МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ - МСХА им. К.А.Тимирязева

Институт агробиотехнологии Кафедра метеорологии и климатологии

С.М. Авдеев, А.И. Белолюбцев

МЕТОДЫ НАБЛЮДЕНИЙ И АНАЛИЗА В ГИДРОМЕТЕОРОЛОГИИ

Рабочая тетрадь

Москва 2024

Методы наблюдений и анализа в гидрометеорологии: Рабочая тетрадь / С.М. Авдеев, А.И. Белолюбиев. М.: Изд-во РГАУ-МСХА, 2024. 46 с.

Рабочая тетрадь содержит задания к практическим занятиям по дисциплине «Методы наблюдений и анализа в гидрометеорологии».

Предназначено для студентов, обучающихся по направлению 05.03.04 «Гидрометеорология», направленность «Климатическая безопасность» (уровень бакалавриата).

Рекомендовано к изданию учебно-методической комиссией института агробиотехнологии (протокол № 8 от 27.02. 2024 г.).

© Авдеев С.М.,Белолюбцев А.И., составители, 2024 © ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, 2024

СОДЕРЖАНИЕ

	стр						
Ведение	4						
Работа 1. Измерение солнечной радиации	5						
Работа 2. Измерение отражающей способности подстилающей							
поверхности	6						
Работа 3. Измерение температуры почвы							
Работа 4. Измерение температуры воздуха (термометры)	12						
Работа 5. Измерение температуры воздуха (термограф)	13						
Вопросы к контрольной работе № 1.	16						
Работа 6. Измерение влажности воздуха (психрометры)	17						
Работа 7. Измерение влажности воздуха (гигрометр)							
Работа 8. Измерение осадков.							
Работа 9. Определение плотности снега и запасов воды в нем							
Работа 10. Измерение атмосферного давления	27						
Работа 11. Наблюдения за ветром.	29						
Вопросы к контрольной работе № 2.	33						
Работа 12. Теодолитная съемка.	34						
Работа 13. Продольное нивелирование.	36						
Работа 14. Измерение координат с помощью систем глобального	38						
позиционирования							
Работа 15. Гидрологические наблюдения.	39						
Работа 16. Оценка термических условий года и условий его увлажнения	41						
Вопросы к контрольной работе № 3.	43						
Заключение	44						

Введение

Данное издание является рабочей тетрадью для лабораторно-практических занятий по курсу «Методы наблюдений и анализа в гидрометеорологии» для студентов факультета агрономии и биотехнологии, направления 05.03.04 — «Гидрометеорология».

С целью эффективного закрепления пройденного материала, весь курс состоит из тематических заданий, включающих в себя таблицы для заполнения по результатам выполненных наблюдений, задачи для решения, схематическое изображений приборов и их составных частей, а также вопросы для самоконтроля студентов.

Каждая работа после выполнения, сдается преподавателю, после чего в тетради ставится соответствующая отметка, которая заверяется подписью преподавателя. Выполнение и защита всех работ является обязательным условием допуска к экзамену.

ИЗМЕРЕНИЕ СОЛНЕЧНОЙ РАДИАЦИИ (пиранометр)

Цель занятия: Изучить виды солнечных радиационных потоков и познакомиться со способами измерения солнечной радиации.

Задачи: Освоить методы измерения солнечной радиации и получить навыки работы с приборами для ее измерения.

Задание: 1. Провести измерения рассеянной и суммарной радиации пиранометром.

2. Рассчитать прямую радиацию.

Таблица 1

Результаты измерения солнечной радиации пиранометром

	Место нуля гальванометра		Рассеянная радиация Суммарная ради (с экраном) Суммарная ради			_		
$N_0{'}$	N_0 "	$\frac{N_0' + N_0''}{2}$	N_1 N_2 N_3		N_4	N_5	N_6	

Таблина 2

Вычисление рассеянной и суммарной радиации

Рассеянная радиация (D)	Суммарная радиация (Q)
$N_1 + N_2 + N_3$	$N_4 + N_5 + N_6$
$\pm \Delta N$	$\pm \Delta N$
$N'_0 + N''_0$	$N_0' + N_0''$
2	2
Сумма	Сумма
Переводной множитель	Переводной множитель
(K)	(K)

Радиация, Bт/м ²	
Рассеянная (D)	
Суммарная (Q)	
Прямая (S')	

<u>Задача</u>: отсчет по гальванометру при работе с экраном равен 16 делений, без экрана - 47 делений, переводной множитель $K = 10 \text{ Bt/m}^2$. Определить приход прямой радиации на горизонтальную поверхность (S ')

 $\underline{3 \text{адача:}}$ прямая радиация, измеренная актинометром S=260 Bt/м², рассеянная радиация D=134 Bt/м², высота солнца над горизонтом h=30°. Найти суммарную радиацию(Q).

Вопросы: 1. Каков принцип действия термоэлектрического пиранометра?

2. Как записывается уравнение радиационного баланса днем в ясную и пасмурную погоду, ночью? 3. Какова роль солнечной радиации как незаменимого фактора среды обитания?

ИЗМЕРЕНИЕ ОТРАЖАЮЩЕЙ СПОСОБНОСТИ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ

(альбедометр походный)

Цель занятия: Изучить особенности альбедо и его зависимость от различных свойств поверхности.

Задачи: Освоить методы измерения альбедо и получить навыки работы с приборами для ее измерения.

Задание: 1. Произвести измерение отраженной и суммарной радиации альбедометром.

2. Рассчитать альбедо.

Таблица 3

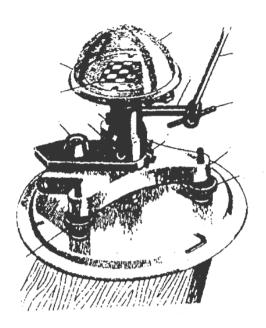
Результаты измерения альбедо походным альбедометром

Mec	го нуля	нуля		Суммарная радиация (Q)		Отраж	кенная рад (R _к)	циация
No'	No"	$\frac{N_0' + N_0''}{2}$	N ₁ N ₂ N ₃			N ₄	N ₅	N_6

Таблица 4

Вычисление отражающей способности

Суммарная радиация (Q)	Отраженная радиация (Rк)
$N_1 + N_2 + N_3$	$N_4+N_5+N_6$
3	3
$\pm \Delta N$	$\pm \Delta N$
$-\frac{N'_0+N''_0}{2}$	$-\frac{N_0'+N_0''}{2}$
Сумма	Сумма
Переводной множитель	Переводной множитель
(K)	(K)


Радиация, Вт/м ²	
Отраженная (Rк)	
Суммарная (Q)	
Альбедо $A = (R_K / Q)$	x 100%

<u>Задача:</u> альбедо подстилающей поверхности A=55 %, суммарная радиация Q=280 Вт/м² Чему равна величина поглощенной радиации?

