лятором динамики роста и развития животных и должна отвечать цели, которую ставит перед собой хозяйство.

В теоретическом и практическом отношении важное значение имеет в дальнейшем оптимальное совмещение положительных моментов двух программ выращивания молодняка коз альпийской породы, обоснованное особенностями физиологии развития пищеварительной системы, с учетом неравномерности и ритмичности роста и развития коз.

ЛИТЕРАТУРА

- 1. Зооинженерный факультет РГАУ-МСХА им. К.А. Тимирязева.: http://www.activestudy.info/zhvachka-ruminaciya/
- 2. Новопашина, С.И. Технология выращивания молодняка молочных коз на промышленных фер-

мах. / С.И. Новопашина, М.Ю. Санников. – Ставрополь: СНИИЖК, 2010. - 30 с.

The article deals with the study of the influence of various raising programmes on indicators of productivity of young goats of Alpine breed. The author gives a brief review of the key elements of raising and maintenance technology of young goats from birth to the age of mating.

Key words: Young goats, Alpine, programme, raising, feeding, maintenance, ration, WMR (whole milk replacer).

Николаев Евгений Федорович, *заслуженный работник высшей школы РФ*, *профессор*;

Ермакова Татьяна Александровна, аспирант Смоленская ГСХА; г. Смоленск, ул.Б. Советская, 10 / 2, тел. 38–28–10

УДК 637.5.053:636.32 / .38

МОРФОЛОГИЧЕСКИЙ СОСТАВ ТУШ И ХИМИЧЕСКИЙ СОСТАВ МЯСА БАРАНЧИКОВ РАЗНОГО ПРОИСХОЖДЕНИЯ

Е.В. ПАХОМОВА, Ю.А. ЮЛДАШБАЕВ, Ж.М. АБЕНОВА

РГАУ-МСХА имени К.А. Тимирязева

Представлены морфологический состав туш и химический состав мяса баранчиков калмыцкой курдючной и грозненской тонкорунной пород и их помесей в возрасте 4 и 7 месяцев.

Ключевые слова: баранина, морфологический состав туш, химический состав, белково-качественный показатель мяса.

В овцеводстве эффективным методом увеличения производства баранины и повышения её качества является широкое использование промышленного скрещивания овец разного направления продуктивности. Использование в скрещивании овец разных пород в различных зонах их разведения требуют определения оптимальных вариантов сочетаемости животных при скрещивании.

В последнее время во многих регионах России с целью повышения мясной продуктивности овец тонкорунных пород используют их скрещивание с производителями наиболее распространенной в стране мясосальной эдильбаевской породой.

Разводимая в Республике Калмыкия грозненская тонкорунная порода овец характеризуется невысокой мясностью. В этой связи овец при скрещивание маток грозненской тонкорунной породы с производителями новой мясосальной калмыцкой курдючной породы для увеличения мясной продуктивности приобретает как научный, так и практический интерес.

Для определения продуктивных качеств чистопородных овец калмыцкой курдючной и грозненской тонкорунной пород, а также их помесей первого поколения в ОАО ПЗ «Кировский» Яшкульского района Республики Калмыкия проведена экспериментальная работа. Для опыта были сформированы 3 группы баранчиков по 25 голов в каждой: I – чистопородные калмыцкие курдючные (ККр), II группа – чистопородные грозненской тонкорунной породы (ГТ), III группа – помеси от скрещивания маток грозненской тонкорунной породы с баранами калмыцкой курдючной породы ($\frac{1}{2}$ ГТ + KKp).

Морфология туш (табл. 1) показала превосходство помесей по выходу мякоти на 5,49% в 4 мес. и на 5,46% в 7-мес. возрасте над тонкорунными сверстниками. В тоже время помеси уступали по выходу мякоти мясосальным сверстникам в возрасте 4 и 7 мес. на 41,7 и 48,0%. Наибольшим коэффициентом мясности — 3,5 и 3,8, характеризовались курдючные сверстники в 4 и 7-мес. возрасте, помеси по этому показателю занимали промежуточное положение — 3,30 и 3,55.

Пищевая и биологическая ценность баранины в основном обусловлена химическоим составом мяса. Для химического состава мяса изучаемых групп, была характерна общая закономерность: с увеличением возраста в тушах накапливалось больше жира, а содержание влаги снижалось. Содержание влаги в съедобных частях туши уменьшается с возрастом у курдючного молодняка на 5,92%, у тонкорунного на 1,92% и у помесного на 1,24%.

