реках Кубы, затем на реках России: на экспериментальных водосборах Подмосковной, Нижнедевицкой и Приморской стоковых станций. Результаты использования модели для вычисления водно-балансовых составляющих на реках России приведены в таблице. Для примера сопоставим вычисленные по линейно-корреляционной модели и наблюдаемые на водно-балансовых станциях значения, например инфильтрации.

Как следует из приведенных данных, средняя ошибка вычисления инфильтрации по линейно-корреляционной модели составляет 15 %. Это удовлетворительный результат.

Материал поступил в редакцию 15.02.11. **Нофин Зиновий Константинович**, кандидат географических наук, доцент кафедры «Комплексное использование и охрана природных ресурсов» E-mail: pirit35@yandex.ru

УДК 502/504:532.542

А. И. ЕСИН

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Саратовский государственный аграрный университет имени Н.И. Вавилова»

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАБОТЫ ВОДОСБРОСНОГО СООРУЖЕНИЯ ПО СХЕМЕ ИСТЕЧЕНИЯ ИЗ-ПОД ЩИТА

Исследуется пропускная способность водосбросного сооружения Варфоломеевского гидроузла, работающего по схеме истечения из-под плоского вертикального щита. При значительном относительном открытии щита схема истечения трансформируется в схему истечения через водослив с широким порогом. Проведено математическое моделирование пропускной способности водосбросного сооружения.

Пропускная способность, водосбросное сооружение, Варфоломеевский гидроузел, математическое моделирование пропускной способности водосбросного сооружения.

There is investigated a spillway capacity of the Varfolomeevskij hydraulic unit which operates according to the scheme of water outflow from under a flat vertical gate. Under a significant gate opening the outflow scheme is transformed into a scheme of outflow through a flat-crested weir. Mathematical simulation of the spillway capacity was carried out.

Capacity, spillway. weir, Varfolomeevskij hydraulic unit, mathematical simulation of the spillway capacity.

Отверстия водопропускных и водосбросных сооружений обычно перекрывают затворами (плоскими одиночными или сдвоенными, вертикальными или наклонными и др.). Поднимая затворы на определенную высоту, через отверстие можно пропускать необходимые объемы воды. Отверстия, которые перекрывают затворами, обычно имеют прямоугольное сечение [1]. Водосбросное сооружение Варфоломеевского гидроузла работает по схеме истечения из-под плоского вертикального щита (рис. 1).

Анализ гидравлических параметров сооружения показал, что сопряжение быефов происходит в донном режиме по типу отогнанного гидравлического прыжка, т.е. при свободном истечении (см. рис. 1а).

№ 5' 2011 83

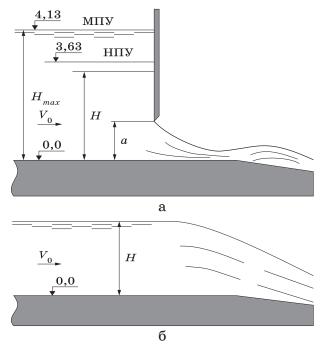


Рис. 1. Схема водосброса Варфоломеевского водохранилища: а — частичное открытие затвора; б — полное открытие затвора

Как известно, расход при свободном истечении из-под затвора находится по следующей зависимости [1]:

 $Q = \mu ab\sqrt{2g(H_0 - \epsilon a)}$, (1) где μ – коэффициент расхода; b = 2.5 м – ширина отверстия; H_0 – полный напор перед отверстием; ϵ – коэффициент вертикального сжатия; μ = $\phi \epsilon$;

 $\phi = 0.95$ — коэффициент скорости.

Значения коэффициента скорости принимаются по экспериментальным данным. Например, для затворов, установленных над широким порогом, коэффициент скорости $\phi = 0.85...0.95$ [1].

Коэффициент вертикального сжатия, по Н. Е. Жуковскому, находится из табл. 1 [1].

Таблица 1

a/H	0,10	0,15	0,20	0,25	0,30
3	0,615	0,618	0,620	0,622	0,625
a/H	0,35	0,40	0,45	0,50	0,55
3	0,628	0,630	0,638	0,645	0,650
a/H	0,60	0,65	0,70	0,78	
3	0,660	0,675	0,690	0,705	