<u>Задача:</u> суммарная радиация $Q = 270 \text{ Bt/m}^2$, отраженная коротковолновая радиация $R_K = 80 \text{ Bt/m}^2$. Чему равна поглощательная способность такой поверхности?

Вопросы: 1. Какие естественные поверхности имеют наибольшее и наименьшее альбедо?

2. Каковы правила использования альбедометра?

Рис. Термоэлектрический пиранометр М-80М:

- 1 установочные винты; 2 уровень; 3, 10 винты; 4 стойка;
- 5 термобатарся; 6 корпус; 7 стеклянный колпак; 8 стержень; 9 трубка; 11 пружина; 12 тренога

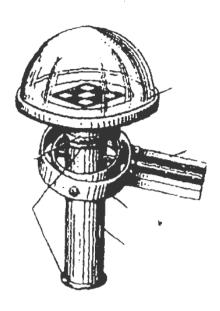


Рис. Альбедометр походный М-69: г ис. жив-ведометр походный М-69: 1 - резинявые прокладки; 2 - итулка, 3 - головка пиранометра, 4 - рукоятка; 5 - карданный подвес, 6 - трубка

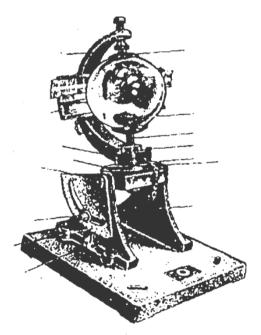


Рис. Гелмограф универсильный ГУ-1:
1 - указитель широты; 2 - сектор; 3 - винт для пакрепления угля наклона оси; 4 - горизоптольния осы; 5 -лимб; 6 - колонка; 7 - чашка; 8 - скоба; 9 и 11 - верхний и нижний упоры; 10 - стекляншый шар; 12 - штифт; 13 - диск; 14 - индекс на диске; 15 - стойка

Современные актинометрические приборы

Альбедометр СМ-7В

Пиранометр SPN 1

Установка из 2-х пиранометров СМР 11

Пиранометр SP Lite Silicon

Пиранометр QMS101

Двойной пиранометр (альбедометр)

ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ ПОЧВЫ

(термометры: срочный, минимальный, максимальный, коленчатые, походный, вытяжные)

Цель занятия: Изучить особенности распространения температуры по почвенному профилю и строение жидкостных термометров.

Задачи: Освоить методы измерения температуры почвы и получить навыки работы с приборами для ее измерения.

<u>Задание:</u> 1. Произвести отсчет температуры почвы по срочному, максимальному, минимальному, коленчатым, походному и вытяжным термометрам.

2. Ввести поправки к отсчету по температурам и дать исправленную величину.

Таблица 5 Результаты измерения температуры почвы

Термометры		отсчет	поправка	исправленная величина
Срочный				
Максимальный	<u> </u>			
Минимальный				
	5 см			
Коленчатые	10 см			
	15 см			
	20 см			
Походный	10 см		_	_
Вытяжные	20 см			
	80 см			
Глубина пром	ерзания		_	_
почвы, см				

<u>Задача</u>. Изобразить графически, согласно законам Фурье суточный ход температуры на поверхности почвы и на глубине 40 см.

- 1. Что такое активный слой почвы и какова его глубина?
- 2. До какой глубины прослеживается годовой ход температуры в почве?
- 3. Как правильно выбрать площадку для установки почвенных термометров?

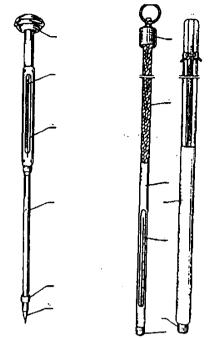


Рис. Термометр-щуп АМ-6 1 – ручка, 2 – термометр, 3 – прорезь, 4 – оправа, 5 – прокладка, 6 – наконечник

Рис. Термометр вытяжной ТПВ-50 1 и 7 – металлический колпачок, 2 – термометр. 3 – оправа, 4 – деревянный шест. 5 – колпачок с кольцом. 6 – эбонитовая трубка

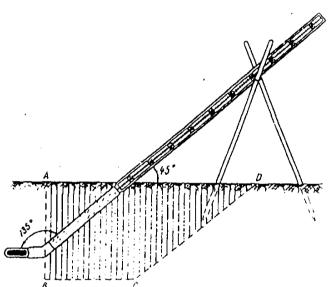


Рис Установка коленчатого термометра ТМ-5

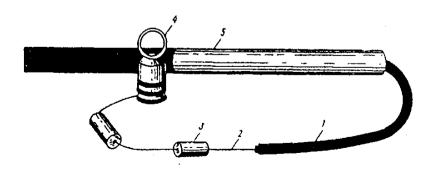
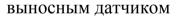


Рис. Мерзлотомер АМ-21 1 – защитная трубка, 2 – резиновая трубка, 3 – шнур, 4 – пробки, 5 – колпачок с кольцом

Современные термометрические приборы

Измеритель температуры, влажности, pH TFA 481000


Термометр S 122316

Термометр почвенный ТБП термометр с

Цифровой

Почвенный термометр с возможностью измерения влажности почвы TR 46908

Термометр с возможностью измерения рН почвыНІ 99121 N

ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ ВОЗДУХА

(термометры: психрометрический, минимальный, максимальный)

Цель занятия: Изучить особенности распределения температуры в приземном слое атмосферы и правила размещения термометров в психрометрической будке. **Задачи**: Освоить методы измерения температуры воздуха и получить навыки работы с приборами для ее измерения.

<u>Задание:</u> 1. Произвести отсчет температуры воздуха по психрометрическому, минимальному и максимальному термометрам.

