МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГАОУ ВО "КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.И. ВЕРНАДСКОГО" ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА

В. И. Войтицкий, А. И. Коваленко

Введение в математический анализ и теорию пределов

Учебно-методическое пособие для студентов

Симферополь Издательский дом КФУ 2022

Рецензенты:

Cмолич Bлаdимир Π авлович, к.ф.-м.н, доцент кафедры математического анализа Физико-технического института КФУ имени В. И. Вернадского

Третьяков Дмитрий Вадимович, к.ф.-м.н, доцент кафедры алгебры и функционального анализа Физико-технического института КФУ имени В.И. Вернадского

Войтицкий В. И. Введение в математический анализ и теорию пределов / В. И. Войтицкий, А. И. Коваленко. — Симферополь: Издательский дом КФУ, 2022. — 45 с.

Учебно-методическое пособие предназначено для студентов дневной и заочной формы обучения физических, математических и инженерных специальностей. Соответствует программе первого модуля дисциплины "Математический анализ" образовательно-квалификационного уровня "бакалавр".

Рекомендовано к печати заседанием кафедры математического анализа от 16.12.2021, протокол № 5

Утверждено методической комиссией Физико-технического института $\Phi \Gamma A O V B O$ " $K \Phi V$ им. В. И. Вернадского" от 07.02.2022, протокол № 6

Содержание

Предисловие	4
1. Введение в математический анализ	5
1.1. Метод математической индукции	5
1.2. Операции над числовыми множествами	7
1.3. Супремум и инфимум	10
2. Предел последовательности	12
2.1. Определение предела последовательности	12
2.2. Вычисление пределов последовательностей	15
3. Предел функции	23
3.1. Определение предела функции	23
3.2. Вычисление пределов функций	26
3.3. Асимптотические формулы. Символы Ландау	36
3.4. Исследование функции на разрывы	41

ПРЕДИСЛОВИЕ

В учебно-методическом пособии собрана необходимая теоретическая информация, представлены примеры решения типичных упражнений и задачи для самостоятельного решения по темам "Введение в математический анализ", "Предел последовательности", "Предел функции", соответствующим учебной программе первого модуля дисциплины "Математический анализ" для студентов физико-математических и технических специальностей.

Пособие разбито на разделы, в каждом из которых предложено по тридцать вариантов заданий для самостоятельного решения. Сочетание базового теоретического материала, разобранных примеров и значительного количества задач для самостоятельного решения, позволяет использовать пособие при проведении практических занятий (в том числе дистанционных), самостоятельных и контрольных работ, а также для самостоятельного изучения данных разделов математического анализа.

Авторы выражают благодарность рецензентам за ценные замечания.

1. Введение в математический анализ

1.1. Метод математической индукции. Пусть имеется утверждение F(n), зависящее от натурального n. Если это утверждение истинно при $n=n_0$ и из допущения его справедливости при каждом $n = k \ge n_0$ следует его истинность при n = k + 1, то данное утверждение верно для всех натуральных $n \ge n_0$.

На практике доказательство по данному методу состоит из двух шагов:

- 1. Проверяют истинность утверждения $F(n_0)$ (база индукции).
- 2. Допускают, что утверждение справедливо при n=k и, основываясь на этом, доказывают, что утверждение верно при n=k+1(индукционный переход).

Пример 1.1. Доказать справедливость утверждения для натуральных $n \geq 2$, пользуясь методом математической индукции:

$$1 \cdot 2 + 2 \cdot 3 + \ldots + (n-1) \cdot n = \frac{(n-1)n(n+1)}{3}$$
.

Решение:

- 1. Проверим тождество при n=2, имеем $1 \cdot 2 = 2$ верно.
- 2. Предположим справедливость тождества при n=k, т.е. будем считать, что $1 \cdot 2 + 2 \cdot 3 + \ldots + (k-1)k = \frac{(k-1)k(k+1)}{3}$. Докажем на основании этого, что тождество верно при n=k+1, т.е. $1\cdot 2+2\cdot 3+3\cdot 4+\ldots+(k-1)k+k(k+1)=\frac{k(k+1)(k+2)}{3}.$

Действительно, исходя из предположения, имее

$$1\cdot 2+2\cdot 3+3\cdot 4+\ldots+(k-1)k+k(k+1)=\frac{(k-1)k(k+1)}{3}+k(k+1)=$$

$$=\frac{(k-1)k(k+1)+3k(k+1)}{3}=\frac{k(k+1)(k-1+3)}{3}=\frac{k(k+1)(k+2)}{3},$$
 что и требовалось доказать.

Пример 1.2. Доказать справедливость утверждения для натуральных n, пользуясь методом математической индукции

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}.$$

Решение:

1. Проверим неравенство при n = 1 : $\frac{1}{2} < \frac{1}{\sqrt{3}}$ — верно.

2. Пусть тождество верно при n=k, т.е. $\frac{1}{2} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{2k-1}{2k} < \frac{1}{\sqrt{2k+1}}$. Докажем его справедливость при n=k+1, т.е. $\frac{1}{2} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{2k-1}{2k} \cdot \frac{2(k+1)-1}{2(k+1)} < \frac{1}{\sqrt{2(k+1)+1}}$. Действительно, используя предположение, получаем, что достаточно доказать неравенство $\frac{1}{\sqrt{2k+1}} \frac{2k+1}{2k+2} = \frac{\sqrt{2k+1}}{2k+2} < \frac{1}{\sqrt{2k+3}}$. После возведения в квадрат обеих (положительных) частей неравенства получаем, $\frac{2k+1}{(2k+2)^2} < \frac{1}{2k+3}$, что равносильно справедливому неравенству $\frac{(2k+1)(2k+3)}{(2k+2)^2} = \frac{4k^2+8k+3}{4k^2+8k+4} < 1$.

Задание 1.1. Доказать справедливость утверждения для натуральных n, пользуясь методом математической индукции.

1.
$$\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n} < \frac{1}{\sqrt{2n+1}};$$

2.
$$2^n > 5n + 1$$
, $n \ge 5$;

3.
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} < 2\sqrt{n}, \quad n \ge 2;$$

4.
$$1 \cdot 2 + 2 \cdot 5 + \ldots + n(3n-1) = n^2(n+1);$$

5.
$$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \ldots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$
;

6.
$$1 \cdot 3 + 2 \cdot 5 + \ldots + n(2n+1) = \frac{n(n+1)(4n+5)}{6}$$
;

7.
$$2 \cdot 2 + 3 \cdot 5 + \ldots + (n+1)(3n-1) = \frac{n(2n^2 + 5n + 1)}{2};$$

8.
$$\left(1 - \frac{1}{4}\right) \cdot \left(1 - \frac{1}{9}\right) \dots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n};$$

9.
$$4 \cdot 2 + 7 \cdot 2^3 + 10 \cdot 2^5 + \ldots + (3n+1) \cdot 2^{2n-1} = n \cdot 2^{2n+1}$$
;

10.
$$1+6+20+\ldots+(2n-1)2^{n-1}=3+2^n(2n-3);$$

11.
$$\frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \ldots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$
;

12.
$$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > \frac{13}{24}, \quad n \ge 2;$$

13.
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n}, \quad n \ge 2;$$

14.
$$1 \cdot 2^2 + 2 \cdot 3^2 + \ldots + (n-1) \cdot n^2 = \frac{(n^2 - 1)n(3n + 2)}{12}, \quad n \ge 2;$$

15.
$$\left(1 - \frac{4}{1}\right) \cdot \left(1 - \frac{4}{9}\right) \dots \left(1 - \frac{4}{(2n-1)^2}\right) = \frac{1+2n}{1-2n};$$

16.
$$\frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} < \frac{5n-2}{2n};$$

17.
$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

18.
$$\frac{1}{1 \cdot 5} + \frac{1}{3 \cdot 7} + \ldots + \frac{1}{(2n-1)(2n+3)} = \frac{n(4n+5)}{3(2n+1)(2n+3)}$$

19.
$$\frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \ldots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$

20.
$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \ldots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$
;

21.
$$2+7+14+\ldots+(n^2+2n-1)=\frac{n(2n^2+9n+1)}{6}$$
;

22.
$$1 + \frac{1}{3} + \frac{1}{7} + \ldots + \frac{1}{2^n - 1} > \frac{n}{2}$$

23.
$$1^2 + 3^2 + \ldots + (2n-1)^2 = \frac{n(4n^2 - 1)}{3}$$
;

24.
$$2^n > n^3$$
, $n \ge 10$;

25.
$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \le n;$$

26.
$$2^n > 2n+1, n \ge 3;$$

27.
$$(n+1)(n+2)(n+3)\dots(n+n) = 2^n \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1);$$

28.
$$\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n} \le \frac{1}{\sqrt{3n+1}}, \quad n \ge 2;$$

29.
$$1 + \frac{7}{3} + \frac{13}{9} + \ldots + \frac{6n-5}{3^{n-1}} = \frac{2 \cdot 3^n - 3n - 2}{3^{n-1}};$$

30.
$$1-2^2+3^2-4^2+\ldots+(-1)^{n-1}n^2=(-1)^{n-1}\frac{n(n+1)}{2}$$
.