Значения коэффициента вертикального сжатия для автоматизации вычисле-

Таблица 2 Пропускная способность водосброса ($b=2.5\ \mathrm{m}$) *

Н, м	а, м									
$ \Pi, M $	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0	0	0	0	0	0	0	0	0	0	0
0,13	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972
0,23	0,273	0,464	0,464	0,464	0,464	0,464	0,464	0,464	0,464	0,464
0,33	0,340	0,622	0,798	0,798	0,798	0,798	0,798	0,798	0,798	0,798
0,43	0,397	0,741	1,032	1,186	1,186	1,186	1,186	1,186	1,186	1,186
0,53	0,446	0,844	1,198	1,624	1,624	1,624	1,624	1,624	1,624	1,624
0,63	0,490	0,936	1,341	1,704	2,104	2,104	2,104	2,104	2,104	2,104
0,73	0,531	1,021	1,471	1,884	2,252	2,625	2,625	2,625	2,625	2,625
0,83	0,569	1,100	1,591	2,048	2,471	2,836	3,182	3,182	3,182	3,182
0,93	0,604	1,173	1,704	2,201	2,667	3,095	3,774	3,774	3,774	3,774
1,03	0,637	1,242	1,810	2,345	2,849	3,323	3,753	4,399	4,399	4,399
1,13	0,669	1,307	1,911	2,481	3,022	3,534	4,014	4,441	5,055	5,055
1,23	0,699	1,369	2,006	2,611	3,186	3,734	4,254	4,737	5,157	5,740
1,33	0,728	1,428	2,098	2,735	3,343	3,924	4,480	5,006	5,489	6,454
1,43	0,756	1,485	2,185	2,854	3,494	4,107	4,695	5,257	5,787	6,268
1,53	0,782	1,540	2,269	2,968	3,638	4,282	4,901	5,496	6,065	6,597
1,63	0,808	1,593	2,350	3,078	3,778	4,451	5,100	5,726	6,328	6,901
1,73	0,833	1,644	2,428	3,184	3,913	4,615	5,293	5,948	6,580	7,188
1,83	0,858	1,693	2,504	3,287	4,043	4,773	5,479	6,162	6,824	7,462
1,93	0,881	1,741	2,577	3,387	4,170	4,927	5,660	6,370	7,060	7,727
2,03	0,904	1,788	2,649	3,483	4,292	5,076	5,836	6,573	7,288	7,984
2,13	0,927	1,834	2,718	3,578	4,412	5,221	6,007	6,770	7,511	8,233
2,23	0,949	1,878	2,786	3,669	4,528	5,363	6,173	6,961	7,728	8,475
2,33	0,970	1,922	2,852	3,759	4,642	5,500	6,336	7,148	7,940	8,712
2,43	0,991	1,964	2,916	3,846	4,752	5,635	6,494	7,331	8,147	8,943
2,53	1,012	2,006	2,980	3,931	4,860	5,766	6,649	7,510	8,349	9,169
2,63	1,032	2,046	3,041	4,015	4,966	5,894	6,800	7,684	8,547	9,390
2,73	1,051	2,086	3,102	4,097	5,070	6,020	6,948	7,855	8,741	9,606
2,83	1,071	2,125	3,161	4,177	5,171	6,143	7,093	8,022	8,930	9,818
2,93	1,090	2,164	3,220	4,255	5,270	6,264	7,236	8,186	9,116	10,026
3,03	1,108	2,201	3,277	4,332	5,368	6,382	7,375	8,347	9,298	10,230
3,13	1,127	2,238	3,333	4,408	5,464	6,498	7,512	8,505	9,478	10,431
3,23	1,145	2,275	3,388	4,483	5,558	6,612	7,646	8,660	9,653	10,627
3,33	1,163	2,311	3,442	4,556	5,650	6,724	7,778	8,812	9,826	10,821
3,43	1,180	2,346	3,496	4,628	5,741	6,835	7,908	8,962	9,996	11,011
3,53	1,198	2,381	3,549	4,699	5,831	6,943	8,036	9,109	10,163	11,197
3,63	1,214	2,415	3,601	4,769	5,919	7,050	8,162	9,254	10,327	11,381
3,73	1,231	2,449	3,652	4,838	6,006	7,155	8,285	9,397	10,489	11,562
3,83	1,248	2,482	3,702	4,905	6,091	7,258	8,407	9,537	10,648	11,741
3,93	1,264	2,515	3,752	4,972	6,175	7,361	8,528	9,676	10,805	11,916
4,03	1,280	2,548	3,801	5,038	6,259	7,461	8,646	9,812	10,960	12,090
4,13	1,296	2,580	3,849	5,103	6,341	7,561	8,763	9,947	11,113	12,260

*Выделенные значения соответствуют полному поднятию затвора.