Содержание белка достаточно стабильно, и его отклонения в зависимости от возраста и генотипа незначительны. Количество жира с возрастом в тушах баранчиков повышается довольно заметно: у курдючных на 6,85%, у тонкорунных на 3,09% и у помесных на 4,93%. Увеличение содержания жира влияет на снижение количества белка.

Таблица 1

Морфологический состав туш баранчиков в возрасте 4 и 7 мес.

	Группа						
Показатель	I		II		III		
	4	7	4	7	4	7	
Масса охлажденной туши, кг	15,9 ± 0,59***	20,0 ± 0,66***	$9,8 \pm 0,48$	$11,5 \pm 0,25$	11,4 ± 0,31**	13,7 ± 0,53***	
В туше содержится: мякоти, кг	12,30 ± 0,12***	15,78 ± 0,15***	$6,92 \pm 0,08$	$8,27 \pm 0,18$	8,68 ± 0,16***	10,60 ± 0,23***	
%	77,40	78,90	70,61	71,91	76,10	77,37	
костей, кг	3,51 ± 0,09***	4,11 ± 0,06***	$2,78 \pm 0,08$	$3,11 \pm 0,1$	$2,62 \pm 0,16$	$2,99 \pm 0,12$	
%	22,03	20,55	28,37	27,05	23,02	21,83	
сухожилий, кг	0.09 ± 0.8	$0,11 \pm 0,7$	$0,10 \pm 0,55$	$0,12 \pm 0,42$	$0,10 \pm 0,21$	$0,11 \pm 0,12$	
%	0,57	0,55	1,02	1,04	0,88	0,80	
Коэффициент мясности	3,50	3,80	2,49	2,66	3,30	3,55	

$Tаблица\ 2$ Химический состав средней пробы мяса баранчиков в возрасте 4 и 7 мес.

	Группа						
Показатель	I		II		III		
	4	7	4	7	4	7	
Содержание в мякоти,%: влага	69,94	63,96	70,69	68,77	68,97	67,73	
сухое вещество	30,06	36,04	29,31	31,23	31,03	32,27	
белок	19,85	19,10	19,64	18,45	20,10	16,60	
жир	9,15	16,00	8,74	11,83	9,90	14,83	
зола	1,06	0,94	0,93	0,95	1,03	0,84	
Влаго-белковое отношение	3,52	3,35	3,60	3,72	3,43	4,08	
Жиро-белковое отношение	0,46	0,84	0,45	0,64	0,49	0,89	
Энергетическая ценность 1 кг мякоти, ккал	1685	2290	1638	1875	1765	2076	

Наиболее оптимальным соотношением белка и жира является $1 \le 1$. Из полученных данных видно, что в возрасте 7 мес. по всем группам жиро-белковое отношение близко к оптимальному.

В соответствии с тем, что количество жира с возрастом увеличивается, то возрастает и калорийность мяса: у І группы возросло на 605 ккал, у ІІ — на 237 ккал и у ІІІ на 311 ккал.

Качество белка баранины характеризуется ее аминокислотным составом (табл. 3).

По содержанию в мясе триптофана: 1. Мясосальные баранчики превосходят как помесей, так и тем более грозненских сверстников; 2. С возрастом во всех группах содержание триптофана увеличивалось: в І группе на 5,0%, в ІІ – на 6,6%, в ІІІ – на 9,8%; 3. Содержание окипролина с возрастом снижалось, что обусловило уве-

Таблица 3

Белково-качественный показатель мяса баранчиков 4 и 7 мес.

	Группа						
Показатель	I		II		III		
	4	7	4	7	4	7	
Триптофан, мг / %	258,13 ± 2,15**	$271,60 \pm 6,68$	$241,43 \pm 5,56$	$257,67 \pm 3,36$	$245,34 \pm 5,41$	269,83 ± 4,51**	
Оксипролин, мг / %	$71,04 \pm 1,21$	63,44 ± 1,92	$73,44 \pm 2,13$	$65,57 \pm 0,66$	$70,25 \pm 1,05$	$63,15 \pm 1,78$	
Белково-качественный показатель мяса	3,63	4,28	3,29	3,93	3,49	4,27	

личение белково-качественного показателя мяса с возрастом.

