И последним важным критерий для конкурентоспособности продукта является его вкусовые качества. Подсчитав общую сумму баллов, наилучшим оказался номер 20 (опыт с концентрацией соли 20%). Мясо рыбы было в меру соленым и нежным.

В результате проведенного исследования можно сделать вывод, что по физико-химическим, микробиологическим и органолептическим показателем лучшим стал образец, засоленный в активированной воде с концентрацией соли 20%, он отвечают требованиям нормативно-технической документации по всем показателям.

Поэтому, самая оптимальная рецептура для производства копченой форели с использованием ЛСР в процессе приготовления тузлука, это 200 г. соли на 800 мл воды, вес замачиваемой рыбы 745 г.

Следовательно, использование данного метода обработки воды в пищевой промышленности, является перспективным направлением.

Библиографический список

- 1. Грикшас, С. А. Технология переработки мяса птицы и рыбы: учебное пособие [Текст] / С. А. Грикшас. М-во сельского хоз-ва Российской Федерации, Российский гос. аграрный ун-т МСХА имени К.А. Тимирязева. Москва: РГАУ-МСХА, 2016. 113 с.
- 2. Грикшас, С. А. Технология рыбы и гидробионтов: учебное пособие [Текст] / С. А. Грикшас, Ю. И. Есавкин, Е. В. Казакова. Российский государственный аграрный университет МСХА имени К. А. Тимирязева. Москва, 2018. 164 с.
- 3. Дунченко, Н. И. Научные основы управления качеством пищевых продуктов: учебник [Текст] / Н. И. Дунченко, В. С. Янковская. М.: Изд-во РГАУ МСХА имени К.А. Тимирязева, 2013. 287 с.
- 4. Кондратьева, О. Е. Очистка воды от загрязняющих веществ путем использования лавиностримерных разрядов [Текст] / О. Е. Кондратьева, И. В. Королев,. А. В. Кухно, Л. М. Макальский, О. М. Цеханович // Известия Самарского научного центра Российской академии наук. 2015. Т. 17. № 5-2. С. 673-678.
- 5. Макальский, Л. М. Очистка воды лавиностримерными разрядами [Текст] / Л. М. Макальский, О. М. Цеханович // НТК Международная конференция «Чистая вода». М.: Изд-во РХТУ им. Д.И.Менделеева, 2014. С. 18-20.

УДК 635.25; 635-18

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРИЁМОВ ВЫРАЩИВАНИЯ ЛУКА РЕПЧАТОГО В ОДНОЛЕТНЕЙ КУЛЬТУРЕ

Бебрис Артем Робертович, младший научный сотрудник лаборатории хранения отдела земледелия и агрохимии ВНИИО – филиал ФНЦО, bebris92@mail.ru

Масловский Сергей Александрович, к.с.-х.н., доцент кафедры технологии хранения и переработки плодовоовощной и растениеводческой продукции, ФГБОУ ВО РГАУ - MCXA имени К.А. Тимирязева, maslowskij@i.ua

Борисов Валерий Александрович, главный научный сотрудник отдела земледелия и агрохимии ВНИИО – филиал ФНЦО, valeri.borisov.39@mail.ru

Фильрозе Николай Айтжанович, научный сотрудник отдела земледелия и агрохимии ВНИИО – филиал ФНЦО, suburban_chevrolet@mail.ru

Васючков Игорь Юрьевич, ведущий научный сотрудник отдела земледелия и агрохимии ВНИИО – филиал ФНЦО, gamov_igor@mail.ru

Аннотация: Дана оценка экономической эффективности применения удобрений и регуляторов роста при выращивании новых гибридов лука в однолетней культуре на различных фонах применения удобрений в условиях Московской области.

Ключевые слова: лук репчатый, однолетняя культура, гибриды, удобрения, рентабельность.

Современное интенсивное овощеводство должно быть хорошо планируемым и управляемым, базироваться на применении систем удобрений, интегрированной защиты урожая от вредителей, болезней и сорняков. В Нечернозёмной зоне удельный вес удобрений в приросте урожая может достигать 60-75%. Для разработки сортовой агротехники важна комплексная оценка агрономической и экономической эффективности удобрений в конкретных почвенно-климатических условиях [1, 2, 4].

Агрономическая эффективность применения удобрений оценивается величиной прибавки урожая, улучшением качества продукции и других хозяйственно ценных показателей при сохранении почвенного плодородия. Анализ экономической эффективности применения удобрений позволяет определить оптимальные нормы их внесения для получения максимальной прибыли от реализации продукции [3].

На основании результатов исследований 2014-2016 годов рассчитана экономическая эффективность выращивания гибридов лука репчатого в однолетней культуре с применением удобрений и обработок регуляторами роста и микроудобрениями (таблица 1).

