УДК 574.5

ИССЛЕДОВАНИЕ РОДНИКОВ СЕЛЬСКИХ ПОСЕЛЕНИЙ БРЯНСКОЙ ОБЛАСТИ КАК ИСТОЧНИКОВ НЕЦЕНТРАЛИЗОВАННОГО ВОДОСНАБЖЕНИЯ

Соболева Ольга Александровна, аспирант кафедры географии, экологии и землеустройства ФГБОУ ВО БГУ имени академика И.Г. Петровского, OAsoboleva@bk.ru

Анищенко Лидия Николаевна, профессор кафедры географии, экологии и землеустройства БГУ имени академика И.Г. Петровского

Аннотация. Представлена сравнительная оценка во временной разрезе эколого-химических исследований вод родников, находящихся на территории сельских поселений Брянской области. Приоритетные загрязнители родниковой воды — нитрат-ионы и соли кальция и магния. Полученные результаты — дополнение и обновление базы данных родников Брянской области.

Ключевые слова: родники, нецентрализованные источники водоснабжения, сельские поселения, Брянская область.

национальной культуры России – широко Родники – элементы распространены в малых поселениях, где до сих пор сохранилось их утилитарное использование. Большая часть сельских зарегистрированными родниками в Брянской области ведёт интенсивное сельскохозяйственное производство с применением химических препаратов. Родниковая вода, используемая населением в хозяйственно-бытовом культово-религиозном аспекте, должна отвечать нормативным санитарногигиеническим требованиям, чтобы предотвратить кумулятивный эффект по отношению к поллютантам. В данной работе представлены результаты исследования эколого-химических показателей вод родников поселений Брянской области, окружённых сельскохозяйственными угодьями общего и частного производства. Работы по обследованию и паспортизации данных источников – часть общего проекта по благоустройству и мониторингу выходов подземных вод, который актуален и востребован в аграрном регионе Нечерноземья РФ.

Согласно [1], большая часть сельского населения использует в питьевых целях воду из нецентрализованных источников водоснабжения. В 2018 году в сельских поселениях не отвечали требованиям санитарных правил 11,9% колодцев. При этом, доля проб питьевой воды объектов нецентрализованного хозяйственно-питьевого водоснабжения, не отвечающих гигиеническим нормативам по санитарно-химическим показателям составляет 47,7%, по санитарно-биологическим — 43,3%. Отмечается, что основные причины неудовлетворительного качества питьевой воды: природное высокое содержание железа, стронция в питьевой воде; антропогенное загрязнение в

отдельных районах области незащищённых водоносных горизонтов нитратами; отсутствие зон санитарной охраны источников нецентрализованного водоснабжения или их ненадлежащая эксплуатация.

Одной из приоритетных задач в области государственной политики по охране компонентов сред обитания является сохранение источников подземных вод — родников — от истощения и загрязнения. В связи с этим, возрастает необходимость проведения работ по ведению мониторинговой базы эколого-химического состава родников, в том числе, находящихся на территории сельских поселений Брянской области.

Комплексные исследования ПО изучению естественных подземных вод – родников – на территории Брянской области ведутся с 2012 года. Из 202 закартированных на данный момент родников 141 – находится на территориях сельских поселений Брянской области. Значение родников многообразно, они используются в религиозных обрядах, как источники нецентрализованного водоснабжения, как места отдыха. За пятилетний период наблюдений доля заброшенных и высохших родников возросла на 6,3%, большинство данных родников расположены на территориях заброшенных населенных пунктов, также данный показатель свидетельствует о Снижение уровня грунтовых вод. рекреационного источников на 4,7% говорит о необходимости проведения для некоторых родников работ по благоустройству водных объектов и природниковых территорий. Основное назначение родниковых вод – использование религиозных обрядах и хозяйственно-бытовое (рис. 1).

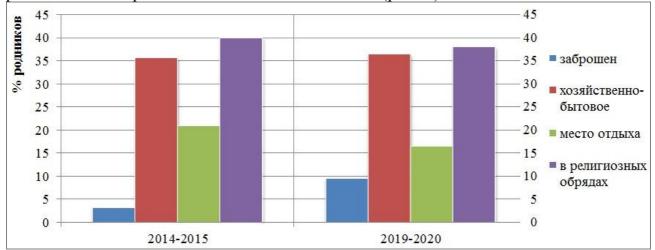


Рис. 1. Цели использования родников сельских поселений Брянской области

Химический анализ родниковых вод проводили по методикам ГОСТа. СанПиН 2.1.4.1175-02 Качество воды определялось В соответствии c «Гигиенические требования нецентрализованного К качеству воды водоснабжения. Санитарная охрана источников» [2]. Определяемые компоненты исследуемых вод – водородный показатель рН, общая жёсткость (комплексонометрический метод), общее содержание железа (фотометрический метод с о-фенантролином), содержание фосфат-, нитрит-, нитрат-, хлорид-, фторид- и сульфат-ионы (фотометрические методы определения). Присутствие в родниковой воде хотя бы одного из данных компонентов указывает на слабую защищенность природных вод от загрязнения, связанного, в первую очередь, с антропогенной деятельностью человека.

