of Agricultural Research. - 2020. - V. 7(1). - Pp. 276-286.

- 3. Jabri A. M. Using of Spectral Indexes in the Study of Sabkhat al Jabbul and its Changes, .- Damascus University, Master thesis. 2014. 47 p.
- 4. Ibraheem H. Soil Salinity Mapping Using Remote Sensed Technique and Geographic Information System in a Particular Area in AL Raqqa. Master thesis. 2015. 102 p.
- 5. Касьянов, А. Е. Установка для физического моделирования промывки засоленных почв [Текст] / А. Е. Касьянов, Х. Исмаил // Природообустройство. 2021. N 2. C. 31-35.

УДК 626-335.3

СПОСОБЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ГАШЕНИЯ ЭНЕРГИИ В НИЖНЕМ БЬЕФЕ

Каньяругендо Леонидас, аспирант кафедры гидротехнических сооружений, ФГБОУ ВО РГАУ - MCXA имени К.А. Тимирязева, kany.l@mail.ru

Гурьев Алим Петрович, д.т.н., профессор кафедры инженерных конструкций ФГБОУ ВО РГАУ - MCXA имени К.А. Тимирязева, alim_guryev@mail.ru

Ханов Нартмир Владимирович, д.т.н., профессор, заведующий кафедрой гидротехнических сооружений ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева, khanov@rgau-msha.ru

Аннотация: В статье оценивается эффективность искусственной шероховатости в качестве гасителя энергии потока на сливной грани бетонного водослива. Изложен сравнительный анализ эффекта различных видов ребристых элементов сопротивления.

Ключевые слова: Водослив, искусственная шероховатость, гашение энергии.

Гашение энергии потока на гидросооружениях - одна из часто встречаемых задач в гидротехнике. Энергогасящие сооружения в плотиностроении часто состоят из водобойных колодцев и стенок, а применение искусственной шероховатости получило лидерство в быстротоках. Оба способа гашения кинетической энергии потока за долгое время доказали неоспоримую эффективность, каждый в своей области применения.

Цель данной работы — обосновать гипотезы совместной работы искусственной шероховатости на водосливной грани бетонных плотин низкого и среднего напора с традиционными методами гашения энергии потока в нижнем бьефе. Для этого привязываем предварительные расчеты к физической модели, на которой запланированы эксперименты в лаборатории водопропускных сооружений кафедры гидротехнических сооружений РГАУ-МСХА имени К.А. Тимирязева.

В ряде случаев при возведении водосливных плотин происходит отклонение её параметров от проектных значений, в результате чего условия гашения энергии в нижнем бъефе сбрасываемого холостого расхода создают условия, недопустимые с точки зрения безопасности сооружений гидроузла или объектов промышленно-гражданского назначения, расположенных вблизи гидроузла. Такая ситуация возникла в зоне водосбросных сооружений Жигулёвской ГЭС.

Другим обстоятельством, приводящим к такой ситуации, является неучёт в проекте ускоренной местных и общих деформаций русла в нижнем бьефе гидроузла, которые происходит после возведения его сооружений и приводят к понижению уровней воды по сравнению с расчётными проектными значениями.

Защитой от негативных последствий таких решений может быть создание искусственной шероховатости на сливной поверхности плотины, которая вызывает повышение величины глубины потока в сжатом сечении и соответствующее уменьшение потребной глубины воды на водобое, которое позволяет компенсировать ошибки строительства и проектирования водосбросных сооружений гидроузла.

В качестве расчётного сооружения была принята модель водосброса №2 Богучанской ГЭС, на одном из пролётов которого было принято решение исследовать в лабораторных условиях влияние искусственной шероховатости на условия гашения энергии потока.

Модель водосброса выполнена из оргстекла, высота модели от уровня нижнего бьефа до гребня составляет 70 см, с лотком прямоугольного сечения постоянной ширины 20,4см. В концевой части модели, в месте носка трамплина, установлена регулируемая по высоте подпорная стенка, а на сливной грани – элементы сопротивления. Коэффициент расхода исследуемого пролёта модели составляет m=0,44.

Предварительно были выполнены теоретические расчёты влияния искусственной шероховатости на изменение параметров потока в сжатом сечении

Искусственная шероховатость широко изучена на быстротоках, а также при креплении нижнего бъефа гидросооружений [1]. В аналитических расчетах будем придерживаться уже установленных закономерностей и утверждений.

