УДК 502/504:631.372

С.Р. СИРЕКАНЯН

Национальный аграрный университет Армении, г. Ереван, Республика Армения

М.А. КАРАПЕТЯН

Федеральное государственное образовательное учреждение высшего образования
«Российский государственный аграрный университет - МСХА имени К.А. Тимирязева», г. Москва

ВЛИЯНИЕ ПОПЕРЕЧНОЙ СИЛЫ НА РАСПОЛОЖЕНИЕ ЦЕНТРА ПОВОРОТА ГУСЕНИЧНОГО ТРАКТОРА ПРИ ЕГО ПЛАВНОМ ПОВОРОТЕ

Рассмотрена задача по определению координат центра вращения при плавном повороте гусеничного трактора (отстающая тележка выключена, но не заторложена) на горизонтальном участке, без крюковой нагрузки. Координаты чентра вращения трактора определены из критерия поворотливости трактора (условие необходимости критерия поворотливости - минимальность общего момента сопротивления; условие достаточности критерия поворотливости заключается в том, что центром вращения может быть такая точка, относительно которой моменты пассивных сил сопротивления как по поперечному, так и по продольному направлению должны быть равныли между собой). По результатам исследования сделано следующее заключение. Активная поперечная сила, действуя на трактор, приводит $к$ перераспределению нормальных нагрузок на опорных поверхностях гусениц, смещает центр давления, уравновешивается пассивными поперечными силами в средней части опорной поверхности гусении на участке длиной $2 x_{0}$, уменьшает момент сопротивления пассивных сил и способствует или препятствует повороту трактора в зависимости его направления вращения, а центром вращения является центр давления, который удовлетворяет требования критерия поворотливости трактора.

Гусеничный трактор, плавный поворот, центр давления, центр вращения, молент сопротивления поворота.

Введение. Под воздействием гусениц и колес тракторов и машин прежде всего уплотняется верхний плодородный горизонт почвы, который при обработке, при посеве, уходе за посевами и уборке урожая подвергается многократному воздействию движителей. При уплотнении почвы ухудшаются фи-зико-механические и водо-воздушные свойства почвы, тепловой и питательные режимы корнеобитаемого слоя, снижается плодородие, что, в конечном итоге, приводит к недобору урожая сельскохозяйственных культур. Поэтому изучение вопроса плавного поворота гусеничной машины является актуальным.

Результаты. Определим центр плавного поворота трактора весом G на горизонтальной поверхности, когда, кроме активного вращающего момента, на него действует активная поперечная сила T, приложенная на некоторой точке с координатами x_{T}, y_{T}, z_{T}.

Под действием силы T происходит перераспределение нормальных давлений на гусеницах, что приводит к смещению центра давления трактора в поперечном направлении (рис. 1). Смещение центра давления определится из уравнения:

$$
\begin{equation*}
y=z_{T} \frac{T}{G} \tag{1}
\end{equation*}
$$

Рис. 1.Схема определения центра плавного поворота трактора

Согласно приведенной схеме (рис. 1)

$$
\begin{align*}
& Q_{1}=G\left(\frac{1}{2}+\frac{y}{B}\right), \tag{2}\\
& Q_{2}=G\left(\frac{1}{2}-\frac{y}{B}\right) . \tag{3}
\end{align*}
$$

При этом $Q_{1}+Q_{2}=Q=G$. Соответственно уравнениям (2) и (3) значения удельных линейных давлений, приходящиеся на единицу длины каждой гусеницы, составят

$$
\begin{align*}
& q_{1}=\frac{Q_{1}}{L}=\frac{G}{L}\left(\frac{1}{2}+\frac{T \cdot z_{T}}{G \cdot B}\right)=q_{0}+k \cdot y ; \tag{4}\\
& q_{2}=\frac{Q_{2}}{L}=\frac{G}{L}\left(\frac{1}{2}-\frac{T \cdot z_{T}}{G \cdot B}\right)=q_{0}-k \cdot y, \tag{5}
\end{align*}
$$

где $q_{o}=\frac{G}{2 L}, k=\frac{G}{L \cdot B}$.
Положим, что при повороте трактор вращается вокруг некоторой точки C (рис. 2). При повороте трактора под некоторым углом центр гусеницы 1 из точки E перемещается в точку E_{1} по дуге $E E_{1}$ радиуса $r_{1}=C E=\frac{B}{2}-y_{c}$, а центр гусеницы 2 перемещается дугой $A A_{1}$ радиуса $r_{2}=C A=\frac{B}{2}+y_{c}$ и занимает положение A_{1}. Таким образом, каждая гусеница совершает поворот вокруг своего центра (E, A) относительно своего исходного положения (показано пунктиром) под углом δ, а центры в процессе поворота перемещаются поступательным движением в новое положение (E_{1}, A_{1}).

