РАЗВЕДЕНИЕ, СЕЛЕКЦИЯ, ГЕНЕТИКА

УДК: 636.32/.38.082.12.57.045 DOI: 10.26897/2074-0840-2021-2-3-6

ПОЛИМОРФИЗМ ГЕНОВ GH И CAST, ОСОБЕННОСТИ ЖИРНОКИСЛОТНОГО СОСТАВА ЛИПИДОВ КРОВИ ОВЕЦ РАЗНЫХ ГЕНОТИПОВ В ОНТОГЕНЕЗЕ

Л.Н. ЧИЖОВА¹, Е.Д. КАРПОВА¹, Е.С. СУРЖИКОВА¹, М.В. ЗАБЕЛИНА²

¹ ФГБНУ «Северо-Кавказский федеральный научный аграрный центр»; ² Саратовский ГАУ имени Н.И. Вавилова

GENE POLYMORPHISM IN CAST, FEATURES OF FATTY ACID COMPOSITION OF SHEEP BLOOD LIPIDS OF DIFFERENT GENOTYPES IN ONTOGENESIS

L.N. CHIZHOVA¹, E.D. KARPOVA¹, E.S. SURZHIKOVA¹, M.V. ZABELINA²

¹ Federal State Budgetary Scientific Institution «North Caucasus Federal Scientific Agrarian Center»;
² Saratov State Agrarian University named after N.I. Vavilov

Аннотация. В статье представлены результаты анализа жирнокислотного состава липидов крови ягнят разных генотипов в онтогенезе. Использованием ПЦР-ПДРФ установлена специфичность аллельного спектра генов, контролирующих рост и развитие — GH; CAST, выразившаяся в разной частоте встречаемости как аллелей, так и генотипов.

Ключевые слова: ген, GH, CAST, липиды, жирные кислоты, ягнята.

Summary. The article presents the results of the analysis of the fatty acid composition of blood lipids of lambs of different genotypes in ontogenesis. Using PCR-PDRF, the specificity of the allelic spectrum of genes that control growth and development – GH; CAST, expressed in different frequencies of both alleles and genotypes, was established.

Key words: gene, GH, CAST, lipids, fatty acids, lambs.

ля раннего периода постнатального онтогенеза овец, характерно многообразие обменных процессов, в результате которых формируется, а затем и закрепляется определенный тип обмена веществ [8]. Особую роль при этом играют липиды, которые вместе с белками и углеводами составляют основную массу органических веществ, клеток, органов и тканей. Липиды, в соединении с белками, представляют собой легкодоступную форму метаболической энергии, обеспечивающей интенсивность всех звеньев метаболизма. Что может служит одним из критериев оценки степени функционального развития организма [5]. При этом исследователи особое внимание уделяют метаболической взаимосвязи между отдельными жирными кислотами, то есть, обладая разным уровнем биологической активности, повышение интенсивности одной кислоты может повлиять на биологическую активность другой [7]. Их свойства определяются качественным составом жирных кислот, их количественным соотношением, процентным содержанием [2].

В этой связи особый интерес представляют метаболические взаимоотношения эссенциальных жирных кислот — линолевой С18:2, линоленовой С18:3, арахидоновой С20:4. Эти ненасыщенные жирные кислоты не синтезируются в организме животного, но являются необходимыми для нормального течения обмена веществ и не могут быть заменены другими жирными кислотами, что и определено их названием — незаменимые жирные кислоты [6].

Биологическая активность эссенциальных жирных кислот неоднозначна. Так, например, арахидоновой C20:4 кислоты в два раза выше, чем линолевой C18:2 и линоленовой C18:3. Однако в кормах ее содержится мало, в основном она входит в состав животных жиров и в организме образуется из-за линолевой кислоты. Особый интерес представляет динамика линолевой кислоты. При ее недостатке нарушается проницаемость клеточных мембран, снижается резистентность организма.

При изучении липидного обмена у овец показано, что основным продуктом биогидрогенизации ненасыщенных жирных кислот является пальмитиновая С16:0, стеариновая С18:0 — жирные кислоты, относящиеся к классу насыщенных. Из пальмитиновой кислоты — С16:0, в результате гидрогенизации и удлинения углеродной цепи, через стеариновую кислоту, образуется олеиновая — С18:1, относящаяся к классу мононенасыщенных жирных кислот [4]. Уровень пальмитиновой кислоты отражает интенсивность биосинтеза жирных кислот и является исходным материалом для образования других жирных кислот эндогенного происхождения, в том числе и олеиновой. Поэтому содержание пальмитиновой кислоты в большей мере отражает биосинтез, а концентрация олеиновой — катаболизм жирных кислот [1].