Гео- и эколого-химический анализ родников проводился в осеннюю межень. Практически все изученные водоисточники относятся к родникам нисходящего типа, характеризуются как маломощные с незначительным дебитом – от 0,32±0,30 до 0,92±0,39 л/с. Не более 35% родников полностью удовлетворяют эколого-гигиеническим требованиям, предъявляемым к каптажам.

Химический анализ 141 родника, находящегося на территории сельских поселений Брянской области, показал несоответствие по содержанию нитратионов (11 проб родниковых вод или 7,8% не удовлетворяют установленным нормам для вод нецентрализованных источников водоснабжения), по показателю «общая жёсткость» (24 пробы или 17,0% имеют превышения данного компонента), по содержанию общего железа выявлены отклонения от нормы в 6 образцах родниковых вод (4,2%), в 13 (9,2%) – содержание железа составляет 0,8-1,0 ПДК. В трех контрольных пробах вод обнаружены следы нитрит-ионов. Присутствие остальных определяемых компонентов не превышает принятые нормативы.

Исследования по обновлению мониторинговой базы родников в 2019 году показали, что, в целом, показатели качества природных вод на территории Брянской области значительно не изменились. В среднем по области, воды родников соответствуют нормативам по общей жёсткости $(7-10^{\circ}\text{Ж}-\text{тип}$ жёстких вод), вода характеризуется как слабощелочная (среднее значение pH – 7,76), пресная (средняя минерализация – 411 мг/л).

Полученные усредненные результаты анализа химического состава исследуемых родниковых вод по районам Брянской области во временном разрезе представлены в таблице.

Таблица Результаты химического анализа родниковых вод сельских поселений Брянской области

Район	Год ис-ния	DO 3-	NO ₂ -,	Cl⁻,	NO ₃ -,	SO ₄ ²⁻ ,	F̄,	Общая жёсткость	**	Fe
		PO ₄ ³⁻ ,							pН	общее,
								Ж°		мг/л
Карачев- ский	2014-	0,715±	$0,0522 \pm$	6,22±	22,0±	20,6±	0,209±	7,65±2,45	7,15±	0,121±
	2015	0,325	0,0253	5,84	15,7	14,6	0,119	7,03±2,43	0,44	0,082
	2019-	0,450±	$0,0330\pm$	8,48±	35,7±	27,1±	0,245±	5,34±0,67	7,90±	0,110±
	2020	0,150	0,0148	3,65	13,1*	17,6	0,112		0,11	0,020
Жирятин- ский	2014-	$0,0425\pm$	$0,0062 \pm$	16,3±	35,6±	27,9±	0,284±	4,50±1,65	7,05±	0,225±
	2015	0,0325	0,0015	14,1	16,6	19,4	0,047		0,10	0,025
	2019-	0,631±	$0,0285\pm$	27,4±	53,5±	38,6±	0,213±	7,68±2,62	$7,64 \pm$	$0,0272 \pm$
	2020	0,187	0,0009	8,2	44,4*	11,0	0,011		0,08	0,0095
рянскрасногор- ий ский	2014-	0,166±	0,0119±	10,6±	8,43±	10,0±	0,188±	8,35±4,56	7,05±	0,181±
	2015	0,132	0,0120	4,2	5,54	7,8	0,067		0,26	0,041
	2019-	0,239±	$0,0621\pm$	32,7±	89,4±	72,6±	0,197±	5,89±0,78	6,87±	$0,0900 \pm$
	2020	0,137	0,0603	8,7	46,7	65,9	0,056		0,38	0,0030
рянсі	2014-	0,239±	$0,0812\pm$	23,8±	31,6±	24,3±	0,271±	5,77±2,21	7,03±	0,244±
	2015	0,143	0,0783	5,8	13,2	12,2	0,084		0,34	0,030