- 1.2. Операции над числовыми множествами. Для двух данных множеств действительных чисел A и B вводятся следующие основные операции:
 - 1) дополнение $\overline{A} := \{x \in \mathbb{R} \mid x \notin A\};$
 - 2) объединение $A \cup B := \{x \in \mathbb{R} \mid x \in A \text{ или } x \in B\};$

- 3) пересечение $A \cap B := \{x \in \mathbb{R} \mid x \in A \text{ и } x \in B\};$
- 4) разность $A \setminus B := A \cap \overline{B} = \{x \in \mathbb{R} \mid x \in A \text{ и } x \notin B\}.$

Пример 1.3. Для данных множеств A и B найти множества \overline{A} , \overline{B} , $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$:

$$A = \{ x \mid |x^2 - 4x| < 5 \}, \quad B = \{ x \mid x^2 - 7x + 12 \le 0 \}.$$

Решение

Рассмотрим множество $A=\{\,x\,|\,|x^2-4x|<5\}.$ Раскрыв модуль, получаем систему неравенств: $\begin{cases} x^2-4x<5,\\ x^2-4x>-5. \end{cases}$ Найдем множество

решений данной системы методом графика параболы. Для этого рассмотрим уравнения $x^2-4x-5=0$ и $x^2-4x+5=0$. Первое из них имеет корни $x_1=5, x_2=-1$, у второго корней нет. Так как графики функций $f_1(x)=x^2-4x-5$ и $f_2(x)=x^2-4x+5$ представляют собой параболы с ветвями, направленными вверх, то первое неравенство $f_1(x)<0$ выполняется для $x\in (-1;5)$, а второе для $x\in \mathbb{R}$. Отсюда $A=(-1;5)\cap \mathbb{R}=(-1;5)$.

Рассмотрим множество $B = \{x \mid x^2 - 7x + 12 \le 0\}$. Поскольку уравнение $x^2 - 7x + 12 = 0$ имеет корни $x_1 = 3, x_2 = 4$, то с помощью метода интервалов устанавливаем, что B = [3; 4].

Отсюда, изображая множества A и B на числовой оси, получаем

$$\overline{A} = (-\infty; -1] \cup [5; +\infty), \quad \overline{B} = (-\infty; 3) \cup (4; +\infty),$$

$$A \cup B = (-1; 5), \qquad A \cap B = [3; 4],$$

$$A \setminus B = (-1; 3) \cup (4; 5), \qquad B \setminus A = \emptyset.$$

Задание 1.2. Для данных множеств A и B найти множества \overline{A} , \overline{B} , $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$.

1.
$$A = \{ x \mid x^2 - 7x + 12 \ge 0 \},$$
 $B = \{ x \mid |x - 3| < 1/2 \};$
2. $A = \{ x \mid x^2 + 5x + 6 \ge 0 \},$ $B = \{ x \mid |x + 4| < 2 \};$

3.
$$A = \{ x \mid x^2 - 11x + 10 > 0 \},$$
 $B = \{ x \mid |x + 5| \le 3 \};$

$$4. \ A = \{ \, x \, | \ \sqrt{x^2 + 4x + 4} < 20 \}, \qquad \qquad B = \{ \, x \, | \ \frac{x^3 + 1}{x - 5} > 0 \};$$

5.
$$A = \{ x \mid x^2 + 5x - 24 \ge 0 \},$$
 $B = \{ x \mid |x - 1| < 10 \};$

6.
$$A = \{ x \mid x^2 - 11x + 10 \le 0 \},$$
 $B = \{ x \mid |x + 5| > 3 \};$

$$\begin{array}{lll} 7. \ A = \{x \mid x^2 - 5x - 14 \geq 0\}, & B = \{x \mid |x + 1| < 1\}; \\ 8. \ A = \{x \mid x^2 + 6x + 8 \geq 0\}, & B = \{x \mid |x| < 3\}; \\ 9. \ A = \{x \mid x^2 + 6x + 8 \geq 0\}, & B = \{x \mid |x| < 3\}; \\ 10. \ A = \{x \mid \sqrt{x^2 + 20x + 100} \leq 10\}, & B = \{x \mid |x| \geq 2\}; \\ 11. \ A = \{x \mid (x - 1)(x - 2)(x + 3) \geq 0\}, & B = \{x \mid |x - 3| > 2\}; \\ 12. \ A = \{x \mid \sqrt{x^2 + 7x + 49} > 7\}, & B = \{x \mid |x - 2| \geq 5\}; \\ 13. \ A = \{x \mid 5 + 4x - x^2 < 0\}, & B = \{x \mid |x + 2| \geq 2\}; \\ 14. \ A = \{x \mid x^2 - 6 - x < 0\}, & B = \{x \mid |x + 2| \geq 2\}; \\ 15. \ A = \{x \mid 10 - x^2 - 9x < 0\}, & B = \{x \mid |x + 2| \geq 2\}; \\ 16. \ A = \{x \mid x^2 - 10 - 9x \geq 0\}, & B = \{x \mid |x + 1| < 5\}; \\ 17. \ A = \{x \mid 5x + 50 - x^2 > 0\}, & B = \{x \mid |x + 3| < 5\}; \\ 18. \ A = \{x \mid 60 + 17x - x^2 \leq 0\}; & B = \{x \mid |x - 3| < 2\}; \\ 19. \ A = \{x \mid \sqrt{x + 2} > x\}, & B = \{x \mid |x - 3| < 2\}; \\ 20. \ A = \{x \mid (x - 1)(x - 2)^2(x - 3) \geq 0\}, & B = \{x \mid |x - 1| < 1\}; \\ 21. \ A = \{x \mid \frac{x^2 - 1}{x + 3} \geq 0\}, & B = \{x \mid |x - 1| < 2\}; \\ 22. \ A = \{x \mid 2x^2 - x - 1 < 0\}, & B = \{x \mid |x - 3| < 4\}; \\ 23. \ A = \{x \mid 10 - x^2 \geq 0\}, & B = \{x \mid |x - 3| < 4\}; \\ 24. \ A = \{x \mid \frac{x - 3}{x + 2} \leq 0\}, & B = \{x \mid |x - 3| < 4\}; \\ 25. \ A = \{x \mid \frac{x - 3}{x + 2} \geq 0\}, & B = \{x \mid |x - 3| < 4\}; \\ 26. \ A = \{x \mid \frac{x - 3}{x - 5} > \frac{1}{2}\}, & B = \{x \mid |x - 2 < 3\}; \\ 27. \ A = \{x \mid \frac{x}{x - 5} > \frac{1}{2}\}, & B = \{x \mid |x - 2 < 3\}; \\ 29. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & B = \{x \mid |x - 2 < 3\}; \\ 30. \ A = \{x \mid |x^2 - 2x| < x\}, & A = \{x \mid |x - 2 < 2x| < x\}, \\ 30. \ A = \{x \mid |x - 2 < 2x| < x\}, & A = \{x \mid |x - 2 < 2x| < x\}, \\ 30. \ A = \{x \mid |x - 2 < 2x| < x\}, & A = \{x \mid |x - 2 < 2x| < x\}, \\ 30$$

1.3. Супремум и инфимум. Верхней гранью множества действительных чисел X называется такое действительное число M, что для любого элемента $x \in X$ выполнено неравенство $x \leq M$. Точной верхней гранью или $\operatorname{cynpemymom}$ (используется обозначение $\sup X$ или \overline{x}) множества действительных чисел X называется наименьшая из всех возможных верхних граней M. Всякое ограниченное сверху множество имеет супремум.

Нижней гранью множества действительных чисел X называется такое действительное число m, что для любого элемента $x \in X$ выполнено неравенство $x \geq m$. Точной нижней гранью или *инфимумом* (используется обозначение $\inf X$ или \underline{x}) множества действительных чисел X называется наибольшая из всех возможных нижних граней m. Всякое ограниченное снизу множество имеет инфимум.

На практике числа \underline{x} и \overline{x} сначала находят эмпирически, а затем доказывают два утверждения:

для инфимума: 1)
$$\forall x \in X: x \geq \underline{x}$$
, 2) $\forall \varepsilon > 0 \exists x \in X: x < \underline{x} + \varepsilon$; для супремума: 1) $\forall x \in X: x \leq \overline{x}$, 2) $\forall \varepsilon > 0 \exists x \in X: x > \overline{x} - \varepsilon$.

Важно отметить, что если во множестве X имеется максимальный элемент, то он автоматически является супремумом. Аналогично минимальный элемент автоматически является инфимумом. При этом супремум (инфимум) может не быть элементом множества.

Пример 1.4. Найти
$$\sup X, \inf X$$
 (с доказательством), если а) $X = \left\{ \frac{6n}{5n+1} \mid n \in \mathbb{N} \right\}$; б) $X = \left\{ \frac{\sin \frac{n\pi}{2} + 2}{n} \mid n \in \mathbb{N} \right\}$. Решение:

Решение: a) $X = \left\{1; \frac{12}{11}; \frac{18}{16}; \frac{24}{21}; \frac{30}{26}; ...; \frac{600}{501}; ... \right\}$. В данном множестве имеется минимальный элемент $\underline{x} = 1$, так как для всех $n \in \mathbb{N}$ выполнено неравенство $\frac{6n}{5n+1} \geq 1$. Отсюда inf X = 1.

Максимального элемента в данном множестве нет, однако, выписывая члены с большими номерами n, несложно убедиться, что с ростом n элементы множества X становятся всё ближе к числу $\frac{6}{5}$. Докажем, что $\sup X = \frac{6}{5}$.