Стеариновая кислота является конечным продуктом гидрогенизации ненасыщенных жирных кислот, занимает центральное положение в обмене жирных кислот в организме овец [3].

Таким образом жирнокислотный состав липидов крови является одним из важнейших факторов нормальной жизнедеятельности организма, обеспечивающим его энергетические функциями.

Результаты исследования и их обсуждения. Методом ПЦР-ПДРФ определен полиморфизм генов соматотропина GH и кальпастатина CAST. Генотипированием установлено, что их полиморфизм представлен двумя аллелями — GH^{A} ; GH^{B} ; $CAST^{M}$; $CAST^{N}$; и тремя генотипами — GH^{AA} ; GH^{BB} ; GH^{AB} ; $CAST^{MM}$; $CAST^{NN}$; $CAST^{MN}$ с разной частотой встречаемости. Что нашло отражение на частоте встречаемости гомозиготных генотипов, составившее: $0,07-GH^{BB}$ и $0,06-CAST^{NN}$ генотипов. Частота встречаемости гомозиготных GH^{AA} и $CAST^{MM}$ вариантов составила 0,83 и 0,71.

Хромотографическим анализом идентифицировано 10 жирных кислот. Из них насыщенные: миристиновая, С14:0; пентадекановая, С15:0; пальмитиновая, С16:0; гептадекановая, С17:0; гептадеценовая, С17:1; стеариновая, С18:0. Мононенасыщенная — олеиновая С18:1. Полиненасыщенные — линолевая, С18:2; линоленовая, С18:3; арахидоновая, С20:4.

Сравнительный анализ данных жирнокислотного спектра липидов крови ягнят в разный период их роста и развития свидетельствует как об однотипности его качественного состава, так и о различии количества изучаемых жирных кислот. При этом обращает на себя внимание тот факт, что во все изучаемые периоды онтогенеза, независимо от генотипа, доминирующими по уровню содержания в периферической крови были такие кислоты как стеариновая С18:0, пальмитиновая С16:0, олеиновая С18:1, линоленовая С18:2, играющие главенствующую роль в липидном обмене. Однако степень выраженности концентрации жирных кислот, их соотношения у разных генотипов были неоднозначны и зависели как от возраста, так и генотипа (табл. 1).

Таблица 1 Жирнокислотный состав липидов крови ягнят разных генотипов в онтогенезе Fatty acid composition of blood lipids of lambs of different genotypes in ontogenesis

	Возраст, генотип								
Название кислот, код, %	2 мес.			4 мес.			8 мес.		
	GHAA	GH ^{BB}	GH ^{AB}	GH ^{AA}	GH ^{BB}	GH ^{AB}	GH ^{AA}	GH ^{BB}	GH ^{AB}
ΣНасыщенных	76,61±	77,50±	76,39±	66,99±	72,82±	65,81±	42,40±	45,70±	41,41±
	0,08	0,06	0,10	0,05	0,07	0,08	0,10	0,07	0,09
ΣМононенасыщенных	14,80±	13,52±	14,44±	17,13±	16,12±	17,63±	28,40±	27,19±	28,87±
	0,12	0,11	0,16	0,07	0,08	0,13	0,11	0,05	0,07
ΣПолиненасыщенных	4,37±	3,85±	4,35±	10,55±	9,19±	10,76±	22,81±	21,84±	23,58±
	0,05	0,04	0,06	0,08	0,07	0,10	0,09	0,06	0,04
инл	4,0±	4,46±	4,06±	2,42±	2,88±	2,32±	$0.83 \pm$	$0.93 \pm$	0,79±
	0,11	0,10	0,04	0,08	0,07	0,08	0,07	0,05	,06
ИИОЛ	1,93±	2,29±	1,98±	1,52±	1,88±	1,50±	$0,65 \pm$	$0.75 \pm$	0,68±
	0,07	0,11	0,12	0,08	0,12	0,07	0,11	0,14	0,12
КЭМ	0,09±	0,14±	0,11±	0,19±	$0.27 \pm$	0,20±	0,19±	0,24±	$0.17 \pm$
	0,11	0,10	0,09	0,11	0,13	0,10	0,11	0,08	0,11
Название кислот, код	Возраст, генотип,								
	2 мес.			4 мес.			8 мес.		
	CAST								
	MM	NN	MN	MM	NN	MN	MM	NN	MN
ΣНасыщенных	77,01±	76,5±	77,81±	68,88±	72,21±	66,23±	42,36±	46,33±	40,34±
	0,22	0,21	0,19	0,20	0,23	0,22	0,19	0,21	0,20
ΣМононенасыщенных	16,55±	14,13±	14,36±	18,81±	17,42±	$18,08 \pm$	$30,74 \pm$	26,51±	29,2±
	0,08	0,07	0,06	0,12	0,11	0,10	0,21	0,15	0,18
ΣПолиненасыщенных	3,59±	4,17±	3,80±	11,15±	9,85±	11,09±	$20,09 \pm$	19,67±	21,39±
	0,10	0,11	0,08	0,10	0,10	0,09	0,11	0,09	0,13
инл	3,82±	4,18±	4,28±	2,39±	2,65±	2,27±	0,83±	1,0±	0,8±
	0,08	0,08	0,07	0,03	0,05	0,04	0,02	0,04	0,01
ииол	1,77±	1,96±	1,95±	1,36±	1,56±	1,42±	0,65±	$0,\!84\pm$	0,65±
	0,13	0,04	0,06	0,05	0,04	0,03	0,03	0,05	0,03
КЭМ	$0,05 \pm$	0,09±	0,06±	0,20±	0,22±	0,21±	0,20±	$0,\!24 \pm$	0,21±
	0,11	0,06	0,07	0,01	0,03	0,02	0,01	0,03	0,02