ний записаны аналитически с помощью регрессионного полинома третьей степени (из табл. 1) [3]:

$$\varepsilon = 0.609 + 0.0822(a/H) -$$

$$-0.204(a/H)^2 + 0.375(a/H)^3$$
. (2)

Поскольку площадь живого сечения верхнего бьефа значительно превосходит площадь отверстия, то скоростным напором можно пренебречь и считать $H_0 = H$.

При относительном открытии затвора a/H > 0.75, согласно выводам А. И. Богомолова и К. А. Михайлова [1], схема истечения из-под щита трансформируется в схему истечения через неподтопленный водослив с широким порогом при нулевой высоте порога, а расход находится из основного уравнения водосливов (см. рис. 16) [2]:

$$Q = mb\sqrt{2gH_0^{3/2}}$$
, где m = 0,38 – коэффициент расхода. (3)

С математической моделью (1)...(3) была проведена серия вычислительных

экспериментов с целью исследования пропускной способности водосбросного сооружения. Часть результататов вычислительных экспериментов представлена в табл. 2 и на рисунках 2, 3. В таблице затемненные значения соответствуют полному открытию затвора, т. е. истечению через водослив с широким порогом.

На рисунках 2, 3 полному открытию затвора соответствует огибающая на рис. 2 и вертикальные линии, лежащие выше кривой *BB*, на рис. 3.

Выводы

Исследование пропускной способности правобережного водосбросного сооружения Варфоломеевского гидроузла показало, что одно отверстие $(b=2,5\,\mathrm{m})$ способно пропустить максимально возможный расход около $35\,\mathrm{m}^3/\mathrm{c}$ при полностью открытом затворе и максимальном напоре $H=4,13\,\mathrm{m}$. Во всех остальных случаях пропускная способность будет меньше (см. табл. 2).

Продолжение таблицы 2

H,	а, м										
, M	1.2	1.4	1.6	1,8	2.0	2.2	2.4	2.6	2.8	3.0	3.1
0	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó
0,13	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972	0,1972
0,23	0,464	0,464	0,464	0,464	0,464	0,464	0,464	0,464	0,464	0,464	0,464
0,33	0,798	0,798	0,798	0,798	0,798	0,798	0,798	0,798	0,798	0,798	0,798
0,43	1,186	1,186	1,186	1,186	1,186	1,186	1,186	1,186	1,186	1,186	1,186
0,53	1,624	1,624	1,624	1,624	1,624	1,624	1,624	1,624	1,624	1,624	1,624
0,63	2,104	2,104	2,104	2,104	2,104	2,104	2,104	2,104	2,104	2,104	2,104
0,73	2,625	2,625	2,625	2,625	2,625	2,625	2,625	2,625	2,625	2,625	2,625
0,83	3,182	3,182	3,182	3,182	3,182	3,182	3,182	3,182	3,182	3,182	3,182
0,93	3,774	3,774	3,774	3,774	3,774	3,774	3,774	3,774	3,774	3,774	3,774
1,03	4,399	4,399	4,399	4,399	4,399	4,399	4,399	4,399	4,399	4,399	4,399
1,13	5,055	5,055	5,055	5,055	5,055	5,055	5,055	5,055	5,055	5,055	5,055
1,23	5,740	5,740	5,740	5,740	5,740	5,740	5,740	5,740	5,740	5,740	5,740
1,33	6,454	6,454	6,454	6,454	6,454	6,454	6,454	6,454	6,454	6,454	6,454
1,43	7,196	7,196	7,196	7,196	7,196	7,196	7,196	7,196	7,196	7,196	7,196
1,53	7,964	7,964	7,964	7,964	7,964	7,964	7,964	7,964	7,964	7,964	7,964
1,63	7,899	8,757	8,757	8,757	8,757	8,757	8,757	8,757	8,757	8,757	8,757
1,73	8,292	9,575	9,575	9,575	9,575	9,575	9,575	9,575	9,575	9,575	9,575
1,83	8,651	10,417	10,417	10,417	10,417	10,417	10,417	10,417	10,417	10,417	10,417
1,93	8,987	10,079	11,283	11,283	11,283	11,283	11,283	11,283	11,283	11,283	11,283
2,03	9,306	10,496	12,171	12,171	12,171	12,171	12,171	12,171	12,171	12,171	12,171
2,13	9,613	10,883	13,081	13,081	13,081	13,081	13,081	13,081	13,081	13,081	13,081
2,23	9,910	11,248	12,426	14,013	14,013	14,013	14,013	14,013	14,013	14,013	14,013
2,33	10,198	11,597	12,867	14,966	14,966	14,966	14,966	14,966	14,966	14,966	14,966
2,43	10,478	$\frac{11,933}{12,259}$	13,279	14,434	15,940	15,940	15,940 $16,934$	15,940	15,940	15,940	15,940
2,53	10,752		13,672 14,048	14,930	$16,934 \\ 17,948$	16,934 $17,948$	17,948	16,934	16,934	16,934	16,934
$\frac{2,63}{2,73}$	11,020 11,282	$\frac{12,577}{12,886}$	14,412	15,392 $15,829$	17,948 $17,066$	18,981	18,981	17,948 18,981	17,948 18,981	17,948 18,981	17,948 18,981
2,83	11,539	13,189	14,765	16,247	17,581	20,033	20,033	20,033	20,033	20,033	20,033
$\frac{2,83}{2,93}$	11,791	13,486	15,110	16,649	18,064	21,104	21,104	21,104	21,104	20,033 $21,104$	21,104
$\frac{2,93}{3,03}$	12,038	13,777	15,447	17,039	18,525	19,839	22,194	22,194	21,104 $22,194$	22,194	22,194
3,13	12,281	14,062	15,777	17,418	18,966	20,371	23,302	23,302	23,302	23,302	23,302
3,23	12,520	14,343	16,100	17,789	19,393	20,875	22,162	24,427	24,427	24,427	24,427
3,33	12,754	14,619	16,418	18,151	19,807	21,357	22,744	25,570	25,570	25,570	25,570
3,43	12,785	14,890	16,730	18,507	20,211	21,822	23,294	26,731	26,731	26,731	26,731
3,53	13,212	15,157	17,038	18,856	20,606	22,272	23,818	25,180	27,908	27,908	27,908
3,63	13,435	15,420	17,340	19,199	20,993	22,710	24,322	25,777	29,103	29,103	29,103
3,73	13,655	15,678	17,638	19,536	21,372	23,137	24,808	26,344	30,314	30,314	30,314
3,83	13,871	15,933	17,931	19,869	21,745	23,555	25,280	26,888	28,321	31,541	31,541
3,93	14,085	16,185	18,221	20,196	22,112	23,965	25,740	27,411	28,933	32,784	32,784
4,03	14,295	16,432	18,506	20,519	22,474	24,368	26,189	27,918	29,517	30,922	34,043
4,13	14,503	16,677	18,787	20,838	22,830	24,763	26,629	28,412	30,079	31,579	35,318
_,	,	-,	- ,	.,					,	, - ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