2. Ввести поправки к отчету по термометрам и дать исправленную величину.

Таблица 6

Результаты измерения температуры воздуха

Терм	ометры	отсчет	поправка	Испр. величина
Психрометричес	ский (сухой)			
Максимальный	до встряхивания			
	после			
Минимальный спирт				
	штифт			

<u>Задача.</u> Рассчитать сумму активных температур выше 10° ($\sum t$ ак $> 10^{\circ}$) и сумму эффективных температур ($\sum t$ эф $> 5^{\circ}$), используя среднесуточные температуры:

Таблица 7

Расчет сумм активных и эффективных температур

Среднесуточная температура, °С	3	8	14	18	12	7	23	20	Сумма температур
$\sum t a\kappa > 10^{\circ}$									Температур
$\sum t \Rightarrow \phi > 5^{\circ}$									

<u>Сумма активных температур</u> - показатель характеризующий количество тепла и выражающийся суммой средних суточных температур воздуха, превышающий биологический минимум температуры.

<u>Сумма эффективных температур</u> - показатель характеризующий количество тепла, выраженной суммой средних суточных температур воздуха, уменьшенных на величину биологического минимума температуры.

- 1. Опишите основные конструктивные особенности минимального и максимального термометров.
- 2. Каков принцип действия минимального и максимального термометров?
- 3. Как правильно установить термометры для измерения температуры воздуха?

ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ ВОЗДУХА (термограф)

Цель занятия: Изучить особенности строения и разновидности термографов. **Задачи**: Освоить методы измерения температуры воздуха термографом и получить навыки работы с ним

<u>Задание:</u> 1. Произвести отсчеты срочной температуры воздуха по психрометрическому термометру и термографу.

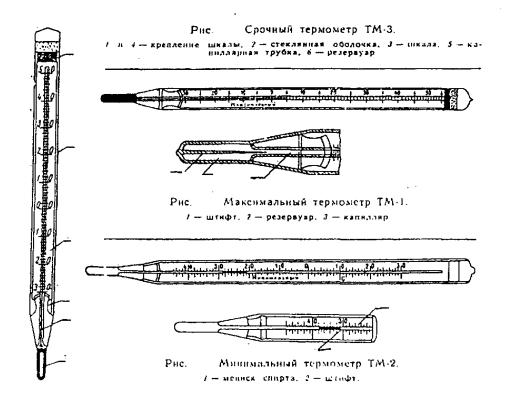
- 2. Ввести поправку к отсчету психрометрического термометра.
- 3. Рассчитать поправку к отсчету по термографу и ввести ее.

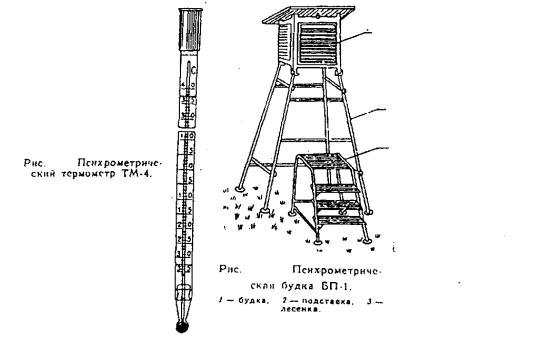
Таблица 8

Определение поправки на показания термографа

Наименование приборов	Отсчет	поправка	Исправленная
			величина
Термометр			
психрометрический			
Термограф недельный			

Задача: Пользуясь лентами суточного термографа определить максимальную, минимальную температуру воздуха и амплитуду температуры за метеорологические сутки (между 18 часами предыдущих и последующих суток).


Таблица 9


Обработка ленты термографа

Наименование прибора	максимум	минимум	амплитуда
Термограф суточный			

Вопросы: 1. Каков порядок установки термографа в рабочее состояние?

2. Как обрабатывается лента термографа?

Современные приборы для записи изменений температуры воздуха

M-16 A T-print G 0221

VLT 4 siVLTH

Loggicar-E

Вопросы к контрольной работе 1

- 1. Устройство и принцип работы термоэлектрического пиранометра.
- 2. Устройство и принцип работы альбедометра походного.
- 3. Устройство и принцип работы гелиографа Величко.
- 4. Устройство и принцип работы вытяжных почвенных термометров.
- 5. Устройство и принцип работы минимального термометра.
- 6. Устройство и принцип работы максимального термометра.
- 7. Термометры, используемые для измерения температуры почвы.
- 8. Устройство и принцип работы термографа.
- 9. Правила обработки ленты термографа.
- 10. Виды радиационных потоков, измеряемые пиранометром.
- 11. Виды радиационных потоков, измеряемые альбедометром.
- 12. Требования к установке и устройству психрометрической будки.
- 13. Требования к оборудованию почвенной площадки.
- 14. Правила работы с термоэлектрическим пиранометром и записи его данных.
- 15. Правила работы с походным альбедометром и записи его данных.
- 16. Правила работы с гелиографом Величко и записи его данных.
- 17. Правила работы с термометрами для измерения температуры почвы и записи их данных.
- 18. Правила работы с термометрами для измерения температуры воздуха и записи их данных.
- 19. Современные приборы для измерения температуры почвы.
- 20. Современные приборы для измерения температуры воздуха.

ИЗМЕРЕНИЕ ВЛАЖНОСТИ ВОЗДУХА (психрометры станционный и аспирационный)

Цель занятия: Изучить параметры, характеризующие влажность воздуха и строение станционного психрометра.

Задачи: Освоить психрометрический метод измерения влажности воздуха и получить навыки работы со станционным и аспирационным психрометрами, а также работу с психрометрическими таблицами

Задание: 1. Произвести отсчет температуры по станционному психрометру в метеорологической будке.

- 2. Ввести поправки к отсчетам.
- 3. Дать исправленную величину.
- 4. Используя психрометрические таблицы определить: парциальное давление водяного пара (e), относительную влажность (f), недостаток насыщения (d), точку росы (td), парциальное давление насыщенного водяного пара (E).
- 5. В холодный период года за 0,5 часа до наблюдения смочить батист на резервуаре смоченного термометра.