Таким образом, полученные при скрещивании маток грозненской тонкорунной породы с калмыцкими мясосальными баранами помеси F_I превосходили материнскую породу по показателям убоя, содержанию мякоти в туше, содержанию в мякоти сухих веществ, триптофана. По соотношению белка и жира мясо во всех группах в возрасте 7 мес. близко к оптимальному.

Morphological composition of carcasses and meat chemical composition of the Kalmyk fat-tailed rams and Grozny fine-wool breeds and their crosses aged 4 and 7 months.

Key words: lamb, morphological composition of carcasses, chemical composition, protein quality indicator of meat.

Пахомова Елена Владимировн, канд.с.-х. наук, старший преподаватель,

Юлдашбаев Юсуп Артыкович, доктор с.-х. наук, профессор,

Абенова Жазирайым Муратбековна, аспирантка, РГАУ-МСХА имени К.А. Тимирязева, e-mail: zoo@timacad.ru.

УЛК 636.32 / 38.033

МЯСНАЯ ПРОДУКТИВНОСТЬ СОЗДАВАЕМОГО ВНУТРИПОРОДНОГО ТИПА ГИССАРСКИХ ОВЕЦ

К.М. КУРБАНОВ, А.Х. ХАЙИТОВ

Таджикский аграрный университет имени Ш. Шотемура

Представлены результаты исследований по мясной продуктивности шахринау — регарского внутрипородного типа гиссарских овец.

Ключевые слова: мясная продуктивность, убойная масса, убойный выход, масса туши, коэффициент мясности, морфологический состав туши, выход мяса по сортам.

В задачи наших исследований входило изучить мясную продуктивность овец шахринау — регарского внутрипородного типа гиссарских овец в возрасте 5 и 18 мес., что приводится в таблице 1.

Из данных таблицы 1 видно, что масса туши от убойной массы в возрасте 5 и 18 мес. составляет соответственно 82,60 и 75,63%. Выход внутреннего и курдючного жира за эти возрастные периоды соответственно составил 1,46 и 2,01%; 15,94 и 22,36%. Уменьшение относительного выхода массы туши в 18 мес. возрасте по сравнению с 5 мес.возрастом объясняется увеличением выхода курдючного жира с возрастом. Убойный выход у подопытных овец составил в возрасте 5 мес. 49,74%, а в возрасте 18 мес. – 58,46%. Коэффициент мясности в эти возрастные периоды составил соответственно 3,40 и 5,73.

Изменение интенсивности роста костяка и мускулатуры в разных частях туши гиссарских овец показывает, что с возрастом соотношение между этими тканями меняется в разной степени. Надо полагать, что удельная масса отдельных частей туши должна также изменяться. Если к этому добавить, что жир в разных частях туш накапливается неравномерно, то возможность этих изменений возрастает еще больше.

Морфологический состав туши определяется путем обвалки отдельных отрубов с выделением мякотной части, жира, костей, сухожилий, согласно ГОСТу.

Результаты наших исследований показали, что в первые 5 мес. жизни ягнят рост мускулатуры про-

ходит наиболее интенсивно т.е. мышечно-костное отношении туши и ее отдельных анатомических частей и сортовых отрубов возрастает.

В целях максимального получения мясной продуктивности переработку овец на мясо необходимо производить после завершения предельного роста мышечной и костной тканей. Однако, учитывая биологические особенности темпа и ритма роста тканей наиболее целесообразно переработку овец на мясо проводить по достижении 50–75% предельной массы мышечной и костной тканей (после летних нагулов в возрасте 5 и 18 мес.), поскольку в последующие периоды интенсивность роста тканей заметно снижается, а затраты кормов на их прирост резко возрастают.

Наши данные показывают, что состав каждой части туши по соотношению костей, мякоти и жира с возрастом изменяется своеобразно. Относительная масса костей во всех частях туши с возрастом уменьшается, за исключением костей зареза, голяшки, а количество

Таблица 1 Убойные показатели овец

Показатель	Возраст, мес.			
Показатель	5	18		
Масса, кг: предубойная	$38,60 \pm 0,34$	$67,10 \pm 0,57$		
туши	$15,86 \pm 0,17$	$29,67 \pm 0,26$		
внутреннего жира	$0,28 \pm 0,08$	$0,79 \pm 0,11$		
курдючныго жира	$3,06 \pm 0,13$	$8,77 \pm 0,18$		
убойная	$19,20 \pm 0,21$	$39,23 \pm 0,30$		
Убойный выход,%	49,74	58,46		
Коэффициент мясности	3,40	5,73		