№ 5' 2011 85

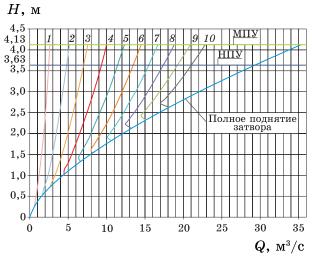


Рис. 2. Кривые пропускной способности водосброса. Высота поднятия затвора: 1-0.2 м; 2-0.4 м; 3-0.6 м; 4-0.8 м; 5-1.0 м; 6-1.2 м; 7-1.4 м; 8-1.6 м; 9-1.8 м; 10-2.0 м

Реальная пропускная способность сооружения будет еще меньше, поскольку в математической модели не учтено техническое состояние подводящей части сооружения, самих отверстий, щитов и уплотняющих элементов.

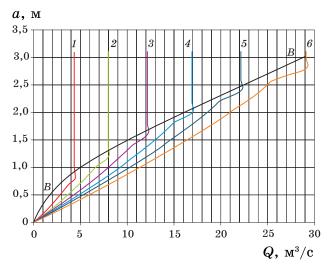


Рис. 3. Кривые пропускной способности водосброса при H = const: 1 - H = 1,03 м; 2 - H = 1,53 м; 3 - H = 2,03 м; 4 - H = 2,53 м; 5 - H = 3,03 м; 1 - H = 3,63 м

3. Есин А. И. Гидравлические расчеты на ПЭВМ: учебное пособие. – Саратов: ГОУ ВПО «Саратовский государственный технический университет», 1993. – 132 с.

Материал поступил в редакцию 05.04.10. Есин Александр Иванович, доктор технических наук, профессор, зав. кафедрой «Гидравлика и гидравлические машины» Тел. 8 (8452) 73-62-68

E-mail: esin@sgau.ru,esinai@ya.ru

Nº 5' 2011

^{1.} **Штеренлихт** Д. В. Гидравлика: учебник для вузов. – М.: КолосС, 2004. – 656 с.

^{2.} **Чугаев Р. Р.** Гидравлика: учебник для вузов. — Л.: Энергоиздат, 1982. — 672 с.