Как правило, во все изучаемые периоды онтогенеза в периферической крови GH^{BB} генотипа, по сравнению со сверстниками GH^{AA} генотипа, была большая концентрация таких жирных кислот как пальмитиновая, стеариновая, линолевая, арахидоновая, соответственно составившая: в возрасте 2 мес. – 27,95; 27,96; 19,04% против 26,08; 23,88; 17,56%, B 4 Mec. -46,87; 39,87; 22,37% против 3,24; 6.87; 15.56%; в 8 мес. -0.45; 1.68; 3.81%, против 0,29; 1,29; 3,19%, (P < 0,05), (P < 0,01). В крови овец с гомозиготным $CAST^{NN}$ генотипом, по сравнению со сверстниками *CAST*^{MM} генотипов, была большая концентрация таких жирных кислот, как пальмитиновая, стеариновая, арахидоновая, составившая: в возрасте 2 мес. – 27,58; 45,40; 0,28%, против 26,21; 45,31; 0,18%; в 4 мес. – 25,07; 43,25; 1,74% против 23,24; 38,76; 1,32%; в 8 мес. – 20,64; 22,26; 3,38%, против 17,64; 19,91; 2,46%, (P < 0.05; P < 0.01).

Выявленная закономерность нашла отражение в цифровых значениях констант, характеризующих интенсивность липидного обмена: индекс насыщенности липидов (ИНЛ) – соотношение Σ насыщенных жирных кислот к Σ ненасыщенных, индекс интенсивности обмена липидов (ИИОЛ) – отношение уровня пальмитиновой кислоты к олеиновой, коэффициент эффективности метаболизации (КЭМ) - отношение арахидоновой кислоты к линолевой. у генотипов — носителей GH^{BB} и $CAST^{NN}$ генотипов во все исследуемые периоды онтогенеза показатели липидного обмена были достоверно выше, по сравнению со сверстниками GH^{AA} и $CAST^{MM}$ генотипов составившие: в возрасте 2 мес. - 4,46; 2,29; 0,14 и 4,18; 1,96; 0,09; против 4,0; 1,93; 0,09; и 3,82; 1,77; 0,05; в 4 мес. – 2,88; 1,88; 0,27 и 2,65; 1,56; 0,22; против 2,42; 1,52; 0,19; и 2,39; 1,36; 0,20; в 8 мес. – 0,93; 075; 0,24 и 1,0; 0,84; 0,24; против 0,83; 0,67; 0,19 и 0,83; 0.65; 0.20, (P < 0.05; P < 0.01).

Анализ полученных данных отражает возрастную изменчивость интенсивности липидного обмена, которая сводится к тому, что достаточно высокий уровень суммарного количества насыщенных жирных кислот, циркулирующих в периферической крови присущ ягнятам в раннем, 2-мес. возрасте. Затем в более поздних возрастах (4 и 8 мес.) снижается уровень общего количества насыщенных жирных кислот, но увеличивается количество ненасыщенных в крови овец.