Давление воздуха (Р)____гПа

Таблица 10

Расчет показателей влажности воздуха по станционному психрометру

•	отсчет	поправка	испр. величина
Сухой термометр (t)			
Смоченный термометр (t')			
t - t'			
Δe			
Парциальное давление (е), гПа			
Относительная влажность (f), %			
Недостаток насыщения (d), гПа			
Точка росы (td), ° С			
Давление насыщенного водяного			
пара (Е), гПа			

Формулы для расчета относительной влажности и дефицита насыщения:

 $f=e/E \times 100\%$ d=E-e

Задачи:

- 1. Сравнить величину давления насыщенного водяного пара (Е), рассчитанную по психрометрическим таблицам и формуле.
- 2. Показания сухого термометра 20,3 °C, смоченного 17,8 °C, атмосферное давление 1010 гПа. Определить:

 $\Delta e =$, e = , f = , d = , $t_d =$, E =

- 3. Если t = t' какие значения имеют f и d?
- 4. Если температура воздуха опустилась до точки росы, какие значения имеют f и d?

Расчет показателей влажности воздуха по аспирационному психрометру

	отсчет		поправка		исправленная величина	
Сухой термометр (t)						
Смоченный термометр (t')						
t - t'						
Δε						
Парциальное давление (е), гПа						
Относительная влажность (f), %						
Недостаток насыщения (d), гПа						
Точка росы (td), °С						
Давление насыщенного водяного пара (E), гПа						

Задача: Показания сухого термометра 14,0°C, смоченного 9,5°C, атмосферное давление 1020 гПа. Определить:

$$\Delta e =$$
 , $e =$, $f =$, $d =$, $t_d =$, $E =$

Задача: Показания сухого термометра 26,0°C, смоченного 23,7°C, атмосферное давление 960 гПа. Определить:

$$\Delta e =$$
 , $e =$, $f =$, $d =$, $t_d =$, $E =$

- 1. В чем заключается существо психрометрического метода измерения влажности воздуха?
- 2. Какие правила наблюдения по станционному психрометру в холодный период года с температурами до -10° ?
- 3. Как будет различаться по степени сухости воздух при относительной влажности 80 и 20%?
- 4. Почему в ночные часы чаще всего образуется роса?
- 5. Назвать величины характеризующие влажность воздуха.
- 6. Почему аспирационный психрометр считают «походным»?
- 7. Опишите основной принцип положенный в основу работы прибора.

ИЗМЕРЕНИЕ ВЛАЖНОСТИ ВОЗДУХА (гигрометр волосной)

Цель занятия: Изучить особенности строения и функционирования волосного гигрометра.

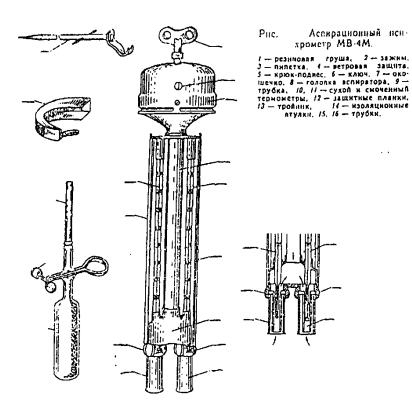
Задачи: Освоить гигроскопический метод измерения влажности воздуха и получить навыки работы с волосным гигрометром

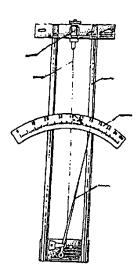
Задание:

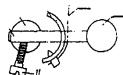
- 1. Произвести отсчет температуры по сухому термометру и по гигрометру в метеорологической будке.
- 2. Ввести поправку к отсчету по сухому термометру и дать исправленную величину.
- 3. Пользуясь графиком, по показанию гигрометра найти относительную влажность воздуха.
- 4. Используя психрометрические таблицы, определить характеристики влажности воздуха.

Таблица 12 Измерение влажности воздуха волосным гигрометром

	отсчет	поправка	испр. величина
Термометр			
Гигрометр			
Относительная влажность (f), %			
Парциальное давление (е), гПа			
Недостаток насыщения (d), гПа			
Точка росы (td), °C			
Давление насыщенного водяного пара			
(E), гПа			

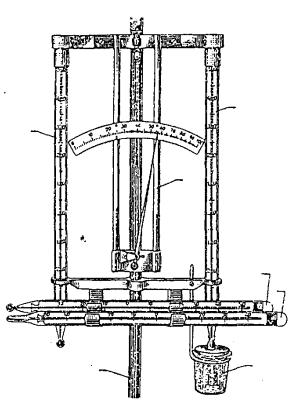

30 110110.	Показание с	WALA TAK	момотро 7	200	инколо гиг	novem	o 72	попонна	Опрацац	
З адача.	ттоказание с	yxoro rep	мометра /.	,Z U,	, шкала гиг	рометр	1a / 5	деления.	Определ	ить.


 $\mathbf{e}= \qquad \quad , \ \mathbf{f}= \qquad \quad , \ \mathbf{d}= \qquad \quad , \ \mathbf{E}=$


Задача: Показание сухого термометра -4,5°C, шкала гигрометра 34 деления. Определить:

 $\mathbf{e} = \mathbf{, f} = \mathbf{, d} = \mathbf{, t_d} = \mathbf{, E}$

- 1. Охарактеризуйте метод, применяемый для измерения влажности воздуха волосным гигрометром.
- 2. Что такое физическое испарение, транспирация и суммарное испарение? Назовите факторы, влияющие на испарение.
- 3. Опишите назначение, устройство и принцип действия гигрографа.
- 4. Как построить тарировочный график для гигрометра?



Piic. Волосной гигро-

Метр МВ-1.

1—волос, 2— регулировочный инт, 3— контргайка, 4— рама, 5— шкала, 6— стелка, 7— стерженек, 4—ось, 9—кулачок, 10—грузик, 11—винт,

Установка приборов в психрометрической будке. PHC I= штатив. 7. J= сухой и смоченкый термометры, I= гигрометр. 5. 6= максимальный и миникальный термометры, T= стаканчих с водой.

Современные психрометры

RST 0601 EXTEH HD 500

EXTEH RH 490

ИЗМЕРЕНИЕ ОСАДКОВ (осадкомер Третьякова)

Цель занятия: Изучить параметры, характеризующие осадки, условия их выпадения, строение осадкомеров и дождемеров.