Рис. 2. Поворот трактора вокруг точки C
Следует обратить особое внимание на то, что поступательные перемещения центров гусениц, вызванные вращением трактора, происходят за счет не поступательного перемещения гусениц по почве, а перемещения трактора по беговым до-

рожкам гусениц. При этом в передней части гусеничных лент опускаются к земле новые звенья и располагаются совершенно в иной ориентации, чем та ориентация, которую занимали они в предыдущем цикле, т.е. когда находились на земле в задней части гусеничной ленты. Поэтому в каждый момент центры опорных поверхностей гусениц занимают новые положения, относительно которых вращаются гусеничные ленты, вызывая пассивные поперечные силы сопротивления. Гусеничные ленты вращаются под воздействием остова трактора с опорными катками, которые из-за вращающего момента M перекашиваются на гусеницах, и крайние катки односторонне сжимаются к направляющим элементам беговых дорожек (рис. 3), вызывая пары сил N-N.

Рис. 3. Схема пары сил N-N
Ясно, что силы N будут вызывать дополнительные сопротивления перекатыванию трактора на гусеницах, т.к. под их действием возникнут силы трения скольжения реборд крайних опорных катков о направляющие элементы дорожки. Отметим, что в силу неравномерности распределения зазоров между катками и направляющими элементами эти силы будут неодинаковыми, и точно рассчитать их невозможно.

Если принять, что зазоры везде одинаковы, то тогда значения N можно определить уравнением:

$$
N=\frac{M}{2 l .}
$$

Однако случается, когда с направляющими элементами могут контактировать только две опорные катки, расположенные

по диагонали опорной части трактора, что более вероятно. Тогда значение N^{I}

$$
N^{I}=\frac{M}{l},
$$

т.е. в два раза больше.

При определении центра вращения влияние этих сил будем учитывать коэффициентом сопротивления f^{I}. Таким образом, можно прийти к заключению, что в процессе поворота трактора на опорных частях вдоль гусениц действуют силы сопротивления перекатыванию $F_{1}=Q_{1} \cdot f^{I}$ и $F_{2}=Q_{2} \cdot f^{I}$, а поперек гусениц - силы сопротивления трения гусениц с опорной поверхностью, распределенные равномерно с интенсивностью соответственно $\mu \cdot q_{1}$ и $\mu \cdot q_{2}$.

Производя параллельный перенос активной поперечной силы T на вертикальную линию, проходящую через центр тяжести трактора O, получим момент $T \cdot x_{T}$, способствующий или препятствующий повороту трактора в зависимости от направления вращения, и активную силу T, действующую в поперечной плоскости, проходящей через центр тяжести трактора.

Для уравновешивания силы T из условия равновесия $\sum Y=0$ получим

$$
\begin{equation*}
T=2 \mu \cdot x_{o}\left(q_{1}+q_{2}\right) . \tag{6}
\end{equation*}
$$

Из уравнения (6) следует, что независимо от направления вращения трактора активная поперечная сила T уравновешивается пассивными тангенциальными поперечными силами в средней части опорной поверхности гусениц на участке длиной $2 x_{0}$ (рис. 2).

Оставшиеся части эпюр занимают симметричное расположение относительно оси OY (поперечной оси симметрии опорной поверхности трактора) и образуют пары сил с моментами:
A) для гусеницы 1

$$
\begin{equation*}
M_{1}=\mu \cdot q_{1}\left(\frac{L^{2}}{4}-x_{o}^{2}\right) ; \tag{7}
\end{equation*}
$$

Б) для гусеницы 2

$$
\begin{equation*}
M_{2}=\mu \cdot q_{2}\left(\frac{L^{2}}{4}-x_{o}^{2}\right) . \tag{8}
\end{equation*}
$$

Общий момент сопротивления пассивных тангенциальных сил

$$
\begin{equation*}
M=M_{1}+M_{2}=\mu\left(q_{1}+q_{2}\right)\left(\frac{L^{2}}{4}-x_{0}^{2}\right), \tag{9}
\end{equation*}
$$

где x_{o} определяется по уравнению (6).