О. М. Айвазян предложил общий способ гидравлического расчета отрытых русел с донной ребристой шероховатостью при условии постоянной глубины вдоль водоската (условно равномерное движение: I=i). Условие I=i выполняется при $\frac{h}{\Lambda} \ge 3$. При этом, он пришел к выводу, что коэффициент Дарси можно выразить эмпирической зависимостью:

$$\lambda = M + 2i^2 - Ni \cdot lgi \cdot \left(\frac{\Delta}{h} \cdot \frac{b}{\chi} \cdot \frac{1}{\sqrt{\Pi_{K}}}\right)$$
 (1)

где:

M и N – числовые параметры, зависящие от типа усиленной шероховатости;

i — уклон дна водоската;

 Δ – высота ребер шероховатости;

h – глубина потока над ребром;

b – ширина водоската по дну;

 χ — смоченный периметр; $\frac{b}{\chi}$ — учитывает роль ребристой шероховатости во всем смоченном периметре;

 Π_{κ} —параметр кинетичности.

Общий вид потерь напора по длине имеет вид:

$$h_{\rm дл} = \frac{\lambda L}{4R} \cdot \frac{v^2}{2g} \tag{2}$$

откуда следует

$$\lambda = \frac{8gR}{v^2} \cdot \frac{h_{\text{дл}}}{L} \to \lambda = \frac{8gRi}{v^2} \tag{3}$$

R – гидравлический радиус.

Принимая движение потока на водоскате с ребристой шероховатостью близким к равномерному ($\lambda = \frac{8gi}{o^2} \cdot \frac{\omega^3}{\chi}$), уравнение (3) можно привести к следующему виду:

$$\lambda = \frac{8gRi}{v^2} = \frac{8gi}{^2} \cdot \frac{\omega^3}{\chi} \tag{4}$$

Приравнивая уравнения (1) и (4) получим:

$$\Delta = \frac{\frac{8g}{2} \cdot -\frac{M+2i^2}{i}}{-lai} \cdot h \cdot \frac{\chi}{b} \sqrt{\Pi_{K}}$$
 (5)

или

$$\frac{\omega^3}{\chi} + \frac{2}{8g}bN\Delta \cdot lgi \cdot \frac{1}{h\chi\sqrt{\Pi_K}} = \frac{2}{8g} \cdot \frac{M + 2i^2}{i}$$
 (6)

Заменяя $\sqrt{\Pi_{\rm K}}$ на его значение $\frac{q}{\sqrt{g} \cdot h \cdot \sqrt{h}}$, уравнение (6) становится:

$$\frac{h^3}{\chi} + \frac{1}{8\sqrt{g}}qN\Delta \cdot lgi \cdot \frac{\sqrt{h}}{\chi} = \frac{1}{8g} \cdot \frac{q^2}{b} \cdot \frac{M+2i^2}{i}$$
 (7)

Следует также отметить, что приведенные выше формулы применимы при соблюдении условия $\delta \approx 7 \dots 8\Delta$, где δ — расстояние между двумя рядами ребер шероховатости высотой Δ , [2].

Эффективность гашения энергии искусственной шероховатостью проверяем методом О. М. Айвазяна при разных напорах на модели от H=2,5см до H=15см. Это соответствует расходу Q от 0,00157 м 3 /с до 0,02309м 3 /с, и удельному расходу q от 0,0077 м 2 /с до 0,1132м 2 /с.

Будем рассматривать пять типов элементов шероховатости:

- 1- Нормальные ребра;
- 2- Зигзагообразные ребра с одним изломом против течения;
- 3- Нормальные ребра в разбежку;
- 4- Зигзагообразные ребра с двумя изломами по течению;
- 5- Зигзагообразные ребра с двумя изломами против течения.

Для таких же условий выполняем расчет сопряжения бьефов без элементов сопротивления. Полученные результаты сводим в таблицу 1.

По таблице 1 строим графики зависимости глубины над выступами шероховатости и высоты самих выступов от удельного расхода (рисунок 1).

Определение нужной высоты выступа элементов шероховатости

Напор	Удельный	Сжатая	h с учетом	Требуемая высота выступа				
Н, м	расход q,	глубина h	элементов	элементов шероховатости каждого				
	M^2/c	гладкой	шерохова-	типа, м				
		поверхности,	тости,	$\Delta 1$	$\Delta 2$	Δ3	$\Delta 4$	Δ5
		M	M					
0,025	0,0077	0,00227	0,0115	0,003	0,003	0,002	0,002	0,002
0,05	0,02179	0,00634	0,0235	0,005	0,004	0,003	0,003	0,003
0,075	0,04003	0,0115	0,0365	0,009	0,008	0,006	0,005	0,005
0,10	0,06163	0,0175	0,0505	0,015	0,013	0,010	0,009	0,008
0,125	0,08613	0,0241	0,065	0,020	0,017	0,013	0,012	0,011
0,15	0,11322	0,0314	0,080	0,023	0,020	0,014	0,014	0,013