		1	T =				1		1	
	2019-	0,516±	0,146±	21,0±	$25,7\pm$	$24,6\pm$	0,297±	9,26±3,30	7,80±	$0,135\pm$
	2020	0,128	0,163	10,2	22,9	16,2	0,119	7,20±3,30	0,18	0,048
Новозыб- ковский	2014-	$0,190 \pm$	$0,0430 \pm$	$9,72 \pm$	$12,1\pm$	$17,0\pm$	0,208±	16,4±8,2	$7,34 \pm$	$0,214\pm$
	2015	0,064	0,0456	5,87	7,8	9,1	0,036		0,15	0,042
	2019-	0,200±	0,0238±	41,1±	19,7±	36,6±	0,254±	9,10±0,98	7,86±	0,010±
Ho	2020	0,028	0,0015	17,1	1,0	12,4	0,092		0,04	0,001
Трубчев- ский	2014-	0,158±	0,0052±	9,66±	9,59±	6,98±	0,223±	8,20±3,55	6,75±	0,180±
	2015	0,206	0,0011	5,51	5,06	5,22	0,124		0,72	0,045
убче	2019-	0,465±	$0.0357\pm$	49,1±	23,7±	54,5±	0,198±	11,6±0,9		$0.0740\pm$
Tp.	2020	0,235	0,0079	10,4	5,1	6,0	0,051		0,08	0,0100
	2014-	0,414±	$0,0078\pm$	19,8±	25,8±	69,2±	0,164±		7,05±	0,202±
Z ZH	2015	0,344	0,0022	2,7	9,4	74,0	0,1042	7,50±1,40	0,12	0,022
Клетнян- ский	2019-	$0,706\pm$	$0,0689\pm$	21,2±	7,56±	$71,6\pm$	0,354±		$7,95\pm$	$0,022$ $0,100\pm$
5	2019-	-	0,00391			-		$2,74\pm0,39$		-
	2020	0,352	0,0321	6,6	5,98	6,8	0,117		0,32	0,036
й	2014-	$0.0700 \pm$	0,0065± 0,0011	9,14± 4,64	17,9± 8,4	27,3± 22,0	0,162± 0,061	7,58±3,47	7,07±	0,194±
пони ский	2014-	0,0600							0,86	0,045
3 ₅₁	2013	0,0000							0,00	0,043
Точеп-Навлин-Выгонич- ский ский ский										
авлин	2014-	$0,198\pm 0,204$	0,147± 0,218	24,1± 19,8	23,0± 12,9	27,1± 18,2	0,236± 0,117	7,70±2,49	7,15±	0,201±
lab ck	2015								0,21	0,052
	2014	0.154.	0.0000	1.4.4.	10.0	240	0.050		6.00+	0.056
Іочеп ский	2014-	0,154±	0,0202±	14,4±	12,2±	24,0±	0,253±	6,10±0,84	6,88±	0,256±
	2015	0,065	0,0243	2,8	7,2	13,4	0,0814	0,10=0,01	0,30	0,041
)B- 1	2014	0.102	0.074	17.1	21.0	20.4	0.412		7.02	0.227
уброн	2014-	0,103±	0,274±	17,1±	31,0±	38,4±	0,413±	$5,73\pm2,24$	7,03±	0,237±
Дубров- ский	2015	0,044	0,219	4,2	15,6	15,3	0,133		0,35	0,018
ee ax	2014-	$0,0886 \pm$	$0,0052 \pm$	$15,8\pm$	$15,8\pm$	$15,9\pm$	0,212±	4,96±1,40	6,94±	$0,180\pm$
ордее) ский	2015	0,0727	0,0011	5,1	8,6	5,6	0,125	4,90±1,40	0,16	0,037
Γ̈́				·						
OB-	2014-	0,0313±	0.02887	10,5±	11,3±	15,7±	0,139±		7,09±	0,174±
ИМО] КИЙ		-	· ·					5,99±3,03		-
Кли ск	2015	0,0269	0,0356	6,4	6,7	9,2	0,041		0,13	0,040
d 'z	2014-	0,328±	0,0138±	9,35±	9,62±	13,4±	0,175±		7,28±	0,162±
Іогар ский	2014	0,326±	0,0138±	3,34	4,54	6,9	0,173± 0,028	9,32±2,25	0,08	$0,102\pm 0,038$
	2013	0,337	0,0116	3,34	4,54	0,7	0,020		0,00	0,036
(0B)	2014	0.02621	0.205	0.621	0.15	0.72	0.120+		6.05	Λ 10 <i>1</i> ±
пинцо ский	2014-	0,0262±	0,205±	8,62±	8,15±	8,73±	0,129±	4,18±1,25	6,95±	0,184±
	2015	0,0184	0,341	3,75	3,12	5,14	0,0373		0,18	0,025
B	201:	0.10-	0.005	20.7	10.7	21.2	0.015		7.50	0.105
Куков	2014-	0,105±	$0,0062 \pm$	28,7±	18,5±	$31,3\pm$	0,313±	8,05±0,85	7,28±	$0,182\pm$
₹ \$	2015	0,032	0,0023	13,9	4,0	7,6	0,099	0,02-0,02	0,08	0,041
9/										
— ДС ИЙ	2014-	0,137±	$0,0161 \pm$	$15,3\pm$	$19,6\pm$	$15,0\pm$	$0,172\pm$	8,83±2,28	7,08±	$0,204\pm$
ароду ский	2015	0,121	0,0192	6,4	11,7	7,8	0,045	0,03±2,28	0,16	0,017
Ç										
В среднем Стародуб-Жуков-Клинцов-Погар-Климов-Гордеев- по области ский ский ский ский ский	2014-	$0,163\pm$	$0,0577 \pm$	$14,7\pm$	17,5±	$22,2\pm$	0,199±	7,44±0,73	7,08±	$0,194\pm$
реднем области	2015	0,047	0,0351	2,1	2,4	5,0	0,019		0,08	0,010
tpe o6	2019-	0,488±	$0,0524\pm$	22,1±	32,4±	38,9±	0,234±		7,76±	0,101±
B 6	2020	0,198	0,0435	12,3	24,4	24,2	0,118	8,09±3,00	0,24	0,041
* Примечание Светпо-серым пветом отмечены пробы в которых солержание										