Как следует из уравнения (9), поперечная активная сила T уменьшает момент сопротивления повороту от пассивных тангенциальных сил.

Из условия достаточности критерия поворотливости трактора следует, что центром вращения может быть такая точка, относительно которой моменты пассивных сил сопротивления как по поперечному, так и по продольному направлениям должны быть равными между собой.

Из этого условия получим
$M_{1 \pi}+M_{2 \pi}=M_{13}+M_{23}=\frac{1}{2} \mu\left(q_{1}+q_{2}\right)\left(\frac{L^{2}}{4}-x_{0}^{2}\right)$,
где $M_{1 п} ; M_{2 п} ; M_{13} ; M_{23}$ - моменты от поперечных пассивных сил, действующих на передней и задней частях соответствующих гусениц.

Из уравнения (10) следует, что центр поворота трактора должен лежать на оси $O Y$, т.е. $x_{c}=0$.

Используя условие достаточности для продольных сил, получим

$$
F_{1} \cdot r_{1}==F_{2} \cdot r_{2}
$$

или

$$
\begin{equation*}
Q_{1} \cdot f^{I}\left(\frac{B}{2}-y_{c}\right)=Q_{2} \cdot f^{I}\left(\frac{B}{2}+y_{c}\right) . \tag{11}
\end{equation*}
$$

Решая уравнение (11) относительно y_{c}, получим

$$
\begin{equation*}
y_{c}=\frac{Q_{1}-Q_{2}}{Q_{1}+Q_{2}} \cdot \frac{B}{2} . \tag{12}
\end{equation*}
$$

Подставляя значения Q_{1} и Q_{2} из уравнений (2) и (3) в уравнение (12), получим $y_{c}=y=z_{\mathrm{T}} \cdot \frac{T}{G}, \quad$ т.е. центром вращения $c\left(x_{c}=0 ; y_{c}=z_{\mathrm{T}} \cdot \frac{T}{G}\right)$ является центр давления трактора.

Проверим, удовлетворяется ли при этом условие необходимости (минимальность общего момента сопротивления). С этой целью составим уравнение работ всех пассивных сил:
$\sum A_{n c}=M \cdot \delta+\left(r_{1} \cdot F_{1}+r_{2} \cdot F_{2}\right) \delta+2 \mu\left(q_{1}+q_{2}\right) \delta \cdot x_{o}^{2}$.
Подставляя соответствующие значения и заменяя x_{0} произвольным значением x, окончательно будем иметь

$$
\begin{aligned}
& \sum A_{n c}=\mu\left(q_{1}+q_{2}\right)\left(\frac{L^{2}}{4}+x^{2}\right) \delta+L \cdot f^{I} \cdot \delta \times \\
& \times\left[\left(q_{0}+k \cdot y\right)\left(\frac{B}{2}-y\right)+\left(q_{0}-k \cdot y\right)\left(\frac{B}{2}+y\right)\right] .
\end{aligned}
$$

Оппеделим экстремальные значения $\sum A_{n c}$ по переменным x и y :

1. $\Phi^{I}(x)=\frac{\partial \sum A_{n c}}{\partial x}=2 \mu \cdot \delta\left(q_{1}+q_{2}\right) x=0$, откуда $x=x_{c}=0$, что означает, что при ЯЯ работа пассивных сил будет минимальной.
2. $\Phi^{I}(y)=\frac{\partial \sum A_{n c}}{\partial y}=-4 L \cdot f^{I} \cdot \delta \cdot k \cdot y=0$,

откуда $y=0$.
Проверка показывает, что для \bar{y}, немного меньших $y=0$, т.е. $\bar{y}=-\varepsilon, \Phi^{I}(y)$ имеет положительный знак $(+)$ и для $\overline{\bar{y}}$, немного больших $y=0$, т.е. $\overline{\bar{y}}=+\varepsilon$, $\Phi^{I}(y)$, имеет отрицательный знак (-). Значит, при $y=0$ функция $\Phi(y)$ имеет максимум.