Докажем, что $\sup X=\frac{6}{5}$. Во-первых, докажем, что для всех $n\in\mathbb{N}$ выполнено неравенство $\frac{6n}{5n+1}\leq\frac{6}{5}$ (оно равносильно очевидному неравенству $30n\leq30n+5$). Во-вторых, докажем, что $\forall\ \varepsilon>0\ \exists\ x\in X:\ x>\frac{6}{5}-\varepsilon$. Т.е. требуется

для каждого $\varepsilon>0$ найти $n\in\mathbb{N}$, для которого $\frac{6n}{5n+1}>\frac{6}{5}-\varepsilon$. Решая последнее неравенство относительно n, получаем, что $n>\frac{6}{5\varepsilon}-1$. Для любого $\varepsilon>0$ правая часть является некоторым действительным числом. Согласно аксиоме Архимеда имеются натуральные числа, превосходящие любое наперед заданное действительное число. Например, таковым будет число $N=\left[\frac{6}{5\varepsilon}\right]+1$, где через $[f(\varepsilon)]$ обозначена целая часть действительного числа $f(\varepsilon)$, т.е. наибольшее целое, не превосходящее $f(\varepsilon)$ (плюс один добавлено для того, чтобы для всех $\varepsilon>0$ было выполнено условие $N\geq 1$).

б) $X = \left\{3; 1; \frac{1}{3}; \frac{1}{2}; \frac{3}{5}; \dots \right\}$. В данном множестве имеется максимальный элемент $\overline{x} = 3$. Действительно, так как $3n - 2 \ge 1 \ge \sin \frac{n\pi}{2}$, то для всех $n \in \mathbb{N}$ имеем неравенство $\frac{\sin \frac{n\pi}{2} + 2}{n} \le 3$. Отсюда $\sup X = \max X = 3$.

Докажем, что inf X=0. Очевидно, что для всех натуральных n числитель и знаменатель являются положительными величинами, поэтому m=0 является нижней гранью. Докажем, что $\forall \ \varepsilon>0 \ \exists \ x\in X: \ x<\varepsilon$. Вудем искать данный элемент среди n=4k+1. В этом случае $\dfrac{\sin\frac{n\pi}{2}+2}{n}=\dfrac{\sin\frac{(4k+1)\pi}{2}+2}{4k+1}=\dfrac{3}{4k+1}<\varepsilon$, отсюда $k>\dfrac{3}{4\varepsilon}-\dfrac{1}{4}$. Значит для каждого $\varepsilon>0$ существует искомый $x\in X$, ему соответствует, например, номер N=4K+1, где $K=\left[\dfrac{3}{4\varepsilon}-\dfrac{1}{4}\right]+1$.

Задание 1.3. Найти $\sup X$, $\inf X$ (с доказательством), если $n \in \mathbb{N}$.

1.
$$X = \left\{ \frac{3 + (-1)^{n+1} \cdot n}{n+1} \right\};$$
 2. $X = \left\{ 2n^2 - 15n + 11 \right\};$
3. $X = \left\{ \frac{(-1)^n \cdot 3n - 3}{2n+1} \right\};$ 4. $X = \left\{ -(2n)^{(-1)^n} \right\};$
5. $X = \left\{ 18n - 3n^2 + 5 \right\};$ 6. $X = \left\{ \frac{3 + n^2}{n^3 + 1} \right\};$
7. $X = \left\{ 3n^2 - 12n + 10 \right\};$ 8. $X = \left\{ \frac{(-1)^n \cdot 2n - 1}{2n + 3} \right\};$

9.
$$X = \{-(2n)^{\cos n\pi}\};$$
 10. $X = \{16n - 4n^2 + 3\};$

11.
$$X = \left\{ \frac{(-1)^n + n}{2n+1} \right\};$$
 12. $X = \left\{ 2n^2 - 8n + 11 \right\};$ 13. $X = \left\{ \frac{2 - (-1)^n}{n-1} \right\};$ 14. $X = \left\{ \frac{(-1)^n \cdot n + 4}{3n+2} \right\};$ 15. $X = \left\{ (3n)^{(-1)^n} \right\};$ 16. $X = \left\{ \frac{n^2 - 1}{2n^2 + 3} \right\};$ 17. $X = \left\{ \frac{n+3}{n+1} \right\};$ 18. $X = \left\{ 2^{1-n} \right\};$ 19. $X = \left\{ \frac{3n \cos n\pi - 3}{2n+1} \right\};$ 20. $X = \left\{ -(2n)^{\sin n\pi} \right\};$ 21. $X = \left\{ 1 + n \sin \frac{n\pi}{2} \right\};$ 22. $X = \left\{ \frac{3 - n \cos \pi n}{n+1} \right\};$ 23. $X = \left\{ (-1)^n \frac{1}{n^2} \right\};$ 24. $X = \left\{ \frac{3n \cos n\pi - 3}{2n+1} \right\};$ 25. $X = \left\{ (-1)^n \sin n\pi / 4 \right\};$ 26. $X = \left\{ -n^2 + n + 12 \right\};$ 27. $X = \left\{ (-1)^n \sin n\pi / 4 \right\};$ 28. $X = \left\{ \frac{n^2 - 1}{n^2 + 1} \right\};$ 29. $X = \left\{ \frac{(-1)^n \cdot 3n - 3}{2n+1} \right\};$ 30. $X = \left\{ n^{(-1)^n} \right\}.$

2. Предел последовательности

2.1. Определение предела последовательности. Будем, вслед за выдающимся французским математиком Огюстеном Луи Коши (1789 – 1857), называть число a пределом последовательности x_n и писать $\lim_{n\to\infty} x_n = a$, если справедливо, что для любого положительного $\varepsilon>0$ существует зависящий от ε номер $N\in\mathbb{N}$ такой, что для всех натуральных $n\geq N$ выполнено неравенство $|x_n-a|<\varepsilon$. При этом последовательность x_n называется cxodsuecs. Краткая запись:

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) : \quad \forall n > N \quad |x_n - a| < \varepsilon.$$

Предел последовательности (как и в случае супремума и инфимума) сначала можно найти эмпирически, а затем доказать по определению Коши. Среди сходящихся последовательностей выделяют важный подкласс бесконечно малых последовательностей, т.е. последовательностей x_n , для которых $\lim_{n\to\infty} x_n = 0$.

Если ни для одного действительного числа a определение предела по Коши не является выполненным, то последовательность называется расходящейся. Среди расходящихся последовательностей выделяют важный подкласс бесконечно больших последовательностей (сходящихся к бесконечности), для которых выполнено определение

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) : \quad \forall n \ge N \quad |x_n| > 1/\varepsilon.$$

B этом случае пишут: $\lim_{n\to\infty} x_n = \infty$.

Важным является тот факт, что в случае любой бесконечно большой последовательности x_n начиная с некоторого номера N $(\forall n \geq N : x_n \neq 0)$ можно определить бесконечно малую последовательность $1/x_n$. Верно и обратное утверждение.

Пример 2.1. Найти предел последовательности и доказать, что для него выполнено определение Коши: a) $\lim_{n\to\infty}\frac{3+2n}{n+1}$; б) $\lim_{n\to\infty}\frac{n^2-n}{2n-1}$.

Решение: a) $x_n = \frac{5}{2}; \frac{7}{3}; \frac{9}{4}; \frac{11}{5}; \dots; \frac{203}{101}; \dots$ Отсюда логично предположить, что $\lim_{n \to \infty} \frac{3+2n}{n+1} = 2$. Докажем, что

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) : \; \forall n \ge N \; \left| \frac{3+2n}{n+1} - 2 \right| < \varepsilon.$$

Из последнего неравенства несложно получить, что $\left|\frac{1}{n+1}\right|<\varepsilon.$ Отсюда, опуская модуль, получаем $n>\frac{1}{\varepsilon}-1$. Значит в качестве Nможно взять $[\frac{1}{\varepsilon}]+1$, в силу обратимости преобразований определе-

ние Коши выполнено. б) $x_n = 0; \frac{2}{3}; \frac{6}{5}; \frac{12}{7}; \dots; \frac{9900}{199}; \dots$ С ростом n члены последоваположить, что $\lim_{n\to\infty}\frac{n^2-n}{2n-1}=\infty$. Чтобы это утверждать строго, необходимо доказать, что

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) : \; \forall n \ge N \; \left| \frac{n^2 - n}{2n - 1} \right| > 1/\varepsilon.$$

Действительно, как последовательности неотрицательны, модуль можно опустить. Имеем $\frac{n^2-n}{2n-1}\geq \frac{n^2-n}{2n}=\frac{n-1}{2}>1/\varepsilon$ как только $n>1+\frac{2}{\varepsilon}.$ Отсюда определение Коши выполнено по крайней мере, начиная с номера $N=N(\varepsilon)=\left[\frac{2}{\varepsilon}\right]+2.$

Задание 2.1. Найти предел последовательности и доказать, что для него выполнено определение Коши.