^{*} Примечание. Светло-серым цветом отмечены пробы , в которых содержание определяемого компонента находилось на уровне 0,8-1,0 ПДК, а темно-серым — на уровне более 1,0 ПДК.

Наиболее загрязненными оказались родники Жирятинского и Красногорского районов — наблюдалось превышение установленной нормы ПДК по нитрат-ионам в 2,2 и 2,6 раз, соответственно. Содержание нитратов в подземных вод принято в качестве индикатора антропогенного загрязнения вод, происходящего в результате попадания в воды бытовых и иных стоков или смыва минеральных удобрений с пахотных угодий. Вода Новозыбковского района классифицируется как «очень жёсткая», воды пяти районов (Брянский, Трубчевский, Погарский, Жуковский и Стародубский) относятся к «жёстким». Значительные показатели, но ниже ПДК, отмечаются по содержанию общего железа.

Мониторинговые исследования показали, что основные загрязняющие компоненты родниковых вод сельских поселений Брянской области — нитратионы, соли кальция и магния, общее содержание железа. Поэтому постоянное употребление родниковой воды в качестве питьевой нами не рекомендуется.

Результаты данной статьи будут использованы для дополнения мониторинговой базы, реализуемой в Атласе родников Брянской области.

Библиографический список

- 1. Годовой доклад об экологической ситуации в Брянской области в 2018 г. «Природные ресурсы и окружающая среда Брянской области». Брянск: Департамент природных ресурсов и экологии Брянской области; Изд-во «Читай-город», 2019. 266 с.
- 2. СанПиН 2.1.4.1175-02 Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников // Российская газета. № 244. 28.12.2002.

УДК 574:630*161.581.5

ЭКОЛОГИЧЕСКАЯ ОЦЕНКА РАСПРЕДЕЛЕНИЯ ОПАДА В РАЗЛИЧНЫХ ЭЛЕМЕНТАХ МЕЗОРЕЛЬЕФА НА ТРАНСЕКТЕ ЛЕСНОЙ ОПЫТНОЙ ДАЧИ РГАУ-МСХА ИМЕНИ К.А.ТИМИРЯЗЕВА

Тихонова Мария Васильевна, к.б.н., доцент кафедры экологии ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, tmv@rgau-msha.ru **Бузылёв Алексей Вячеславович**, старший преподаватель кафедры экологии

Бузылев Алексеи Вячеславович, старшии препооаватель кафеоры экологич ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, axe@rgau-msha.ru

Аннотация: Распределение опада под пологие городские леса влияет на образование подстилки и скорости формирования гумусового горизонта, что в свою очередь способствует благоприятным условиям для произрастания древесных пород и напочвенной растительности.

Ключевые слова: лесная подстилка, образование лесной подстилки, лесной опад, зольность опада, влажность подстилки, лесная экосистема,