Задачи: Освоить методы измерения осадков и получить навыки работы с осадкомером Третьякова

Задание: Определить количество осадков (мм) и поправки на смачивание ведра осадкомера

Таблица 13 Измерение осадков с помощью осадкомера Третьякова

Цена деления измерительног				Разность (поправка на	Количество выпавших	
о стакана Н, мм	делений стакана	ММ	слива, мм	смачивание), мм	осадков, т/га	

Задача: За сутки выпало 70 мм осадков, причем 55 % этих осадков выпало между 14-16 ч. Определить интенсивность осадков в этот промежуток времени и в течении суток (мм/мин., мм/час.)

<u>Задача</u>: В результате сильного ливня количество выпавших осадков за 15 мин. составило 46,5 мм. Сколько воды в M^3 (т) выпало за 1 мин. на площадь 1 га?

- 1) Что такое конденсация? Как происходит конденсация в атмосфере?
- 2) Охарактеризуйте приборы для измерения осадков.
- 3) Что входит в комплект осадкомера?
- 4) Перечислите наземные гидрометеоры и дайте анализ их образования.

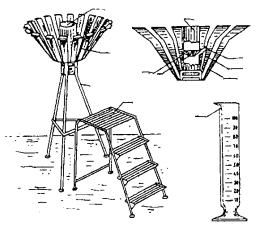
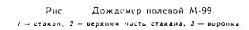
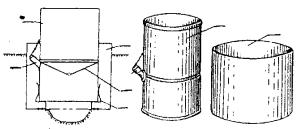




Рис. Осадкомер Третьякова О-1. I =воронка, 2 =днафрагма, 3 =ведро. 4 =колпачок, 5 =носик, 6 =планочкая защита, 7 =подставка, 8 =лесенка, 9 =намерительный стакаи.

. Почвенный дождемер ГР-28. I= носик, I= ведро, I= гнездо. I= диафрагия, I= опоры.

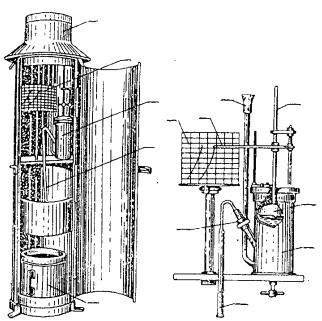


Рис. Плювнограф П-2.

I- приемный сосуд, 2- сливная трубка, 3- поплавковая камари. 4- поплавки, 5- стержень поплавки, 6- стрелка с пером, 7- трубка, 8- сифон, 9- барабак, 10- водосфорный сосуд.

Современные приборы для регистрации осадков

Чаша - дождемер

Автономный осадкомер ОТТ Pluvio

DELTA OHM

ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ СНЕГА И ЗАПАСОВ ВОДЫ В НЕМ (весовой снегомер, маршрутная снегомерная рейка)

Цель занятия: Изучить параметры, характеризующие снежный покров и строение весового снегомера.

Задача занятия: Освоить метод определения плотности снега и получить навыки работы с весовым снегомером

Задание: 1. Измерить высоту снежного покрова переносной рейкой.

- 2. Произвести измерения снегомером в 2-х точках
- 3. Определить плотность снега.
- 4. Рассчитать запас волы в мм и ${\rm M}^3/{\rm ra}$.

Таблица 14

Определение параметров снежного покрова

Дата	Наблюде	Высота снега, см		Отсчет по Плотность		Запас воды		
	ния	по рейке	по шкале цилиндра	шкале безмена	снега	ММ	м³/га	
	1.							
	2.							
	Среднее		•					

Формула для расчета запасов воды в снеге:

$$H = 10hd$$

где, H – запасы воды в снеге, мм; d – плотность снега, г/см 3 ; h – высота снега, см

3адача: Высота снега 32 см, толщина ледяной корки 8 мм, плотность снега 0,35 г/см 3 . Найти общие запасы влаги в м 3 /га.

<u>Задача:</u> Определить высоту снежного покрова, если плотность снега 0,31 г/см³, запасы воды в снеге 1050 м³/га.

- 1. Какое значение имеет снежный покров?
- 2. Какие факторы влияют на накопление и распределение снежного покрова? Каковы его характеристики?
- 3. Как устроен весовой снегомер? Порядок производства наблюдений.

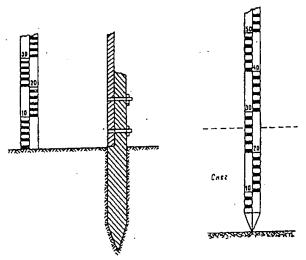
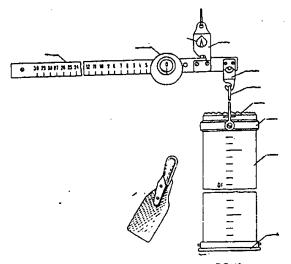



Рис: Снегомерные рейки.

Рнс. Походный вссовой снегомер ВС-43. I- латунная рейха. 2- переданжной груз. 3- стрелка, 4- подвес, 5- крючок, 6- дужка, 7- режущая кромка, 8- кольцо, 9- снегозаборинк, 10- крышка, 11- лопатка.

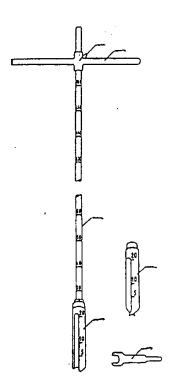


Рис. Почвенный бур АМ-16.

1. 5 — буровые стаквим, 2 — штанга с контргайкой, 3 — фиксатор, 4 — руковтка, 6 — ключ-чистилка.

Схема работы современного прибора для измерения высоты снежного покрова

1-

2-

3-

4-

ИЗМЕРЕНИЕ АТМОСФЕРНОГО ДАВЛЕНИЯ (барометр - анероид)

Цель занятия: Изучить закономерности распределения атмосферного давления в атмосфере и строение барометров.

Задачи: Освоить методы измерения атмосферного давления и получить навыки работы с барометром-анероидом.