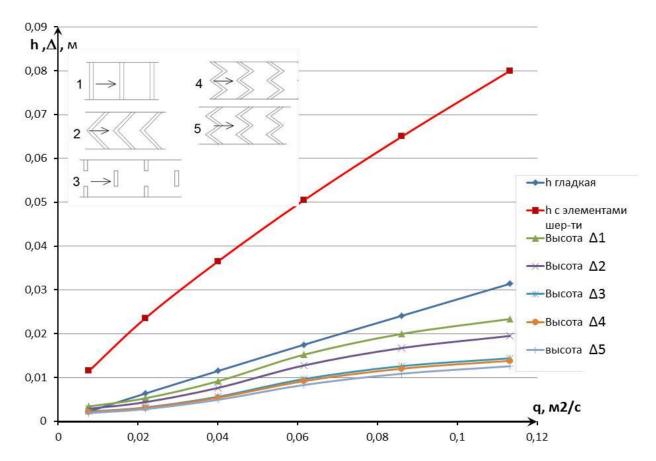


Рис. 1. Зависимость глубины h и высоты выступа Δ от удельного расхода и типа шероховатости

Выводы

- Эффективность ребристых элементов шероховатости на сливной грани заключается в повышении сжатой глубины потока. В лабораторных условиях, при одном и то же удельном расходе, это приводит к снижению высоты подпорной стенки, что эквивалентно уменьшению глубины водобойного колодца.
- Можно управлять режимом сопряжения потоков в нижнем бьефе гидроузла за счет применения элементов искусственной шероховатости на сливной поверхности водослива.

- Изученные элементы шероховатости можно классифицировать по степени эффективности гашения энергии, более эффективен тип 5, далее тип 4, тип 3, тип 2 и наконец тип 1.
- Первые три типа шероховатости (5, 4 и 3) очень близки по эффективности. Фактором, влияющим на выбор одного из них, может служить производительность строительных работ и расход материалов.
- Используемые формулы в расчетах элементов усиления шероховатости широко изучены при уклоне до 0.6, что меньше уклона сливной грани рассмотренной модели ($i_{\text{модели}} = 0.76$). Полученные результаты следует экспериментально подтверждать в лабораторных условиях.

Библиографический список

- 1. Ханов, Н. В. Рекомендации по проектированию и строительству креплений нижнего бьефа трубчатых водовыпусков с гасителями ударного действия [Текст] / Н. В. Ханов, А. Г. Журавлёва, Мвуйскуре Жан Клод // Природообустройство. 2017. № 4. С. 27-34.
- 2. Богославчик, П. М. Проектирование и расчеты гидротехнических сооружений: учеб. Пособие [Текст] / П. М. Богославчик, Г. Г. Круглов. Минск. «Вышэйшая школа», 2018. 366 с.

УДК 631.1

КАДАСТРОВЫЕ РАБОТЫ НА ПРИМЕРЕ ЗЕМЕЛЬНОГО УЧАСТКА ВЫДЕЛЕННОГО ПОД РЕКОНСТРУКЦИЮ И СТРОИТЕЛЬСТВО УЧАСТКА АВТОМОБИЛЬНОЙ ДОРОГИ М-5 УРАЛ

Зотова Наталья Александровна, к.с.-х.н., доцент, БашГАУ **Макарова Ульяна Александровна,** студентка 4 курса направления «Земельный кадастр», БашГАУ, uliana.makarova28041999@yandex.ru

Аннотация: В данной статье рассматриваются кадастровые работы в связи с образованием земельного участка путем раздела под строительство и реконструкцию участка автомобильной дороги M-5 Урал. Составляется смета на выполнение кадастровых работ на основании Приказа Минэкономразвития $P\Phi$ от 18.01.2012 г. N 14.

Ключевые слова: кадастровые работы, раздел земельного участка, кадастровый инженер, смета на выполнение кадастровых работ, технологическая схема.

Актуальность выбранной темы выражается в том, что для каждого объекта недвижимости необходима информация, о местоположении его границ и площади, а также кадастровые работы, которые проводились для их определения.

Объектом исследования является земельный участок, отводимый под реконструкцию и строительство участка автомобильной дороги М-5 «Урал» - от Москвы через Рязань, Пензу, Самару, Уфу до Челябинска.