1.
$$\lim_{n \to \infty} \frac{5 - 8n}{3n - 1}$$
; 2. $\lim_{n \to \infty} \frac{5 + 2n^2}{3n - 1}$;

3.
$$\lim_{n \to \infty} \frac{2n-8}{n+\sqrt{n}};$$
 4. $\lim_{n \to \infty} \frac{3}{n-\sqrt{n}+3};$

5.
$$\lim_{n \to \infty} \frac{n^2 + 5}{3 - 2n}$$
; 6. $\lim_{n \to \infty} \frac{4n + 1}{2n - 5}$;

7.
$$\lim_{n \to \infty} \frac{2n^2 + n + 1}{3 - 2n^2}$$
; 8. $\lim_{n \to \infty} \frac{5 - 8n}{3n - 1}$;

9.
$$\lim_{n \to \infty} \frac{5 + 2n^2}{3n - 1}$$
; 10. $\lim_{n \to \infty} \frac{2n - 8}{n + \sqrt{n}}$;

11.
$$\lim_{n \to \infty} \frac{3}{n - \sqrt{n} + 3}$$
; 12. $\lim_{n \to \infty} \frac{n^2 + 5}{3 - 2n}$;

13.
$$\lim_{n \to \infty} \frac{5+2n^2}{3n-1}$$
; 14. $\lim_{n \to \infty} \frac{4n+1}{2n-5}$;

15.
$$\lim_{n \to \infty} \frac{2n^2 + n + 1}{3 - 2n^2}$$
; 16. $\lim_{n \to \infty} \frac{5 - 8n}{3n - 1}$;

17.
$$\lim_{n \to \infty} \frac{5 + 2n^2}{3n - 1};$$
 18. $\lim_{n \to \infty} \frac{2n - 8}{n + \sqrt{n}};$

19.
$$\lim_{n \to \infty} \frac{3}{n - \sqrt{n} + 3}$$
; 20. $\lim_{n \to \infty} \frac{n^2 + 5}{3 - 2n}$;

21.
$$\lim_{n \to \infty} \frac{4n+1}{2n-5}$$
; 22. $\lim_{n \to \infty} \frac{2n^2+n+1}{3-2n^2}$;

23.
$$\lim_{n \to \infty} \frac{5 - 8n}{3n - 1}$$
; 24. $\lim_{n \to \infty} \frac{5 + 2n^2}{3n - 1}$;

25.
$$\lim_{n \to \infty} \frac{2n-8}{n+\sqrt{n}}$$
; 26. $\lim_{n \to \infty} \frac{2n-8}{n+\sqrt{n}}$;

27.
$$\lim_{n \to \infty} \frac{n^2 + 5}{3 - 2n};$$
 28. $\lim_{n \to \infty} \frac{4n + 1}{2n - 5};$

29.
$$\lim_{n \to \infty} \frac{2n^2 + n + 1}{3 - 2n^2}$$
; 30. $\lim_{n \to \infty} \frac{5 - 8n}{3n - 1}$

2.2. Вычисление пределов последовательностей. На практике для вычисления пределов последовательностей вместо определения Коши используют свойства сходящихся последовательностей. Пусть $\lim_{n\to\infty} x_n = a \neq \infty, \ \lim_{n\to\infty} y_n = b \neq \infty,$ то

$$\lim_{n \to \infty} (x_n \pm y_n) = a \pm b, \quad \lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b,$$

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}\ (b\neq 0),\quad \lim_{n\to\infty}x_n^{y_n}=a^b\ (a>0).$$

Эти правила естественным образом переносятся на случай, если один из пределов равен бесконечности. Пусть $\lim_{n\to\infty}x_n=a\neq\infty,\ \lim_{n\to\infty}y_n=\infty,$ тогда

$$\lim_{n \to \infty} (x_n \pm y_n) = \infty, \ \lim_{n \to \infty} (x_n \cdot y_n) = \infty, \ \lim_{n \to \infty} \frac{y_n}{x_n} = \infty, \ \lim_{n \to \infty} \frac{x_n}{y_n} = 0.$$

Последняя формула является частным случаем общего важного правила: произведение ограниченной последовательности на бесконечно малую последовательность является бесконечно малой последовательность x_n называют ограниченной, если существует число M такое, что $|x_n| \leq M$, $\forall n \in \mathbb{N}$. Всякая сходящаяся последовательность ограничена, обратное утверждение не верно.

Операции над бесконечно большими и малыми последовательностями делятся на "определённости" и "неопределённости". К определённостям относятся следующие "правила":

$$\frac{a}{\infty} = 0 \ (a \neq \infty), \quad \frac{a}{0} = \infty \ (a \neq 0), \quad \infty \cdot \infty = \infty, \quad +\infty + \infty = +\infty$$

и другие. В последнем случае понимается, что из свойства $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=+\infty$ следует, что $\lim_{n\to\infty}(x_n+y_n)=+\infty$ (т.е. сумма двух положительных бесконечно больших последовательностей $x_n>0,\ y_n>0\ (\forall n\geq N)$ является положительной бесконечно большой).

Отметим ещё, что для $a\in(1;+\infty)$ выполнено свойство $a^{+\infty}=+\infty$, для $a\in(0;1): a^{+\infty}=0$. Эти правила непосредственно следуют из свойств показательной функции $y=a^x$.

Основными "неопределённостями" являются следующие формальные выражения:

$$\frac{\infty}{\infty}$$
, $+\infty-\infty$, $\frac{0}{0}$, 1^{∞} , 0^{∞} , ∞^0 .

Такие комбинации последовательностей могут быть как сходящимися, так и расходящимися. Имеется ряд правил, которые позволяют свести данные случаи к более простым. Для выражения $\frac{\infty}{\infty}$ используют правило деления на старшую бесконечность, т.е. на выражение n^{\max} , либо используют правила:

$$\lim_{n\to\infty}\frac{n^k}{q^n}=0,\quad \lim_{n\to\infty}\frac{\log_q n}{n^k}=0,\quad \forall k>0,\ \forall q>1.$$

Выражение $+\infty-\infty$ зачастую сводится к $\frac{\infty}{\infty}$ с помощью приведения к общему знаменателю или после умножения числителя и знаменателя на сопряжённое выражение.

 1^{∞} сводят Выражение определению экспоненты $\lim (1 + x_n)^{1/x_n} = e = 2,718281828...$ Данное соотношение справедливо для любой бесконечно малой последовательности x_n . Также для данной неопределённости (а также для $0^{\infty}, \infty^0$) в случае $x_n > 0, a > 0$ используют метод логарифмирования, основанный на формуле $\lim_{n \to \infty} x_n = a \Leftrightarrow \lim_{n \to \infty} \ln x_n = \ln a$, а также метод замены переменной.

Техника использования описанных приёмов достигается в результате решения значительного числа упражнений.

B)
$$\lim_{n \to \infty} \sqrt{n^2 + n} - \sqrt{n^2 - n};$$
 Γ) $\lim_{n \to \infty} \left(\frac{3n - 2}{3n + 3}\right)^{2n};$

д)
$$\lim_{n \to \infty} \frac{(n+1)! \ln n \arctan n}{(n+3)!};$$
 e) $\lim_{n \to \infty} \sqrt[n]{\ln n}$

а) Имеем неопределённость $\frac{\infty}{\infty}$. Старшая бесконечность в числителе n^2 , в знаменателе $n^{6/3}=n^2$. Осуществляя почленное деление числителя и знаменателя на n^2 , получаем

$$\lim_{n\to\infty}\frac{4n^2-3n+2}{\sqrt[3]{8n^6+n}}=\lim_{n\to\infty}\frac{\frac{4n^2}{n^2}-\frac{3n}{n^2}+\frac{2}{n^2}}{\sqrt[3]{\frac{8n^6}{n^6}+\frac{n}{n^6}}}=\lim_{n\to\infty}\frac{4-\frac{3}{n}+\frac{2}{n^2}}{\sqrt[3]{8+\frac{1}{n^5}}}=\frac{4}{\sqrt[3]{8}}=2.$$

б) Так как $2^{2n+1} = 2 \cdot 4^n$, то старшей бесконечностью является 4^n . Осуществляя почленное деление числителя и знаменателя на 4^n , получаем

$$\lim_{n \to \infty} \frac{4^n + n}{2^{2n+1} - 3^n} = \lim_{n \to \infty} \frac{\frac{4^n}{4^n} + \frac{n}{4^n}}{\frac{2 \cdot 4^n}{4^n} + \frac{3^n}{4^n}} = \frac{1}{2}.$$

$$\text{B)} \lim_{n \to \infty} \sqrt{n^2 + n} - \sqrt{n^2 - n} =$$

$$= \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - \sqrt{n^2 - n})(\sqrt{n^2 + n} + \sqrt{n^2 - n})}{\sqrt{n^2 + n} + \sqrt{n^2 - n}} =$$

$$= \lim_{n \to \infty} \frac{(n^2 + n) - (n^2 - n)}{\sqrt{n^2 + n} + \sqrt{n^2 - n}} = \lim_{n \to \infty} \frac{\frac{2n}{n}}{\sqrt{\frac{n^2}{n^2} + \frac{n}{n^2}} + \sqrt{\frac{n^2}{n^2} - \frac{n}{n^2}}} = 1.$$

$$\text{T)} \lim_{n \to \infty} \left(\frac{3n - 2}{3n + 3}\right)^{2n} = \lim_{n \to \infty} \left(1 + \frac{-5}{3n + 3}\right)^{\frac{3n + 3}{-5} \cdot \frac{-5 \cdot 2n}{3n + 3}} =$$

$$= e^{\lim_{n \to \infty} \frac{-5}{3n + 3} \cdot 2n} = e^{-10/3}.$$

$$\text{A)} \lim_{n \to \infty} \frac{(n + 1)! \ln n \arctan n}{(n + 3)!} = \lim_{n \to \infty} \frac{\ln n \arctan n}{(n + 2)(n + 3)} =$$

$$= \lim_{n \to \infty} \frac{\ln n}{n + 2} \cdot \lim_{n \to \infty} \frac{\arctan n}{n + 3} = 0 \cdot 0 = 0.$$

Последний предел равен нулю, поскольку последовательность $x_n=\arctan n$ ограничена, а последовательность $y_n=\frac{1}{n+3}$ — бесконечно малая.

