ровьего и козьего молока. Белковый профиль коровьего и козьего молока имеет сходную картину.

Предприятиям, специализирующимся на выпуске молочной продукции для разных групп населения, в том числе гипоаллергенных продуктах, рекомендуется использовать в качестве сырья верблюжье молоко, которое не содержит аллерген-β-лактоглобулин.

ЛИТЕРАТУРА

- 1. Лолор-мл. Г., Фишер Т., Адельман Д. Клиническая иммунология и аллергология. М.: Практика, 2000. 806 с.
- 2. Перспективы разработки новых функциональных молочных продуктов для людей с непереносимостью белков молока / В.Д. Харитонов [и др.] // Молочная река. 2012. № 4. С. 22—24.
- 3. Donkey milk production: state of the art / P. Polidori [et al.] // Italian Journal of Animal Science. 2009. Vol. 8. № 2. P. 667–683.

- 4. Marshall K. Therapeutic Application of Whey Protein // Alternative Medicine Review. 2004. Vol. 9. № 2. P. 136–156.
- 5. Кузнецов В.В., Липатов Н.Н. Справочник технолога молочного производства. Технология и рецептуры. Т. 6. Технология детских молочных продуктов. СПб.: ГИОРД, 2005. 512 с.
- 6. Camel milk / El. El-Agamy // Handbook of milk of non-bovine mammals / Ed. by Y.W. Park, G.F.W. Haelin. Oxford, U.K.: BlackwellPublishing, 2006. P. 297–344.

Data on the composition and properties of milk of different species of animals — camel, cow, goat.

Key words: cow milk, goat milk, camel milk, allergens, protein fractions, intolerance, hypoallergenic, lactoferrin, protein profile.

Шувариков Анатолий Семенович, доктор с.-х. наук, профессор, Цветкова Валерия Андреевна, магистр, Пастух Ольга Николаевна, канд. с.-х. наук, доцент, РГАУ – МСХА имени К.А. Тимирязева; Юрова Елена Анатольевна, канд. техн. наук, зав. лабораторией технохимического контроля ВНИМИ.

УДК 639.39

МОЛОЧНАЯ ПРОДУКТИВНОСТЬ КОЗ ЗААНЕСКОЙ ПОРОДЫ И НУБИЙСКО-ЗААНЕНСКИХ ПОМЕСЕЙ

В.А. ШАТАЛОВ

Российский государственный аграрный университет – МСХА имени К.А. Тимирязева

Приведены сравнительные материалы молочной продуктивности коз зааненской породы и нубийско-зааненских помесей первой лактации.

Ключевые слова: зааненская порода, нубийско-зааненские помеси, молочная продуктивность.

Вусловиях СПК-колхоза «Красная Нива» нами была изучена молочная продуктивность (удой за лактацию, содержание белка и жира) коз зааненской породы и нубийско-зааненских помесей по первой лактации в возрасте около 1,5 лет. В опыте использовали 22 козы, из которых были сформированы 2 группы по 11 гол.: І группа — козы зааненской породы, ІІ группа — нубийско-зааненские козы-помеси. В состав рациона животных обеих групп входили: грубые корма (сено) — 32%, концентрированные корма (плющенный ячмень) — 53%, а также сухой жом — 15%.

Продолжительность лактации у коз I группы составила 300,8 дней, что на 75,7 дней меньше, чем у животных II группы (табл. 1). Так же следует отметить, что средний удой у коз II группы значительно выше, чем у сверстниц I группы, разница в пользу коз второй группы 117,3 кг за лактацию, а по среднесуточному удою разница небольшая 0,1 кг в пользу коз I группы.

При анализе показателей молока коз опытных групп установлено, что содержание жира в молоке коз II группы на 0,47% выше, чем в молоке коз I группы (табл. 2).

Содержание белка в молоке коз-помесей на $0,23\,\%$ выше, чем у чистопородных зааненских коз.

Отмеченные различия в молочной продуктивности коз зааненской породы и нубийско-зааненских помесей связаны с более продолжительной лактацией животных II группы. Чтобы исключить этот фактор,

Таблица 1

Удой и продолжительность лактации

Кличка	Показатель						
животного	Число дойных дней	Удой за лакта- цию, кг	Среднесуточный удой, кг				
I группа							
Габби	277	546,4	1,7				
Гаванна	318	714,9	2,6				
Гагра	336	811,8	2,4				
Газель	282	763,3	2,7				
Гайза	307	645,9	2,1				
Гайна	253	521,3	2,1				
Гайя	302	611,1	2,0				
Гамиль	304	505,7	1,7				
Ганка	301	700,9	2,3				
Гасконь	313	608,3	1,9				
Гвиана	316	589,1	1,9				
В среднем	300,8	638,1	2,1				
II группа							
Дания	350	448,9	1,3				
Колея	327	573,2	1,7				
Груша	303	965,1	3,2				
Аукуба	245	535,1	2,2				
Анюта	463	664,2	1,4				
Варька	288	595,5	2,1				
Армене	427	1193,1	2,8				
Аляска	662	1263,4	1,9				
Варька	286	601,8	2,1				
Беляна	457	897	2,0				
Ложка	334	571,9	1,7				
В среднем	376,5	755,4	2,0				