Действительно, обозначая
$A_{1}=L \cdot f^{I} \cdot \delta\left[\left(q_{o}+k \cdot y\right)\left(\frac{B}{2}-y\right)+\left(q_{o}-k \cdot y\right)\left(\frac{B}{2}+y\right)\right]$
и упрощая, получим
$A_{1}=\left(q_{0} B-2 k \cdot y^{2}\right) L \cdot f^{I} \cdot \delta=G \cdot f^{I} \cdot \delta\left(\frac{B}{2}-\frac{2}{B} y^{2}\right)$.
Как следует из уравнения (13), при $y=0 A_{1}=A_{1 \max }$, и наоборот, чем больше у, тем меньше значение A_{1} (рис. 4).

Рис. 4. График функции $\boldsymbol{y}=\mathbf{f}(\mathrm{A})$

При $_{B} y=\frac{B}{2}$ получим $A_{1}=0$.
$y=\frac{B}{2}$ ознӑчает, что и $q_{1}=0$, и вся нагрузка прих 2 ходится на одну гусеницу, следо-

вательно, и работа продольных пассивных сил будет равна нулю.

В условиях нашей задачи q_{1} и q_{2} отличны друг от друга и оба являются положительными, значит, значение $y==y_{c}=z_{T} \frac{T}{G}$ при данных условиях будет оптимальным, и при повороте трактора вокруг точки C будет затрачена минимальная работа.

Таким образом, центр давления C, как центр вращения всего трактора, будет отвечать также условию необходимости критерии поворотливости трактора.

Заключение

Можем констатировать, что активная поперечная сила, действуя на трактор, приводит к перераспределению нормальных нагрузок на опорных поверхностях гусениц, смещает центр давления, уравновешивается пассивными поперечными силами в средней части опорной поверхности гусениц на участке длиной $2 x_{o}$, уменьшает момент сопротивления пассивных сил и способствует или препятствует повороту трактора в зависимости его направления вращения, а центром вращения является центр давления, который отвечает требованиям критерия поворотливости трактора.

Материал поступил в редакцию 18.04.2017 г.

Сведения об авторах

Сиреканян Самвел Рафикович, кандидат технических наук, доцент кафедры «Автомобили и тракторы», Национальный аграрный университет Армении; 0009, Республика Армения, Ереван, ул. Теряна, 74; e-mail: samsir1@rambler.ru

Карапетян Мартик Аршалуйсович, доктор технических наук, профессор кафедры «Техническая эксплуатация технологических машин и оборудования природообустройства» ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева; 127550, г. Москва, ул. Тимирязевская, д. 19; e-mail: karapetyan.martik@yandex.ru

S.R. SIREKANYAN

National agrarian university of Armenia, Yerevan, Republic of Armenia

M.A. KARAPETYAN

Federal state budgetary educational institution of higher education «Russian state agrarian university MAA named after C.A. Timiryazev", Russia, Moscow

INFLUENCE OF THE TRANSVERSAL FORCE OF THE CENTER LOCATION OF THE OF THE CRAWLER TRACTOR TURN AT ITS SMOOTH TURN

The problem of determining the coordinates of the rotation center is considered when the crawler tractor turns smoothly (the lagging trailer is turned off but not braked) in the horizontal section, without hook loading. The coordinates of the center of the tractor rotation are determined from the criterion of the tractor agility (the condition for the necessity of the turning criterion - the minimum of the general moment of resistance; the condition of sufficiency of the turning criterion - the center of rotation can be a point relative to which the moments of the passive forces of resistance, both in the transverse and longitudinal direction, should be equal. According to the investigation results the following conclusion is made. The active transverse force affecting the tractor leads to redistribution of normal loadings on crawler supporting surface, it displaces the center of pressure, it is balanced by passive cross forces in the middle part of the crawler supporting surface on the length $2 x_{o}$,, reduces a drag torque of passive forces and promotes or prevents from the tractor turning movement depending on its rotation direction, and the center of rotation is the center of pressure which meets the requirements of the tractor turning criteria.

Crawler tractor, smooth turning movement, center of pressure, center of rotation, turning drag torque.

Information about the authors

Sirekanyan Samvel Rafikovich, candidate of technical sciences, associate professor of the chair «Automobiles and tractors», National agrarian university of Armenia; 0009, Republic of Armenia, Yerevan, ul. Teryana, 74; e-mail: samsir1@rambler.ru

The material was received at the editorial office
Karapetyan Martik Arshaluisovich, doctor of technical sciences, professor of the chair «Technical operation of technological machinery and equipment of environmental engineering» FSBEI HE RGAU-MAA named afte C.A. Timiryazev; 127550, Moscow, ul. Timiryazevskaya, d. 19; e-mail: karapetyan.martik@yandex.ru