е) Пусть
$$\lim_{n\to\infty} \sqrt[n]{\ln n} = A$$
, тогда

$$\ln A = \ln \lim_{n \to \infty} \sqrt[n]{\ln n} = \lim_{n \to \infty} \ln \sqrt[n]{\ln n} = \lim_{n \to \infty} \frac{1}{n} \ln \ln n.$$

Если $k=\ln n\to\infty$, то $\ln A=\lim_{k\to\infty}\frac{\ln k}{e^k}=\lim_{k\to\infty}\frac{\ln k}{k}\cdot\frac{k}{e^k}=+0$. Отсюда A=1.

Задание 2.2. Вычислить следующие пределы.

Вариант 1	Вариант 2
a. $\lim_{n \to \infty} \frac{2\sqrt{n^2 + 1} + n - 1}{\sqrt[3]{n^3 + n^2 - n}};$	a. $\lim_{n \to \infty} \frac{\sqrt[3]{n^2 + n} + n - 1}{\sqrt[4]{n^4 + n^2}};$
$b. \lim_{n \to \infty} \sqrt{n^2 + 1} - \sqrt{n^3 - n};$	b. $\lim_{n \to \infty} \sqrt[3]{n^2 + 1} - n + 1;$
$c. \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^{n-1};$	$c. \lim_{n \to \infty} \sqrt[n]{2^n + 3^n};$

$$d. \lim_{n \to \infty} \frac{n!}{(n+1)! - n!};$$

$$e. \lim_{n\to\infty} \ \frac{1+2+3+\ldots+n}{n^2}.$$

a.
$$\lim_{n \to \infty} \frac{n\sqrt{n+1} \ln n \arctan n}{n^2 + n};$$

b. $\lim_{n \to \infty} (n+1)^2 - (n-1)^2;$

b.
$$\lim_{n \to \infty} (n+1)^2 - (n-1)^2$$
;

$$c. \lim_{n\to\infty}\frac{1-2+3-4+\ldots-2n}{n^2};$$

d.
$$\lim_{n\to\infty} \frac{(2n-1)(n-2)(n-3)}{3n^3+2n^2+n}$$
;

$$e. \ \lim_{n \to \infty} \frac{(\sqrt{n^2 + 1} + n)^2}{\sqrt[3]{n^5} + 1}.$$

Вариант 5

a.
$$\lim_{n \to \infty} \frac{3\sqrt{n+1} + n - 2}{\sqrt[3]{n^4 + n^2}};$$

b.
$$\lim_{n \to \infty} \sqrt{n^3 + 1} - \sqrt{n^2 - n};$$

$$c. \lim_{n \to \infty} \left(\frac{n}{2n+1} \right)^{3n-1};$$

d.
$$\lim_{n \to \infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}};$$

e.
$$\lim_{n \to \infty} \frac{n^3 + 2n^2 + 3n + 4}{n^3 - n^2 + n - 1}$$
.

Вариант 7

$$a. \ \lim_{n\to\infty} \frac{n^2\sqrt{n^3+1}\ln n \arctan n}{n^3+n};$$

b.
$$\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{4n^3}$$
;

d.
$$\lim_{n \to \infty} \frac{2^{2n} + n^2}{3^n}$$
;

e.
$$\lim_{n \to \infty} \frac{(5+n-3n^2)^{10}}{(4-n+2n^5)^4}$$

Вариант 4

a.
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 1} \ln(n+1) \sin n}{n+1};$$
b.
$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n-1};$$

b.
$$\lim_{n\to\infty}\sqrt{n+1}-\sqrt{n-1}$$

c.
$$\lim_{n \to \infty} \frac{(n+1)! - n!}{(n+2)! - n!}$$
;

d.
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 3n + 1} + n}{\sqrt{2n + 3}};$$

$$e. \lim_{n \to \infty} \frac{\sqrt[3]{n^2 + n}}{n + 1}.$$

Вариант 6

a.
$$\lim_{n\to\infty} \frac{\sqrt[3]{n^5+n^3+1}+(n-1)^2}{\sqrt{(n+1)^2+n^4}};$$

b.
$$\lim_{n \to \infty} \sqrt[3]{n+1} - n;$$

$$c. \lim_{n \to \infty} \frac{2^n + 3^n}{3^n + n};$$

d.
$$\lim_{n\to\infty} \frac{(1-n)^2 + (1+n)^2}{(1-n)^2 - (1+n)^2}$$
;

e.
$$\lim_{n \to \infty} \frac{(2n-1)! + (2n+1)!}{(2n)!(n-1)}$$
.

a.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^5 + 1} \ln n \sin n!}{n^2 + n + 1};$$

b.
$$\lim_{n\to\infty} (n-\sqrt{n^2-n});$$

c.
$$\lim_{n\to\infty} \sqrt[n]{3^n+4^n}$$
;

$$d. \ \, \lim_{n \to \infty} (\frac{1}{n^2} + \frac{3}{n^2} + \ldots + \frac{2n-1}{n^2});$$

$$e. \lim_{n \to \infty} \frac{2^n + 3}{2^n - 3}.$$

a.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^5 - n} \ln(n+1)}{n^2 + n}$$
;

b.
$$\lim_{n \to \infty} (n^2 - \sqrt{n^4 - n});$$

$$c. \lim_{n \to \infty} \frac{2^n + 3^n}{2^n - 3^n};$$

d.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n} - 6n^2}{2n - \sqrt[4]{8n^8 + 1}};$$

e.
$$\lim_{n \to \infty} \frac{6n^3 - \sqrt{n^5 + 1}}{\sqrt{4n^6 + n - 3}}$$
.

Вариант 11

a.
$$\lim_{n\to\infty} \frac{\ln(8n^7+6n^5+1)}{\ln(3n^{10}+n^9+1)}$$
;

b.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n-6} + 2}{n^3 + 8}$$
;

c.
$$\lim_{n\to\infty} \frac{1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^n}}{1+\frac{1}{2}+\frac{1}{0}+\ldots+\frac{1}{2^n}};$$

d.
$$\lim_{n \to \infty} \frac{(n+2)! + (n+1)!}{(n+2)! - (n+1)!}$$
;

$$e$$
. $\lim_{n\to\infty} \left(n - \sqrt{n^2 + 2}\right)$.

Вариант 13

a.
$$\lim_{n \to \infty} \frac{2^n + 5^n}{3^n + 5^n}$$
;

c.
$$\lim_{n \to \infty} \frac{(n+2)! - (n+1)!}{(n+1)! - n!};$$

d.
$$\lim_{n \to \infty} \frac{(2-n)^4 - (3-n)^4}{(2-n)^4 - (2+n)^4};$$

e.
$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{\sqrt{16n^6 + 1}}$$
.

Вариант 10

a.
$$\lim_{n \to \infty} \frac{\sqrt[2]{n^4 + 1} + \sqrt[4]{n^8 - 1}}{2n^2 + n};$$

b.
$$\lim_{n \to \infty} (\sqrt{2n+3} - \sqrt{2n-2});$$

c.
$$\lim_{n \to \infty} \frac{5^n - 3}{5^{n+1} + 2}$$
;

d.
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 1} + \sqrt{n}}{\sqrt[4]{n^3 + n} + \sqrt{n^2}}$$

e.
$$\lim_{n \to \infty} \frac{\ln(2n^4 + n^2 + 1)}{\ln(3n^2 + n - 1)}$$
.

Вариант 12

a.
$$\lim_{n \to \infty} \frac{\sqrt{n^6 + n^5} + n^2 \sin n}{n^3 + n}$$
;

b.
$$\lim_{n \to \infty} \frac{(2n+3)^{10} \cdot (3n-2)^5}{(4n^3-2)^5};$$

c.
$$\lim_{n \to \infty} \sqrt[3]{6n-3} - \sqrt[3]{6n-2}$$
;

d.
$$\lim_{n \to \infty} \frac{(n+4)! - (n+2)!}{(n+3)! - n!};$$

$$e. \lim_{n \to \infty} \left(\frac{n^2 + n}{n^2 - n} \right)^{2n}.$$

a.
$$\lim_{n \to \infty} \frac{\frac{1}{2} + 1 + \frac{3}{2} + \dots + \frac{n}{2}}{0,25n^2 + n + 3};$$

b.
$$\lim_{n \to \infty} n(\sqrt{n^2 + 1} - \sqrt{n^2 + 2});$$

c.
$$\lim_{n \to \infty} \frac{(n+1)^{10} + \dots + (n+100)^{10}}{10n^{10} + 5};$$
 c. $\lim_{n \to \infty} \frac{11n^2 - \cos n!}{13n^2 + \sin n!};$

d.
$$\lim_{n \to \infty} \frac{\frac{1}{3} - \frac{1}{9} + \frac{1}{27} - \dots + (-1)^n \frac{1}{3^n}}{\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}};$$
 d. $\lim_{n \to \infty} (3n+5) \ln \frac{2n-4}{2n+2};$

e.
$$\lim_{n \to \infty} \frac{(n+1)^7 - (n-1)^7}{7n^6 + 10}$$
.