Задание:

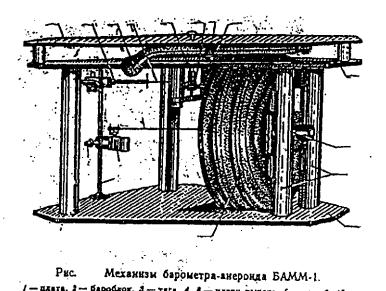
- 1. Произвести отсчет давления и температуры по анероиду.
- 2. Сделать расчет поправок и определить суммарную поправку.
- 3. Найти исправленную величину давления воздуха.

Таблица 15

Определение атмосферного давления

Наименование	Отсчет	Суммарная	Исправленная
прибора		поправка	величина
Анероид			
Термометр при анероиде			

Таблица 16


Расчет поправок анероида

На шкалу	Приведенная к 0°C	Добавочная	Суммарная

Задачи: 1. Вычислить барическую ступень при давлении 1000 гПа и температуре, ⁰C:

- 1. -40 h =
- 2. 0.0 h =
- 3. +40 h =
- 4. Рассчитать превышение 3-го этажа над 1-м этажом здания, используя формулу Бабинэ.

- 1. На сколько метров надо переместиться по вертикали, чтобы давление изменилось на 1 гПа?
- 2. Когда летом или зимой (днем или ночью) давление с высотой уменьшается быстрее?
- 3. Как связать наличие горизонтального барического градиента и ветра?

PEC.

1 — плата, 2 — бароблок, 3 — тата, 4, 8 — илечи рычага, 5 — ось. 6, 15 — регуляровочаме влаты, 7 — стремка, 9 — термометр, 10 — шармкриая цепочка, 11 — ось стрелки. 12 — родик, 13 — шкалавая плата, 14 — спиральная пружина, 16 — стойка.

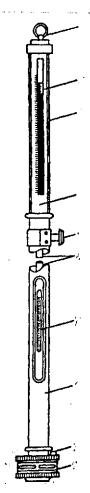


Рис. Барометр чашеч-ный станционный СР:

I— кольцо; 2— ноннус; 3— защитное стекло; 4— оправа; 5— кремальера; 6— барометрическая трубка; 7— термометр; 8— амит; 9— чашка

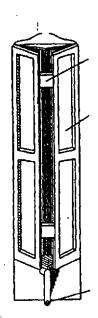


Рис. / Дікафчик для установки барометра:

1- проредь с матовым стеклом; , 2- дверца; 3- крепление

наблюдения за ветром

(Флюгер Вильда, ручной анемометр)

Цель занятия: Изучить особенности ветрового режима на Земле, а также строение флюгера и анемометра.

Задачи: Освоить методы измерения скорости и направления ветра и получить навыки работы с флюгером и анемометром.

Задание:

- 1. Определить направление ветра, среднее положение доски и ее максимальное отклонение по флюгеру Вильда.
- 2. Произвести три измерения скорости ветра по анемометру.
- 3. Используя тарировочный график, определить скорость ветра в м/с.

Таблица 17

Результаты наблюдения по флюгеру

Направление	Скорость ветра				
ветра	Среднее положение доски	M/C			

Таблица 18

Результаты наблюдения по анемометру

Вре мя	Отсчеты анемометра		Разность К ₂ – К ₁	Количе ство	Деление счетчика	Скорост ь ветра,	Средняя скорость
	K ₁	К2		секунд	в 1 сек	м/с	ветра, м/с

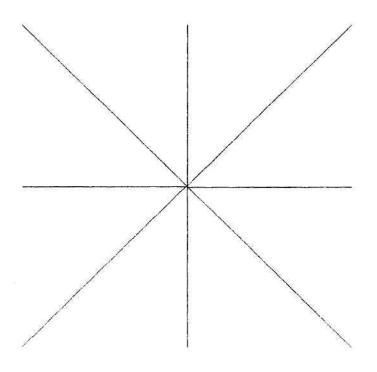
<u>Задач</u>а:

- 1. Как записать направление ветра в румбах и как его назвать, если воздушный поток движется:
- а) с севера на юг:
- б) с северо-запада на юго-восток:
- в) с юго-востока на северо-запад?
- 2. Перевести в румбы направление ветра. выраженное следующими числовыми значениями:

25° ,180° ,300° ,270°, 220°

3. Назовите местные ветры и дайте им характеристику.

- 1. Как устанавливается флюгер на метеоплощадке?
- 2. В какой последовательности производятся наблюдения за направлением и скоростью ветра?
- 3. Что показывает шкала анемометра и как получить скорость ветра в м/с?


Роза ветров Повторяемость направлений ветра (%) и среднее число штилей

Задание: Используя данные повторяемости направлений ветра (%) для января и июля, построить розу ветров.

Таблица 19

Повторяемость направлений ветра

Месяц	C	CB	В	ЮВ	Ю	ЮЗ	3	C3	Число штилей
Январь	3	15	35	11	6	9	12	9	7
Июль	13	8	10	6	7	15	8	33	9

- 1. При каких работах и как учитывается роза ветров?
- 2. Какое значение имеет ветер в повседневной жизни, промышленности и сельском хозяйстве?

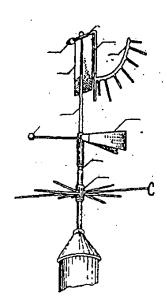
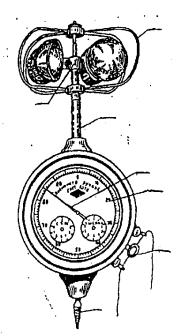
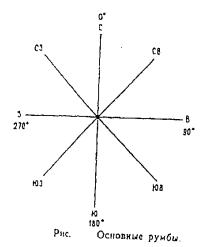
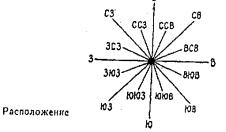


Рис. Флюгер Вильда.

 $I-\phi$ люгарка, 2-протявоаес флюгарки, J-непидвижная ось, 4-нуфта, 6-нетвялическая доска, 6-горизоитальная ось, 7-трубка, 8-дуга со штифтами, 3-стержень дуги. 10-груз-противоваес.


Рис. Анемометр ручной чашечный МС-13.

I — ось, 2 — вертушка, 3 — кольцо арретира, 4 — виятовая нарезка, 5 — стрелкв цевтральной шкалы, 6 — центральная шкала, 7 — исталлическая Дуга.

1 CS CS

Роза встров за нюль для ст. Мичуринск.