Таблица 2 Таблица 3

Содержание молочного жира и белка, %

І группа	Содержание		II группа	Содержание	
Кличка животного	жира	белка	Кличка животного	жира	белка
Габби	4,1	3,5	Дания	4,8	3,6
Гаванна	4,0	3,5	Колея	4,5	3,5
Гагра	3,9	3,6	Груша	4,0	3,8
Газель	4,2	3,5	Аукуба	5,1	3,6
Гайза	4,1	3,6	Анюта	4,6	3,6
Гайна	4,0	3,3	Варька	4,3	3,6
Гайя	4,2	3,6	Армене	4,0	3,6
Гамиль	3,9	3,6	Аляска	4,5	3,5
Ганка	3,3	2,9	Варька	3,6	3,5
Гасконь	4,3	3,5	Беляна	5,4	5,1
Гвиана	3,9	3,6	Ложка	4,3	3,2
В среднем	4,0	3,5	В среднем	4,5	3,7

нами был произведен пересчет валового удоя коз в обеих группах на 305 дней лактации (табл. 3).

Сравнивая показатели двух исследуемых групп коз, можно сделать вывод о том, что значимых различий в их молочной продуктивности за 305 дней лактации не выявлено. Разница между группами по удою за лактацию практически отсутствует (0,2 кг). Наряду с этим следует отметить, что нубийско-зааненские помеси превосходят своих чистопородных зааненских сверстниц по продуцированию молочного жира и белка. Данный показатель важен при производстве сметаны, масла и сыра. По выходу молочного жира и белка животные ІІ группы превосходили своих сверстниц из І группы на 12,6% и 5,4% соответственно.

Проведенные нами исследования показали более высокий уровень молочной продуктивности нубийско-зааненских коз-помесей F_1 , у которых в сравнении с зааненскими сверстницами более длительный лактационный период, более высокое содержание жира и белка в молоке, что позволяет рекомендовать их к более широкому использованию для производства товарного молока.

Молочная продуктивность коз зааненской породы и нубийско-зааненских помесей за 305 дней лактации

V	Показатель, кг					
Кличка жи- вотного	Удой 305 дней	Получено	Получено белка			
	лактации	молочного жира				
I группа						
Габби	546,4	22,4	19,1			
Гаванна	714,9	28,6	25,0			
Гагра	796,8	31,1	28,7			
Газель	763,3	32,1	26,7			
Гайза	645,9	26,5	23,3			
Гайна	521,3	20,9	17,2			
Гайя	611,1	25,7	22,0			
Гамиль	505,7	19,7	18,2			
Ганка	700,9	23,1	20,3			
Гасконь	608,3	26,2	21,3			
Гвиана	583,6	22,8	21,0			
В среднем	636,2	25,4	22,3			
II группа						
Дания	443,3	21,3	16,0			
Колея	570,8	25,7	20,0			
Груша	965,1	38,6	36,7			
Аукуба	535,1	27,3	19,3			
Анюта	528,7	24,3	19,0			
Варька	595,5	25,6	21,4			
Армене	976,9	39,1	35,2			
Аляска	645,3	29,0	22,6			
Варька	601,8	21,7	21,1			
Беляна	580,5	31,3	29,6			
Ложка	556,9	24,0	17,8			
В среднем	636,4	28,6	23,5			

The paper presents comparative data in milk production of goats saanen and nubian-saanen crosses first lactation.

Key words: saanen, nubian-saanen crosses, milk productivity.

Шаталов Вячеслав Аркадьевич, канд. с.-х. наук, тел. (499) 976-06-90, e-mail: kozovodstvo@gmail.com

УДК 637.115/637.12:639

МЕХАНИЗМ ОБРАЗОВАНИЯ ЗАГРЯЗНЕНИЙ НА ДОИЛЬНОМ ОБОРУДОВАНИИ В КОЗОВОДСТВЕ И МОЮЩИЕ СРЕДСТВА ДЛЯ ИХ УДАЛЕНИЯ

Г.П. ДЕГТЕРЕВ, Е.В. МАШОШИНА

Российский государственный аграрный университет – МСХА имени К.А. Тимирязева

Рассматривается механизм образования загрязнений в процессе машинного доения, обусловленный особенностью состава и микроструктуры козьего молока, и рекомендации по выбору компонентов, необходимых при создании нового щелочного моющего средства для удаления загрязнений с поверхности доильного оборудования в молочном козоводстве.

Ключевые слова: молочные загрязнения, адсорбция, адгезия, моющее средство, козье молоко, доильное оборудование.

роведенные нами исследования и анализ литературных данных о механизме образования биопленочных загрязнений на доильном оборудовании в козоводстве, обусловленный особенностями состава и микроструктуры козьего молока [1], характеризуется рядом особенностей.

Возможные преобразования, происходящие с молоком в процессе машинного доения коз, и пос-