a.
$$\lim_{n\to\infty} \frac{5^{n+1}+3^n-2^{2n}}{5^n+2^n+3^{n+3}};$$

$$b. \lim_{n \to \infty} \frac{7n^2 + \cos n}{2n^2 - \sin n};$$

c.
$$\lim_{n \to \infty} (n - \sqrt{n^2 + 5n - 1});$$

d.
$$\lim_{n \to \infty} (3n+2) \ln \frac{2n-4}{2n+7}$$
;

e.
$$\lim_{n\to\infty} \frac{(n+3)!(n-2)!}{(n+4)!(n+1)!}$$

Вариант 17

a.
$$\lim_{n \to \infty} \frac{7^{n+1} + 3^n - 2^{2n}}{7^n + 2^n + 3^{n+3}};$$

b.
$$\lim_{n\to\infty} \frac{(n+1)^6 + \ldots + (n+10)^6}{0.01n^6 + 3n^5}$$
;

c.
$$\lim_{n\to\infty} \sqrt[3]{n^3 - 3n^2} - \sqrt[3]{n^3 + 3n^2}$$
;

d.
$$\lim_{n\to\infty} (2n+4) \ln \frac{11n-12}{11n-12}$$
;

e.
$$\lim_{n\to\infty} (1-\frac{1}{8}+\ldots+(-1)^n\frac{1}{8^n}).$$

b.
$$\lim_{n\to\infty} (\sqrt{n^2+1} - \sqrt[3]{n^3+1});$$

c.
$$\lim_{n \to \infty} \frac{11n^2 - \cos n!}{13n^2 + \sin n!}$$

d.
$$\lim_{n \to \infty} (3n+5) \ln \frac{2n-4}{2n+2}$$
;

$$e. \lim_{n \to \infty} \left(\frac{3n+4}{2n-4} \right)^{n-3}.$$

Вариант 16

a.
$$\lim_{n \to \infty} \left(\frac{2n-7}{2n-3} \right)^{4n+1};$$

b.
$$\lim_{n \to \infty} \frac{3^n + 5^n}{3^{n+1} + 5^{n+1}};$$

c.
$$\lim_{n \to \infty} (n - \sqrt[3]{3n^2 + n^3});$$

d.
$$\lim_{n \to \infty} \frac{\frac{1}{5} + \frac{1}{5^2} + \ldots + \frac{1}{5^n}}{\frac{1}{7} + \frac{1}{7^2} + \ldots + \frac{1}{7^n}};$$

e.
$$\lim_{n\to\infty} \frac{4n+\cos n}{2n-\sin n}$$

a.
$$\lim_{n\to\infty} \frac{7^{n+1} + 5^{n+1}}{7^n + 5^n}$$
;

b.
$$\lim_{n\to\infty} \frac{3n^2 - 2n + 4}{\sqrt{4n^4 + 6}};$$

c.
$$\lim_{n \to \infty} (3n+4) \ln \frac{7n-2}{7n+8}$$
;

$$d. \lim_{n \to \infty} \frac{\sin n - n}{2n + \cos n};$$

$$e. \lim_{n \to \infty} \frac{\sqrt{n} + 2\cos n}{3\sqrt{n} - 4\sin n}$$

a.
$$\lim_{n\to\infty} \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n(n+1)};$$

b.
$$\lim_{n \to \infty} (n^3 - \sqrt{n^6 - n^2});$$

c.
$$\lim_{n \to \infty} \frac{4^n + 3^{n+2}}{2^{2n+1} - 3^n};$$

$$d. \lim_{n \to \infty} \left(\frac{3n+4}{3n-2} \right)^{2n-3};$$

e.
$$\lim_{n \to \infty} \frac{4n^2 - \sqrt{n^5 + 1}}{\sqrt{4n^4 + n + 3}}$$
.

Вариант 21

a.
$$\lim_{n \to \infty} \frac{(3n+1)^{10} + \ldots + (3n+10)^{10}}{5n^{10} + 7^{10}};$$

b.
$$\lim_{n \to \infty} \frac{(n+2)^5 - (n-2)^5}{2n^4 + 13}$$
;

$$c. \lim_{n \to \infty} \left(\frac{2n}{2n+5}\right)^{3n-4};$$

d.
$$\lim_{n\to\infty} (\sqrt[3]{2n^3+7n^2} - \sqrt[3]{2n^3-5n^2});$$

e.
$$\lim_{n \to \infty} \frac{1 + 3 + 2 \cdot 3^2 + \dots + n \cdot 3^n}{n \cdot 3^{n+1}}$$
.

Вариант 23

a.
$$\lim_{n \to \infty} (\sqrt[3]{n^2 + 1} - 2n);$$

b.
$$\lim_{n \to \infty} (3n-4)(\ln(7n+5) - \ln(n+1));$$

c.
$$\lim_{n\to\infty} \frac{3^n + 2^{n+1} + n}{2^{n+1}} - \frac{3^n + 2^n}{2^n + 2^n + 1}$$
;

d.
$$\lim_{n \to \infty} \frac{2+4+\ldots+2n}{n+2} - \frac{n}{2};$$

Вариант 20

a.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^6 - n} \arctan(n+1)}{n^2 + n};$$

b.
$$\lim_{n\to\infty} \frac{3n^2 + 5n + 6}{7n^2 + 6n - 11}$$
;

c.
$$\lim_{n \to \infty} \frac{\frac{1}{7} + \frac{1}{7^2} + \ldots + \frac{1}{7^n}}{7^n};$$

d.
$$\lim_{n\to\infty} \frac{n^3 + \sin n}{3n^3 - \cos n}$$
;

e.
$$\lim_{n \to \infty} (2 - n) \ln(\frac{11^n - 3}{11^n + 5})$$
.

Вариант 22

$$a. \lim_{n \to \infty} n^{\frac{3}{4}} (\sqrt[4]{n+2} - \sqrt[4]{n+3});$$

$$b. \lim_{n \to \infty} \frac{\sin n + n^2}{\cos n - n^2};$$

c.
$$\lim_{n \to \infty} (3n - 2) \ln \frac{3^n + 7}{3^n - 2}$$
;

$$d. \lim_{n \to \infty} \frac{\cos(n!) - n^3}{5n^3 - \sin(n)};$$

e.
$$\lim_{n \to \infty} \frac{1 + 2 + \ldots + n}{n + 2} - \frac{n}{2}$$
.

a.
$$\lim_{n \to \infty} \frac{(5n+1)^4 - (5n-1)^4}{5n^3 + 6}$$
;

b.
$$\lim_{n\to\infty} \left(\frac{2n}{2n+5}\right)^{3n-4}$$
;

c.
$$\lim_{n \to \infty} \sqrt[3]{2n^3 + 7} - \sqrt[3]{2n^3 - 7}$$
;

d.
$$\lim_{n \to \infty} \frac{(n-1)!}{(n+3)!} \sin(n!);$$

e.
$$\lim_{n \to \infty} \frac{(5n+1)^{10} + \ldots + (5n+10)^{10}}{7n^{10} + 7^{10}}$$
. e. $\lim_{n \to \infty} (\frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^n})$.

$$e. \lim_{n \to \infty} \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}\right)$$

a.
$$\lim_{n \to \infty} \sqrt[3]{n} (\sqrt[3]{(n+1)^2} - \sqrt[3]{n^2+1})$$

b.
$$\lim_{n \to \infty} \frac{(n-3)! + (n-2)!}{n! + (n+1)!} \sin n;$$
 b. $\lim_{n \to \infty} \frac{2+3^n + n}{2^{n+1} + 5^n + 1};$

c.
$$\lim_{n\to\infty} \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n};$$

d.
$$\lim_{n \to \infty} 3n(\ln(3n-5) - \ln(3n+2));$$

e.
$$\lim_{n \to \infty} \frac{(n+1)^{15} + \ldots + (n+100)^{15}}{10n^{15} + 5}$$
.

Вариант 27

a.
$$\lim_{n\to\infty} \frac{a^n + 3b^n}{5a^n + 7b^n}$$
, $a > 0, b > 0$;

b.
$$\lim_{n \to \infty} n(\sqrt{n^4 + n + 1} - \sqrt{n^4 + 1});$$

c.
$$\lim_{n\to\infty} \frac{(n+1)^{13} + (n+2)^{10}}{(n-2)^{13} + 1}$$
;

$$n \to \infty$$
 $(n-2)^{10} + 1$
d. $\lim_{n \to \infty} 7n(\ln(2n+3) - \ln(2n-3));$

$$e. \ \, \lim_{n \to \infty} (1 + \frac{1}{4} + \frac{1}{4^2} + \ldots + \frac{1}{4^n}).$$

Вариант 29

a.
$$\lim_{n \to \infty} \sqrt{2n^2 - n + 1} - \sqrt{2n^2 + 3n}$$
;

b.
$$\lim_{n\to\infty} \frac{(n-1)! + n!}{(n-1)! - n!}$$
;

c.
$$\lim_{n \to \infty} \frac{3^n + 2^{n+1} + n}{2^n + 1} - \frac{3^n + 2^n}{2n + 2^n + 1}$$
;

d.
$$\lim_{n \to \infty} \frac{(n+1)^{90} + \dots + (n+90)^{90}}{n^{90} + 90^{90}};$$
 d. $\lim_{n \to \infty} \left(\frac{an+b}{an+c}\right)^{mn};$

Вариант 26

a.
$$\lim_{n \to \infty} \sqrt[3]{n} (\sqrt[3]{(n+1)^2} - \sqrt[3]{n^2 + 1});$$
 a. $\lim_{n \to \infty} \frac{(n+1)^5 + \dots + (n+5)^5}{5n^5 + 25};$

b.
$$\lim_{n \to \infty} \frac{2+3^n+n}{2^{n+1}+5^n+1}$$
;

$$c. \lim_{n \to \infty} \sqrt[n]{2^n + 5^n};$$

d.
$$\lim_{n\to\infty} \frac{1}{3} - \frac{1}{3^2} + \ldots + (-1)^{n-1} \frac{1}{3^n}$$
;

e.
$$\lim_{n \to \infty} 7n(\ln(7n+5) - \ln(7n+6))$$
.