Для обозначения румбов используют начальные буквы стран света:

С — север, ССВ — северо-северо-восток, СВ — северо-восток, ВСВ — востоко-северо-во- сток, В — восток, ВІОВ — востоко-юго-восток, ІОВ — юго-восток, ІОІОВ — юго-юго-восток,	Ю — юг, ЮЮЗ — юго-юго-запад, ЮЗ — юго-запад, ЗІОЗ — западо-юго-запад, З — запад, ЗСЗ — западо-северо-запад, СЗ — северо-запад, ССЗ — северо-северо-запад.
--	--

Рис. румбов.

Термоанемометр чашечный LTT-1021

ATT - 1002

Электронный термо-анемометр АМ-50

Цифровой анемометр AV 9201

Анемометр крыльчатый TESTO 41

Вопросы к контрольной работе 2

- 1. Приборы, используемые для определения влажности воздуха. Принципы их работы.
- 2. Устройство и принцип работы станционного психрометра.
- 3. Устройство и принцип работы аспирационного психрометра.
- 4. Устройство и принцип работы волосного гигрометра.
- 5. Устройство и принцип работы осадкомера Третьякова.
- 6. Устройство и принцип работы полевого дождемера.
- 7. Устройство и принцип работы плювиографа.
- 8. Устройство и принцип работы весового снегомера.
- 9. Устройство и принцип работы барометра анероида.
- 10. Устройство и принцип работы барографа.
- 11. Устройство и принцип работы флюгера Вильда.
- 12. Устройство и принцип работы ручного анемометра.
- 13. Роза ветров. Назначение и правила построения.
- 14. Виды и типы осадков.
- 15. Параметры, применяемые для характеристики осадков.
- 16. Параметры, применяемые для характеристики снежного покрова.
- 17. Параметры, применяемые для характеристики влажности воздуха.
- 18. Параметры, применяемые для характеристики ветра.
- 19. Устройство и принцип работы волосного гигрографа.
- 20. Современные приборы для измерения осадков

ТЕОДОЛИТНАЯ СЪЕМКА (теодолит, рейка, планиметр)

Цель занятия: Изучить особенности теодолитной съемки на местности и принцип действия теодолитов

Задачи: Освоить методы теодолитной съемки и получить навыки работы с теодолитом.

<u>Задание:</u> Произвести съемку заданного участка с помощью теодолита. Составить схематический план участка в заданном масштабе. Измерить его площадь с помощью планиметра

Таблица 20

Журнал для записей результатов теодолитной съемки

$N_{\underline{0}}$	№ точки	Отчет по	Расстояния,	Схема теодолитного хода
точки	наблюдения	горизонтальному	M	
станции		углу		
	_		_	

- 1. Что понимают под геодезической или топографической съемкой?
- 2. Какие Вы знаете виды съемки?
- 3. Каковы правила оформления топографического плана?

Теодолит 2Т30П

Электронный теодолит

Теодолит морской

ПРОДОЛЬНОЕ НИВЕЛИРОВАНИЕ (нивелир, рейки)

(-----*)*

Цель занятия: Изучить особенности продольного нивелирования и принцип действия нивелира

Задачи: Освоить методы нивелирования и получить навыки работы с нивелиром.

Задание: Произвести продольное нивелирование участка, обозначенного преподавателем. С помощью нивелира и рейки определить превышение точек трассы и составить ее профиль.

Таблица 21

Журнал нивелирования

№ станции	Расстояния	Отчеты п	о рейкам	Превышения,	Cp.
№№ реек	до реек	задняя	передняя	MM	превышения,
					MM
План трассы					
Расстояния, м					
Отметки					
поверхности					
земли, м					

- 1. Что такое нивелирование?
- 2. Какие методы определения превышений Вы знаете?
- 3. Каким образом производится определение отметок точек?

ИЗМЕРЕНИЕ КООРДИНАТ С ПОМОЩЬЮ СИСТЕМ ГЛОБАЛЬНОГО ПОЗИЦИОНИРОВАНИЯ

(Приемник GPS / GLONASS)

Цель занятия: Изучить особенности структурной схемы систем глобального позиционирования и принцип действия приемника данных систем

Задачи: Освоить методы определения координат и своего местоположения, а также получить навыки работы с приемником GPS / GLONASS.

Задание: Определить координаты метеорологической обсерватории имени В.А. Михельсона и ряда объектов по заданию преподавателя

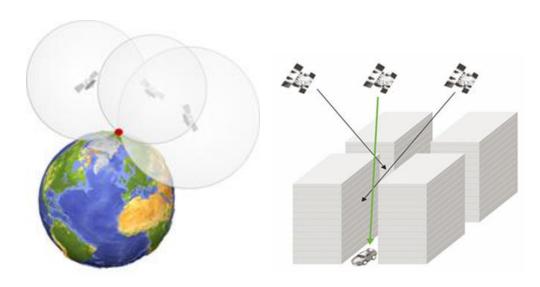
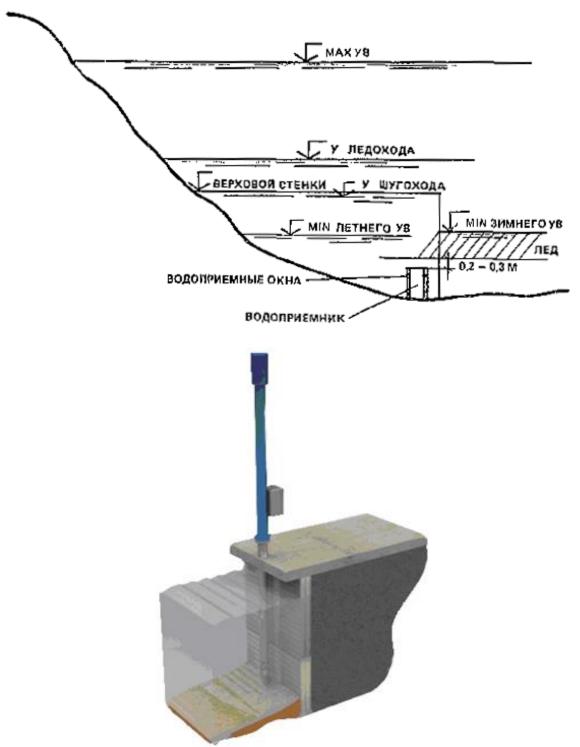


Таблица 22 Определение координат заданных объектов и своего местоположения

определение координат задания	ar cobertob ii eboero meeronosiomeniisi
Наименование пункта	Координаты
1. Обсерватория имени В.А. Михельсона	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	


- 1. Каков принцип действия систем глобального позиционирования?
- 2. Какое применение находят системы глобального позиционирования в промышленности, науке, повседневной жизни?