Максимальная рентабельность (114%) и прибыль (261 тыс. руб./га) при минимальной себестоимости продукции (4,2 тыс. руб./т) получена при возделывании позднеспелого гибрида Поиск 012 F₁ на варианте NPK + Циркон, что объясняется высокой стандартной урожайностью (54,5 т/га). Аналогичная ситуация со среднеспелым гибридом Первенец F₁: на варианте с обработкой Цирконом рентабельность составила 91%, прибыль 200 тыс. руб./га, себестоимость продукции 5,7 тыс. руб./т, стандартная урожайность 38,0 т/га. Минимальные показатели экономической эффективности выявлены при возделывании гибрида Беннито F₁. В сравнении с гибридом Первенец F₁, сказалось увеличение затрат на выращивание (приобретение импортных семян) и снижение стоимости продукции (позднеспелый, низкая цена реализации) наряду со средней урожайностью (32,2-43,4 т/га). На лучших вариантах с внекорневой обработкой Цирконом, раздельно и в комплексе с калийной селитрой и Тенсо Коктейлем рентабельность составила 38%, прибыль 103-107 тыс. руб./га, себестоимость продукции 6,5 тыс. руб./т.

Применение внекорневых обработок растений лука калийной селитрой, Цирконом и Тенсо Коктейлем на фоне основного внесения NPK увеличивало показатели экономической эффективности наряду со снижением себестоимости продукции в сравнении с вариантом $N_{90}P_{90}K_{90}$, что связано с увеличением стандартного урожая. Наиболее экономически эффективно выращивание гибрида Поиск $012\ F_1$. Лучшим агроприёмом выращивания является внекорневая обработка Цирконом на фоне NPK.

Экономическая эффективность выращивания гибридов лука репчатого в

однолетней культуре (2014-2010 годы)									
	Беннито \mathbf{F}_1			Поиск 012 F ₁			Первенец F ₁		
Вариант	себест оимост ь, тыс. руб./т	приб ыль, тыс. руб./ га	рента бельн ость, %	себес тоим ость, тыс. руб./т	приб ыль, тыс. руб./ га	рента бельн ость, %	себес тоим ость, тыс. руб./т	приб ыль, тыс. руб./ га	рента бельн ость, %
Без удобрений (к.)	7,6	46,0	18,9	4,3	223,1	109,2	5,9	169,6	87,2
$N_{90}P_{90}K_{90}$	7,2	64,6	24,5	4,6	212,2	95,8	7,2	109,6	52,6
NPK+KNO ₃	7,1	74,5	27,0	4,3	254,1	107,5	6,9	133,2	60,3
NPK+Циркон	6,5	103,2	38,2	4,2	261,3	114,0	5,7	200,2	91,9
NPK+Тенсо Коктейль	6,6	99,7	37,1	4,5	225,3	100,3	6,0	179,9	83,7
NPK+KNO ₃ +Циркон + Тенсо Коктейль	6,5	107,6	38,0	4,3	258,9	107,2	6,6	153,6	67,7
Среднее по опыту	6,9	82,6	30,6	4,4	239,2	105,7	6,4	157,7	73,9

В итоге, наиболее рентабельным было выращивание Поиск 012 F_1 (в среднем по опыту рентабельность 105%, прибыль 239 тыс. руб./га, себестоимость продукции 4,4 тыс. руб./т), что связано с его высокой продуктивностью, несколько менее — Первенец F_1 (рентабельность 73%, прибыль 157 тыс. руб./га, себестоимость продукции 6,4 тыс. руб./т). Минимальные экономические показатели у Беннито F_1 (рентабельность 30%, прибыль 82 тыс. руб./га, себестоимость продукции 6,9 тыс. руб./т). Наиболее эффективным приёмом выращивания являлось основное внесение $N_{90}P_{90}K_{90}$ с последующей обработкой растений Цирконом, а также комплекс $N_{90}P_{90}K_{90} + KNO_3 +$ Циркон + Тенсо Коктейль.

Библиографический список

- 1. Бебрис, А. Р. Действие удобрений и регуляторов роста на урожайность и качество гибридов лука репчатого [Текст] / В. А. Борисов, А. Н. Ховрин, А. Р. Бебрис, Н. А. Фильрозе, Г. Ф. Монахос // Овощи России. 2018. № 4. С. 89-93.
- 2. Борисов, В. А. Система удобрений овощных культур [Текст] / В. А. Борисов // М.: ФГБНУ «Росинформагротех». 2016. 394 с.
- 3. Лукин, А. С. Методология определения экономической эффективности применения минеральных удобрений [Текст] / А. С. Лукин, В. Б. Папырин // Вестник ОмГАУ. 2016. № 3 (23).
- 4. Сычев, В. Г. Прогноз плодородия почв Нечерноземной зоны в зависимости от уровня применения удобрений [Текст] / В. Г. Сычев, С. А. Шафран // Плодородие. 2019. № 2 (107).
- 5. Ховрин, А. Н. Производство и селекция лука репчатого в России [Текст] / А. Н. Ховрин, Г. Ф. Монахос // Картофель и овощи. 2014. № 7. С. 18-21.