Вариант 28

$$a. \lim_{n\to\infty} \sqrt[n]{3^n+7^n};$$

b.
$$\lim_{n \to \infty} \frac{(n+2)^{17} + (n+3)^{15}}{(n-2)^{13} + 7};$$

$$c. \lim_{n\to\infty} \sqrt[n^2]{\frac{1}{n}};$$

d.
$$\lim_{n \to \infty} n(\ln(3n-1) - \ln(3n+1));$$

e.
$$\lim_{n \to \infty} \frac{(n-2)!}{(n+2)! + 5} \sin 2^n$$
.

a.
$$\lim_{n \to \infty} (\frac{n^3}{1 + n^2} - n);$$

b.
$$\lim_{n\to\infty} \frac{\sin n + n^2}{\cos n - n^2}$$
;

c.
$$\lim_{n\to\infty} (\sqrt{(n+a)(n+b)} - n);$$

d.
$$\lim_{n\to\infty} \left(\frac{an+b}{an+c}\right)^{mn}$$
;

$$e. \lim_{n \to \infty} \left(\frac{3-n}{2-n}\right)^n.$$

$$e. \lim_{n \to \infty} \frac{n!}{(n+1)! - n!}.$$

3. Предел функции

3.1. Определение предела функции. Будем называть число $x_0 \in \mathbb{R}$ предельной точкой множества $E \subset \mathbb{R}$, если любая проколотая окрестность $O^0_\delta(x_0) := (x_0 - \delta; x_0) \cup (x_0; x_0 + \delta)$ (т.е. решение неравенства $0 < |x - x_0| < \delta$) имеет непустое пересечение с E.

Для данной функции $y = f(x) : \mathcal{D}(f) \subset \mathbb{R} \to \mathbb{R}$ и любой предельной точки x_0 к области определения $\mathcal{D}(f)$ число a назовём пределом функции f(x) при $x \to x_0$ (используется обозначение $\lim_{x \to x_0} f(x) = a$), если выполнено одно из определений:

- *no Komu*: для любого $\varepsilon>0$ существует число $\delta=\delta(\varepsilon)>0$ такое, что для всех $x\in \mathcal{D}(f)\bigcap O^0_\delta(x_0)$ выполнено неравенство $|f(x)-a|<\varepsilon.$
- по Гейне: для любой последовательности $x_n \to x_0$ такой, что каждый член $x_n \in \mathcal{D}(f) \cap O^0_\delta(x_0)$ выполнено свойство $f(x_n) \to a$ (сходимость последовательностей понимаем в смысле Коши).

Можно доказать, что данные определения являются равносильными, т.е. из справедливости одного из них следует справедливость другого. Зачастую полезным оказывается отрицание определения Гейне (Эдуард Гейне (1821-1881) — известный немецкий математик). Функция y=f(x) не имеет предела в точке x_0 (расходится), если существуют две последовательности $x_n \to x_0, \ y_n \to x_0$ такие, что каждый член $x_n, y_n \in \mathcal{D}(f) \cap O_\delta^0(x_0),$ однако $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(y_n)$ или хотя бы один из пределов расходится. Например, в точке $x_0=0$ расходится функция $\sin\frac{1}{x},$ поскольку при $x_n=\frac{1}{\pi n}\to 0: \ f(x_n)=\sin\pi n\equiv 0\to 0,$ а при $y_n=\frac{1}{\pi/2+2\pi n}\to 0: \ f(y_n)=\sin(\pi/2+2\pi n)\equiv 1\to 1.$

Будем говорить, что функция y=f(x) стремится к бесконечности при $x\to x_0$ и писать $\lim_{x\to x_0}f(x)=\infty,$ если выполнено одно из определений:

- no Kouu: $\forall \varepsilon > 0 \quad \exists \delta > 0 : \forall x \in \mathcal{D}(f) \cap O^0_{\delta}(x_0) |f(x)| > 1/\varepsilon$.
- по Гейне: $\forall x_n \to x_0: x_n \in \mathcal{D}(f) \cap O^0_{\delta}(x_0) \Rightarrow f(x_n) \to \infty.$

Заменяя в вышеприведенных определениях проколотую окрестность $O^0_\delta(x_0)$ на правостороннюю окрестность $O^+_\delta(x_0):=(x_0;x_0+\delta),$ либо левостороннюю окрестность $O^-_\delta(x_0):=(x_0-\delta;x_0),$ получим определения односторонних пределов функции в точке $x_0:\lim_{x\to x_0+0}f(x)$ и $\lim_{x\to x_0-0}f(x).$ Аналогично, используя окрестности бесконечности:

Аналогично, используя окрестности бесконечности: $O_{\delta}(\infty):=(-\infty;-\delta)\bigcup(\delta;+\infty),\ O_{\delta}^+(\infty):=(\delta;+\infty),\ O_{\delta}^-(\infty):=(-\infty;-\delta),$ получаем определения пределов $\lim_{x\to\infty}f(x),\ \lim_{x\to+\infty}f(x),\ \lim_{x\to-\infty}f(x),$ каждый из которых может либо сходиться к определенному числу или бесконечности, либо расходиться.

Например, $\lim_{x \to +\infty} f(x) = a$, если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : \forall x \in \mathcal{D}(f) \bigcap (\delta; +\infty) \quad |f(x) - a| < \varepsilon,$$

пишем $\lim_{x\to\infty} f(x) = -\infty$, если

$$\forall \ \varepsilon > 0 \quad \exists \ \delta > 0 : \ \forall x \in \mathcal{D}(f) \bigcap O_{\delta}(\infty) \quad f(x) < -1/\varepsilon,$$

пишем $\lim_{x \to -\infty} f(x) = +\infty$, если

$$\forall \ \varepsilon > 0 \quad \exists \ \delta > 0 : \ \forall x \in \mathcal{D}(f) \bigcap (-\infty; -\delta) \quad f(x) > 1/\varepsilon.$$

Пример 3.1. Доказать, что: a) $\lim_{x\to 4} \frac{2+\sqrt{x}}{x} = 1$; б) $\lim_{x\to \infty} \frac{3x+2}{x-2} = 3$; в) $\lim_{x\to \infty} \arctan x$ расходится.

Решение:

а) Используем определение Коши. Докажем, что $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : \ \forall \ 0 < |x-4| < \delta$ выполнено неравенство $\left|\frac{2+\sqrt{x}}{x}-1\right| < \varepsilon$. Будем считать, что $\delta < 1$, тогда 3 < x < 5. В этом случае

$$\left| \frac{2 + \sqrt{x}}{x} - 1 \right| = \frac{|2 + \sqrt{x} - x|}{|x|} < \frac{|(\sqrt{x} - 2)(-1 - \sqrt{x})|}{3} = \frac{(1 + \sqrt{x}) \cdot |\sqrt{x} - 2|}{3}$$
$$< \frac{1 + \sqrt{5}}{3} \cdot \frac{|(\sqrt{x} - 2)(\sqrt{x} + 2)|}{|\sqrt{x} + 2|} < \frac{1 + \sqrt{5}}{3} \cdot \frac{|x - 4|}{\sqrt{3} + 2} < |x - 4| < \varepsilon$$

как только $|x-4|<\varepsilon$. Значит определение Коши выполнено для $\delta=\min\Big\{1;\varepsilon\Big\}.$

б) Используем определение Гейне. Если $x_n \to \infty$, то

$$\lim_{n \to \infty} \frac{3x_n + 2}{x_n - 2} = \lim_{n \to \infty} \frac{3 + 2/x_n}{1 - 2/x_n} = \frac{3}{1} = 1.$$

в) Если $x_n \to +\infty$, то $\arctan x_n \to \pi/2$. Если $y_n \to -\infty$, то $\operatorname{arctg} y_n \to -\pi/2$. Следовательно, выполнено отрицание определение предела по Гейне. Отметим, что при этом $\lim_{x \to +\infty} \arctan x = \pi/2, \ \lim_{x \to -\infty} \arctan x = -\pi/2.$

Задание 3.1. Доказать, пользуясь определением Коши или Гейне.

$$1. \quad \lim_{x \to 81} \sqrt{x} = 9;$$

$$2. \quad \lim_{x \to 8} \sqrt[3]{x} = 2;$$

3.
$$\lim_{x \to \infty} \frac{2x - 3}{x + 4} = 2;$$

4.
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x} = 2;$$

5.
$$\lim_{x \to 0} \sin \frac{1}{x^2}$$
 не существует; 6. $\lim_{x \to +\infty} \lg x - 1 = \infty$;

$$6. \quad \lim_{x \to +\infty} \lg x - 1 = \infty;$$

7.
$$\lim_{x \to 81} \sqrt[4]{x} = 3;$$

$$8. \quad \lim_{x \to \infty} \frac{x^3}{x^2 - 3x} = \infty;$$

9.
$$\lim_{x \to 4} \frac{1 + \sqrt{x}}{x} = 3/4;$$

10.
$$\lim_{x \to -4} (1 + \sqrt{x+5}) = 2;$$

11.
$$\lim_{x \to 3} \frac{x+3}{2x-5} = 6;$$

12.
$$\lim_{x \to 3} \frac{x+1}{x^2 - 9} = \infty;$$

13.
$$\lim_{x \to 9} \sqrt{\sqrt{x} + 1} = 2$$

13.
$$\lim_{x \to 9} \sqrt{\sqrt{x} + 1} = 2;$$
 14. $\lim_{x \to 0} \frac{|x|}{x}$ не существует;
15. $\lim_{x \to 1} \frac{x+3}{x} = 2;$ 16. $\lim_{x \to 4} \sqrt{x^2 + 9} = 5;$
17. $\lim_{x \to 2} (x^2 + \sqrt{x+2}) = 6;$ 18. $\lim_{x \to 0} \sqrt[3]{8 + x} = 2;$