ГИДРОЛОГИЧЕСКИЕ НАБЛЮДЕНИЯ

Цель занятия: Изучить особенности гидрологических наблюдений и правила оборудования гидрологического поста Задачи: Познакомиться с правилами и методиками гидрологических

наблюдений
Задание: Перечислить правила организации гидрологического поста
Задание: перечислить виды гидрологических наблюдений
<u>задание.</u> перечислить виды гидрологических наолюдении

- 1. Чем отличаются гидрологические посты 1, 2 и 3 класса?
- 2. Чем различаются программы наблюдений на равнинных и горных реках?

Автоматический гидрологический пост "АГП -1Р"

Предназначен для **автоматического замера уровня воды** в реках и судоходных каналах, передачи данных заинтересованным службам, архивирования и статистической обработки. АГП -1Р является информационной основой организации мониторинга по всему водному бассейну России.

ОЦЕНКА ТЕРМИЧЕСКИХ УСЛОВИЙ ГОДА И УСЛОВИЙ ЕГО УВЛАЖНЕНИЯ

Цель занятия: Изучить особенности и алгоритм анализа температурного режима года и условий его увлажнения

Задачи: Освоить методы анализа условий конкретного года

Задание: 1. Выписать из метеорологических бюллетеней обсерватории данные выбранного года.

- 2. Заполнить таблицы 23, 24, 25, 26
- 3. Выполнить расчеты отклонений и изобразить графически беззаморозковый период и продолжительность активной вегетации

Таблица 23

Tep	МИЧ	ески	ие ус	СЛОВ	ия х	ОЛО	дно	го п	ерис	ода_				<u>ГГ.</u>					
Показатель									Me	сяц									
		X			XI			XII			I			II			Ш		
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
Средняя многолетняя																			
температура воздуха, °С																			
Средняя температура																			
воздуха в году																			
Отклонения от средних																			
многолетних температур,																			
$^{\circ}\mathrm{C}$																			
Количество дней с																			
оттепелью																			

Таблица 24

Термические условия теплого периодагода Показатель Месяц																			
Показатель									Me	сяц									
	IV				\mathbf{V}			VI			VII			VIII			IX		
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
Средняя многолетняя																		l	
температура воздуха, °С																			
Средняя температура воздуха																			
В ГОДУ																			
Отклонения от средних																			
многолетних температур, °С																			
Многолетняя сумма активных																			
температур нарастающим																			
итогом, °С																			
Смма активных температур																			
нарастающим итогом в																			
<u>году, °С</u>																			
				I	рафі	ическ	ий ан	нализ	}										
Продолжительность периода																			
активной вегетации, дн																			
Продолжительность																			
беззаморозкового периода, дн																		l	

Показатель									Me	сяц								
		X X			XI		XII I						П			Ш		
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Высота снежного покрова																		
на последний день декады																		
по многолетним данным, см																		
Высота снежного покрова																		
на последний день декады																		
года, см																		
Плотность снежного																		
покрова на последний день																		
декадыгода_г/см3																		
Запасы воды в снеге на																		
последний день декады по																		
многолетним данным, мм																		
Запасы воды в снеге на																		
последний день декады																		
года, мм																		
Глубина промерзания по																		
многолетним данным, см																		
Глубина промерзания по													,	,		,		
даннымгода, см																		

Таблица 26

	ЮВИЯ	і увл	ажн	ения	Ten.	JIOLU	пер	иода		00777		1	ода					
Показатель		TX 7			₹7			1 7 1	Me	сяц				X // // /	,		137	
	IV		1	V	_	1	VI	_	VII			VIII			4	IX	_	
TC	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Количество осадков по																		
многолетним данным, мм																		<u>i </u>
за месяц		I	I		ı	ı		ı	ı						ı			_
Сумма осадков загод,																		
MM																		
за месяц		l	l		l	l		l	l						l			
Отклонения от многолетних																		
значений, %																		
за месяц, %																		
Недостаток насыщения по																		
многолетним данным, гПа																		
сред. за месяц																		
Отклонение недостатка																		
насыщения от многолетних																		
данных, гПа																		
сред. за месяц																		
Значения ГТК по	-	-	-													-	-	-
многолетним данным за																		
май-август																		
ГТК за год	-	-	-													_	1	_

Вопросы к контрольной работе 3

- 1. Принципы определения дальности видимости.
- 2. Правила определения облачности.
- 3. Устройство и принцип действия теодолитов.
- 4. Прокладка тахиметрического хода.
- 5. Устройство и принцип действия нивелиров.
- 6. Устройство и принцип действия модулей систем глобального позиционирования.
- 7.Современные приборы для комплексного измерения гидрометеорологических параметров.
- 8. Современная орбитальная группировка для гидрометеорологических наблюдений и анализов.
- 9. Гидрологические наблюдения.
- 10. Оборудование автоматизированного рабочего места наблюдателя.
- 11. Гляциологические наблюдения.
- 12. Структура функционирования Росгидрометцентра и его задачи.
- 13. Структура географической сети Росгидромета.
- 14. Правила размещения метеостанций и гидрометеопостов.
- 15. Правила оборудования комнаты наблюдателей на метеостанциях и гидрометеопостах.
- 16. Нормативные документы, организующие работу на метеостанциях и гидрометеопостах.
- 17. Применение метеорологической информации в повседневной жизни и для решения производственных задач.
- 18. Виды и типы облаков.
- 19. Методы оценки загрязнения атмосферы.
- 20. Правила проведения наблюдений на метеостанциях и гидрометеопостах.

Учебное издание

Составители:

Авдеев Сергей Михайлович Белолюбцев Александр Иванович

МЕТОДЫ НАБЛЮДЕНИЙ И АНАЛИЗА В ГИДРОМЕТЕОРОЛОГИИ

Рабочая тетрадь

Издано в редакции составителей Корректура составителей