гидравлика): методические указания к выполнению практических занятий [Текст] / В. И. Шошин, А. В. Прутской. - Брянск: БГИТА, 2011. - 26 с.

УДК 628.16

СОВРЕМЕННЫЕ МЕТОДЫ ОЧИСТКИ ПОДЗЕМНЫХ ВОД В УСЛОВИЯХ СИРИИ

Исмаил Хуссейн Абд Алкарим, магистрант кафедры сельскохозяйственного водоснабжения, обводнения и водоотведения ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева

Назарккин Эдуард Евгеньевич, старший преподаватель кафедры сельскохозяйственного водоснабжения, обводнения и водоотведения ФГБОУ ВО РГАУ - MCXA имени К.А. Тимирязева, nazarkine@rgau-msha.ru

Аннотация: Большая часть питьевой воды в Сирии поступает из подземных вод, колодцев и родников. Одним из наиболее распространенных элементов в подземных водах является железо, которое приводит к красноватому цвету воды и нежелательному вкусу и запаху. Для снижения концентрации железа в воде, направляемой потребителям до допустимых пределов требований СанПина в Сирии была запроектирована станция обезжелезивания.

Ключевые слова: обезжелезивание, питьевая вода, подземные воды, Сирия.

Введение: Обеспечение населения водой в достаточном количестве и хорошего качества имеет большое социальное и санитарное значение и защищает людей и животных от эпидемических заболеваний, распространяемых через воду. Подземные воды, как источник снабжения питьевой водой по сравнению с поверхностными водами имеют ряд особенностей, они защищены от загрязнения и лучше с точки зрения качества и поэтому не требуют очистных сооружений с высокой стоимостью. Состав воды, которую мы пьем, очень разнообразен и сложен, каждый компонент по-разному влияет на наше здоровье, когда он увеличивается или уменьшается от нормы. Например, наличие железа в высоких концентрациях в питьевой воде может со временем привести к заболеваниям крови и аллергическим реакциям [1,2]. Содержание железа в воде водоносного горизонта деревне Димас составляет около 1,4 мг / л, что не соответствует требованиям СанПиН в Сирии. В данном исследовании обезжелезивание осуществлялось путем аэрофильтрации.

Материалы и методы исследования:

Для проведения исследований была запроектирована станция обезжелезивания на территории деревни Димас в Сирийской Арабской Республике.

Блок аэрофильтрации представляет собой емкость, заполненную слоем гравия крупностью 20 мм высотой 4 м, загруженную на ложное дно из армированной сетки, а также слой гравия и щебня крупностью 3 мм высотой 1 м, загружается в междонное пространство.

Суть метода заключается в том, что вода фильтруется через незатопленный керамзитовый гравий, загружаемый в фильтр, при одновременной подаче воздуха

противотоком и последующей фильтрации через заливной слой гравия с размером зерен 3 мм. В результате физико-химических и биологических процессов двухвалентное железо адсорбируется на зернах керамзита или гравия, двухвалентное железо окисляется и образуется осадок оксидов железа (ферригидрит $2,5Fe_2O_3*4,5H_2O$), влажность около 75%.

Суммарную площадь фильтров определяем по формуле:

$$F = Q / (T_{CT} \cdot V_H - n_{np} \cdot q_{np} - n_{np} \cdot m_{np} \cdot V_H), \, M^2$$

$$\tag{1}$$

где Q — полезная производительность станции, м 3 /сут;

 T_{cm} – продолжительность работы станции в течении суток, ч;

 V_H – расчетная скорость фильтрования при нормальном режиме, м/ч;

 n_{np} — число промывок одного фильтра за сутки при нормальном режиме эксплуатации;

 q_{np} – удельный расход воды на одну промывку, м $^3/\text{м}^2$

Tnp – время простоя фильтра в связи с промывкой, ч.

Результаты исследований:

Испытания проводились по 10 раз для каждого значения. При каждом испытании записывались показания значений качества воды до и после очистки.

По итогам проведенных испытаний были получены следующие данные, приведенные в таблице 1.

Таблица 1 Анализ проб воды, отобранных из скважин до и после очистки

Наименование показателей	Единицы измерения	Нормы СанПиН	Среднее значение измерения до очистки	Среднее значение измерения после очистки
1	2	3	4	5
Мутность	мг/л	5	3,3	2
Цветность	Град	15	7,5	6
рН	ед. рН	6,5-9	8,5	9
Железо	мг/л	0,3	1,4	0,2

Результаты исследования показывают уменшение концентрации железа в воде до 0,2 мг/л, что подтверждает высокую эффективность запроектированной установки обезжелезивания в деревне Димас в Сирии.

Библиографический список

- 1. Исмаил, Х. А. А. Удаление железа в воде при помощи аэрации [Текст] / Х. А. А. Исмаил, Э. Е.Назаркин, Д. А. Беда // Естественные и технические науки. 2020. № 12. С. 245-247.
- 2. Квитка, Л. А. Очистные водопроводные сооружения: Методические указания [Текст] / Л. А. Квитка, Э. Е. Назаркин. М.: 2018. 96 с.
- 3. Anderson GJ, McLaren GD (eds) (2012) Iron physiology and pathophysiology in humans. Humana Press, New York