Таким образом, специфичность направленности обмена жирных кислот липидов крови, в сторону эффективности их использования организмом, зависела от генотипа ягнят. Сумма насыщенных жирных кислот, величины (ИНЛ, ИИОЛ, КЭМ) в крови 8-мес. ягнят, были выше у носителей генотипов GH^{BB} на 10,8; 5,6; 4,5% по сравнению со сверстниками генотипа GH^{AA} . Показатели ИНЛ, ИИОЛ у генотипа $CAST^{NN}$ превосходили на 2,4; 4,6%, сверстников носителей $CAST^{MM}$ генотипа. Показатель КЭМ имел большее значение у носителей $CAST^{NN}$ на 16,1% в сравнении с $CAST^{MM}$ генотипом.

ЛИТЕРАТУРА

- 1. Глазко В.И. Молекулярная биология для животноводства // Farm Animal. -2012.
- 2. Запорожская Л.И. Характеристика и биологическая роль эссенциальных полиненасыщенных жирных кислоти / Л.И. Запорожская, И.В. Гаммель // Медицинский совет. -2012.- № 5.
- 3. Куликова К.А. Полиморфизм гена кальпастатина (CAST) у овец горного и степного внутрипородных типов тувинской короткожирнохвостой породы // Вестник Башкирского государственного аграрного университета. $2018.- N \!\!\!\! \ge 1$ (45). С. 84-89.
- 4. Морозов Н.М. Развитие животноводства в России/Н.М. Морозов, И.И. Хусаинов, И.П. Алексеев// Вестник университета. -2015. -№ 17.
- 5. Селионова М.И. Морфо-биохимические функции организма овец и их коррекции в условиях йододефицита / М.И. Селионова, А.К. Михайленко, Л.Н. Чижова и др. // Юг России: экология, развитие. 2019. Т. 14. № 1. С. 42-53.
- 6. Нечипоренко А.П. Оптические свойства липидов животного происхождения / А.П. Нечипоренко, О.С. Везо, Л.В. Плотникова и др. // НИУ ИТМО. -2018. -№ 3.
- 7. Таранов М.Т. Особенности биохимических процессов у овец с разной скоростью роста / М.Т. Таранов, В.Л. Владимиров, В.П. Северин // Биохимические основы селекции овец. 1994. С. 85-88.
- 8. Gorlov I.F. MspI gene polymorphism and its impact on growth traits of Soviet Merino and Salsk sheep breeds in the South European part of Russia / I.F. Gorlov, N.V. Shirokova, A.V. Randelin et al. // Turkish Journal of Veterinary and Animal Sciences. 2016. T. 40. № 4. C. 399-405.

REFERENCES

- 1. Glazko V.I. Molecular biology for animal husbandry $/\!/$ Agricultural Animals. -2012.
- 2. Zaporozhskaya L.I. Characteristic and biological role of essential polyunsaturated fatty acids / L.I. Zaporozhskaya, I.V. Gammel // Medical Council. 2012. № 5.
- 3. Kulikova K.A. Polymorphism of the calpastatin (Cast) b gene in mountain and steppe sheep of intrabreed types of the Tuva short-tailed breed // Bulletin of the Bashkir State Agrarian University. − 2018. − № 1 (45). − Pp. 84-89.
- 4. Morozov N.M. Development of animal husbandry in Russia / N.M. Morozov, I.I. Khusainov, I.P. Alekseev // Vestnik universiteta. 2015. No. 17.
- 5. Selionova M.I. Morpho-biochemical functions of the sheep organism and their correction in conditions of iodine deficiency / M.I. Selionova, A.K. Mikhailenko, L.N. Chizhova et al. // Yug Rossii: ecology, development. 2019. Vol. 14. No. 1. P. 42-53.
- 6. Nechiporenko A.P. Optical properties of lipids of animal origin / A.P. Nechiporenko, O.S. Vezo, L.V. Plotnikova et al. // NRU ITMO. -2018. N = 3.
- 7. Rams M.T. Peculiarities of the biochemical processes in sheep with different growth rates / M.T. Taranov, V.L. Vladimirov, V.P. Severin // Biochemical bases of breeding sheep. 1994. P. 85-88.

