):

Последняя система также включает n уравнений и n + 1 неизвестных: $\Delta \zeta_1, \Delta \zeta_2 \dots \Delta \zeta_n$ и l_p . Для ее разрешения можно принять дополнительное условие:

$$(\Delta\zeta_1 + \Delta\zeta_2 + \dots + \Delta\zeta_0) = \zeta_{\rm p}.$$
 (7)

Решения (6)...(7) можно добиться, воспользовавшись одним из численных методов [4]. Укажем один из наиболее простых путей. Для этого необходимо в качестве начального условия принять $\Delta \zeta_1 = \Delta \zeta_2 = ... = \Delta \zeta_n = \zeta_{p/n}$. Затем по (5) определить длины $\Delta l_1', \Delta l_2', \Delta l_n'$, которые не должны быть меньше значений (4) для удовлетворения условия (1). Если одно или несколько $\Delta l_i'$ будет меньше Δl_i , его неоходимо увеличить. Далее по зависимостям, обратным (5),

$$\Delta \zeta'_{i} = \sqrt{\frac{t_{\text{np},i}}{T_{i}}} \operatorname{sh} \frac{\Delta l_{i}}{\sqrt{t_{\text{np},i}T_{i}}} + \left(\operatorname{ch} \frac{\Delta l_{i}}{\sqrt{t_{\text{np},i}T_{i}}} - 1\right) \zeta_{\text{BMX},1}, \quad (8)$$

можно вычислить величины $\Delta \zeta_1'; \Delta \zeta_2'; ..., \Delta \zeta'_n$. Допускается, что при этом их сумма ζ'_p может превысить ζ_p . Расчет повторяется следующим шагом итераций.

Объем вычислений можно уменьшить, если использовать прием, применяемый в работах [5, 2]. В правой части уравнений системы (4) отношение $l/(H_{_{\rm H}} - h_{_{\rm Bbix}})$ можно записать следующим образом:

$$(H_{_{\rm H}} - h_{_{\rm Bbix}})/l = I_{_{\rm est,m}} \le I_{_{\rm cr,m}}/\gamma_{_{\rm n}}, \qquad (9)$$

Расчетная схема многослойного рассеивающего элемента ступенчатой проницаемости (РВЭ-Ст)

где $I_{\rm est,m}$ – средний градиент напора в PBЭ-Cт; $I_{\rm cr,m}$ – критический средний градиент напора, соответствующий грунту основания; $\gamma_{\rm n}$ – коэффициент надежности сооружения.

Тогда длина любого участка, удовлетворяющего одновременно общей и местной фильтрационной прочности, может быть определена непосредственно из следующего выражения:

$$\Delta l_{i} \geq \gamma_{n} \{ I_{cr} t [\zeta_{A} - (i - 1)\zeta_{B}] - h_{BMX} \} / I_{cr,m}. (10)$$

В силу свойств полимерного материала геомембран, позволяющих им деформироваться, сохраняя полный контакт с грунтом при его просадках, коэффициент надежности в (10) γ_n может быть принят равным единице.

рассеивающий элемент флютбента ступенчатой проницаемости: сб. науч. трудов. – Нальчик: КБГСХА, 1996. – С. 123–129.

3. Бурдинский В. Н., Атабиев И. Ж. Расчет рассеивающего выходного элемента постоянной проницаемости подземного контура гидротехнических сооружений/ Вопросы повышения эффективности строительства: сб. науч. трудов КБГСХА. –Нальчик, 1998. – Вып. 1. – С. 56–59.

4. **Демидович Б. П., Марон И. А.** Основы вычислительной математики. – М.: Наука, 1970. – 67 с.

5. Бурдинский В. Н., Атабиев И. Ж. Фильтрация сквозь рассеивающий выходной элемент подземного контура оптимальной проницаемости / Вопросы повышения эффективности строительства: сб. науч. трудов. – Нальчик: КБГСХА, 1998. – Вып. 1. – С. 60–63.

Материал поступил в редакцию 06.10.10. **Атабиев Исхак Жафарович**, кандидат технических наук, проректор по административнохозяйственной работе

Тел. 8 (495) 976-08-75

^{1.} Атабиев И. Ж. Совершенствование конструкций и методов расчетного обоснования рассеивающих выходных элементов подземного контура водоподпорных гидротехнических сооружений: автореф. дис. ... канд. техн. наук. – М.: ФГОУ ВПО МГУП, 2000.

^{2.} Атабиев И. Ж. Расчет фильтрации через двухслойный выходной