8. Gorlov I.F. MspI gene Polymorphism and its effect on the growth characteristics of Soviet Merino and Salsk sheep breeds in the southern European part of Russia / I.F. Gorlov, N.V. Shirokov, A.V. Randelin etc. // Turkish journal of veterinary and zootechnical Sciences. -2016. $-N_{\text{2}}$ 40. $-N_{\text{2}}$ 4. -Pp. 399-405.

Чижова Людмила Николаевна – доктор с.-х. наук, профессор, гл. науч. сотрудник лаборатории иммуногенетики и ДНК-технологий. ФГБНУ «Северо-Кавказский федеральный научный аграрный центр» г. Михайловск, тел.: (8652) 71-72-18, E-mail: immunogenetika@yandex.ru;

тории иммуногенетики и ДНК-технологий, мл. науч. сотрудник ФГБНУ «Северо-Кавказский федеральный научный аграрный центр» г. Михайловск, тел.: 899880943121, E-mail: lucziwa@yandex.ru;

Карпова Екатерина Дмитриевна - аспирант лабора-

Забелина Маргарита Васильевна – доктор биол. наук, профессор. Саратовский ГАУ имени Н.И. Вавилова. E-mail: mvzabelina@mail.ru;

Суржикова Евгения Семеновна – канд. с.-х. наук, ст. науч. сотрудник лаборатории иммуногенетики и ДНК-технологий. ФГБНУ «Северо-Кавказский федеральный научный аграрный центр» г. Михайловск, тел.: (8652) 71-72-18, E-mail: immunogenetika@yandex.ru

УДК 636.32/.38

DOI: 10.26897/2074-0840-2021-2-6-9

ПОКАЗАТЕЛИ СКОРОСПЕЛОСТИ ОВЕЦ И ФАКТОРЫ, ИХ ОПРЕДЕЛЯЮЩИЕ

A.U. EPOXUH¹, E.A. KAPACEB¹, C.A. EPOXUH²

¹ РГАУ-МСХА имени К.А. Тимирязева; ² ООО «Племенной импорт»

INDICATORS OF EARLY MATURITY OF SHEEP AND FACTORS, THEIR DETERMINING THEM

A.I. EROKHIN¹, E.A. KARASEV¹, S.A. EROKHIN²

¹ Russian Stat Agrarian University – Moscow Timiryazev Agricultural Academy; ² LLC «Breed import»

Аннотация. В качестве показателей, сопряженных со скороспелостью овец, рассмотрены: породность, направление продуктивности, уровень прироста, раннее жироотложение в организме, затраты корма на производство продукции, типы телосложения животных, белково-качественный показатель (БКП).

Ключевые слова: скороспелость, среднесуточные приросты, развитие костной, мышечной и жировой тканей, затраты корма на прирост, БКП.

Summary. As indicators associated with the precocity of sheep, the following are considered: pedigree, the direction of productivity, the level of growth, early fat deposition in the body, feed costs for production, body types of animals, protein-quality indicator (PQI).

Key words: precocity, average daily gains, development of bone, muscle and fat tissue, feed costs for growth, PQI.

с короспелость — свойство (способность) организма в раннем возрасте достигать высокой степени своего развития, обеспечивающего использование животного для полноценного воспроизводства и получения в молодом возрасте мясной и любой другой продукции хорошего качества с высоким уровнем рентабельности.

Мерой скороспелости принято считать время, затраченное на развитие с момента оплодотворения, или от рождения, до полной физиологической зрелости. Различные

органы, ткани, системы организма достигают максимального развития в разные промежутки времени, поэтому достижение зрелости всего организма, как целого, определяется окончанием развития не всех, а большинства его систем. Однако это не единственный критерий скороспелости сельскохозяйственных животных.

У овец разных пород и направлений продуктивности выделяют скороспелость мясную, мясо-сальную, молочную, шерстную и ряд других.

Скороспелость — наследственно обусловленный показатель. Ярким подтверждением этого является то, что животные разных видов, а в пределах видов — разных пород, существенно различаются по скороспелости (табл. 1).

Таблица 1

Биологическая и хозяйственная скороспелость самок некоторых домашних животных

Biological and economic precocity of females of some domestic animals

	Возраст	Возраст	Достижение полной		
Вид животного	полового	первой случки,	биол. зрелости,		
	созревания, мес.	мес.	лет		
Молочная корова	8-10	16-18	5-6		
Овца	6-8	12-18	2-3		
Свинья	4-6	8-10	2-3		
Кобыла	12-18	36-40	6-7		