15.
$$\lim_{x \to 1} \frac{x+3}{x} = 2;$$

16.
$$\lim_{x \to 4} \sqrt{x^2 + 9} = 5;$$

17.
$$\lim_{x \to 2} (x^2 + \sqrt{x+2}) = 6$$

18.
$$\lim_{x \to 0} \sqrt[3]{8+x} = 2$$

19.
$$\lim_{x \to \infty} \frac{x^2 + 3}{x^2 - 5} = 1;$$

20.
$$\lim_{x \to -1} \frac{x+1}{x^2-1} = -1/2;$$

21.
$$\lim_{x \to 2} \sqrt[5]{x-1} = 1;$$

22.
$$\lim_{x\to\infty} \frac{x}{\sin x}$$
 не существует;

23.
$$\lim_{x \to 2} \frac{x+3}{x^2+1} = 1;$$

24.
$$\lim_{x \to -2} \sqrt{x^2 + 1} = \sqrt{5};$$

26. $\lim_{x \to \infty} \sqrt[3]{3 + x} = \infty;$

25.
$$\lim_{x \to -1} (x - \sqrt[3]{x+2}) = -2;$$

$$26. \quad \lim_{x \to \infty} \sqrt[3]{3+x} = \infty;$$

27.
$$\lim_{x \to \infty} \frac{x+3}{x^2 - 5} = 0;$$

28.
$$\lim_{x \to 2} \frac{x}{x^2 - 4} = \infty;$$

29.
$$\lim_{x\to 0} \sqrt[5]{x-1} = -1;$$

30.
$$\lim_{x\to\infty}$$
 arcctg x не существует.

3.2. Вычисление пределов функций. Техника вычисления пределов функции при $x \to \infty$ аналогична технике вычисления пределов последовательностей с той разницей, что подразумевается стремление $x \to +\infty$ и $x \to -\infty$. Если эти два случая приводят к различным пределам, либо один из них не существует, то считают, что предел при $x \to \infty$ не существует. Например, не существует $\lim_{x \to \infty} a^x$, так как $\lim_{x \to \infty} a^x = +\infty$, $\lim_{x \to \infty} a^x = 0$ (при a > 1).

так как $\lim_{x\to +\infty} a^x = +\infty$, $\lim_{x\to -\infty} a^x = 0$ (при a>1). Полезно запомнить, что $\lim_{x\to \infty} \frac{P_n(x)}{Q_m(x)}$ равен ∞ , если степень многочлена $P_n(x)$ выше, чем степень многочлена $Q_m(x)$, т.е. при n>m; предел равен нулю, если n< m; предел равен отношению коэффициентов при старшей степени, если n=m. Например, $\lim_{x\to \infty} \frac{(2x^2+x)^5}{(3x^5-x^4)^2} = \frac{2^5}{3^2} = \frac{32}{9}$, так как в числителе и знаменателе многочлены десятой степени.

Исходя из контекста, предел при $x \to \infty$ может подразумевать $x \to +\infty$ или $x \to -\infty$, если область определения представляет из себя луч, простирающийся до $+\infty$ либо $-\infty$. Например $\lim_{x \to \infty} \ln x = \lim_{x \to +\infty} \ln x = +\infty$, так как $\mathcal{D}(\ln x) = (0; +\infty)$.

Техника вычисления пределов функции в точке отличается от описанной выше. По определению функция y=f(x) непрерывна в точке $x=x_0$, если $\lim_{x\to x_0}f(x)=f(x_0)$. На практике данным определением пользуются в обратную сторону. Поскольку все элементарные функции (степенные, показательные, логарифмические, тригонометрические, функции с модулями) непрерывны на области определения, то в случае $x_0\in\mathcal{D}(f)$ значение предела является значением функции в точке x_0 .

Более трудная ситуация возникает когда $x_0 \notin \mathcal{D}(f)$, но лежит на границе $\mathcal{D}(f)$. В этом случае как правило реализуется одна из двух ситуаций: либо функция неограничена, т.е. $\lim_{x\to x_0} f(x) = \infty$, либо

предел является неопределенностью $\frac{0}{0}$. Для вычисления последней либо раскладывают числитель и знаменатель на скобки, сокращая скобку в младшей степени (младший ноль), либо пользуются замечательными пределами и таблицей эквивалентных бесконечно малых функций. Иногда предварительно нужно сделать замену переменной, поскольку все замечательные пределы вычисляются при $x \to 0$.

Первый замечательный предел $\lim_{x\to 0} \frac{\sin x}{x} = 1$ помогает вычислять пределы, содержащие тригонометрические функции. Из данного соотношения следует, что

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\arctan x}{x} = 1,$$

 $\lim_{x\to 0}\frac{\arcsin x}{x}=\lim_{x\to 0}\frac{\operatorname{tg} x}{x}=\lim_{x\to 0}\frac{\arctan x}{x}=1,$ также в качестве упражнения полезно доказать, что $\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}.$ Важно отметить, что все эти пределы остающей полезно регипирация полезно на пределы остающей полезно полезно пределы остающей полезно поле ются верными при замене x на произвольную бесконечно малую функцию $u(x) \to 0 \ (x \to x_0),$ если предел вычисляется при $x \to x_0.$ Например, $\lim_{x\to\infty}\frac{\operatorname{tg} 1/x}{1/x}=1$, так как $1/x\to 0$ при $x\to\infty$. На основе этого свойства решаются многие примеры.

Другой приём состоит в замене тригонометрических функций на эквивалентные им выражения. Первый замечательный предел порождает цепочку эквивалентных функций

$$\sin u(x) \sim \arcsin u(x) \sim \operatorname{tg} u(x) \sim \operatorname{arctg} u(x) \sim u(x),$$

$$1 - \cos u(x) \sim \frac{u^2(x)}{2}$$

при $u(x) \to 0$. При вычислении предела каждую функцию, являющуюся сомножителем, можно заменить на любую другую. Считаем, что $f(x)\sim g(x)$ при $x o x_0,$ если $\lim_{x o x_0}rac{f(x)}{g(x)}=1.$ Иногда замена на эквивалентную допустима и для слагаемых (если сохраняются главные члены). При этом приём не допустим в случае, когда образуется тождественный ноль! Например, $\lim_{x\to 0}\frac{\sin 2x - \arcsin x}{\operatorname{tg} 3x} = \lim_{x\to 0}\frac{2x - x}{3x} = \frac{1}{3},$ при этом $\lim_{x\to 0}\frac{\sin x - \arcsin x}{\operatorname{tg} x^3}$ нельзя заменять на $\lim_{x\to 0}\frac{0}{x^3}=0.$ Второй замечательный предел $\lim_{x\to 0}(1+x)^{1/x}=e$ помогает вышенять продел $\lim_{x\to 0}(1+x)^{1/x}=e$

числять пределы показательных и логарифмических функций. Из него следует, что

$$\lim_{x \to 0} \frac{a^x - 1}{x \ln a} = 1, \quad \lim_{x \to 0} \frac{\log_a (1 + x) \ln a}{x} = 1, \quad \lim_{x \to 0} \frac{(1 + x)^\alpha - 1}{\alpha x} = 1.$$

В данных пределах также можно заменить x на произвольную бесконечно малую функцию $u(x) \to 0 \ (x \to x_0)$, если предел вычисляется при $x \to x_0$. Отсюда получаем цепочку эквивалентных функций

$$(u(x) \rightarrow 0)$$
:

$$a^{u(x)} - 1 \sim u(x) \ln a$$
, $\log_a (1 + u(x)) \sim \frac{u(x)}{\ln a}$, $(1 + u(x))^{\alpha} - 1 \sim \alpha u(x)$.

В заключение отметим, что пределы частного двух функций также можно вычислять, используя правило Лопиталя, основанное на вычислении производных числителя и знаменателя. Однако данное правило не является универсальным и относится к другой теме (изучается позже). При вычислении сложных пределов в точке целесообразно комбинировать различные приёмы, а также при необходимости использовать замену переменной, предварительно указав тип неопределенности, реализуемый в данном примере.

Пример 3.2. Вычислить пределы функций:

a)
$$\lim_{x \to \infty} \left(\frac{x^2 + 2x + 3}{x^2 - 1} \right)^{\frac{x^2}{1 - x}};$$
 6) $\lim_{x \to \infty} \frac{(3x - 2)^{30} \cdot (2x - 3)^{20}}{(3x + 5)^{50}};$
B) $\lim_{x \to -2} \frac{x^2 + 3x + 2}{x^3 + 3x + 14};$ r) $\lim_{x \to -2} \frac{x^3 + 8}{\sqrt[3]{x - 6} + 2};$

$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x^3 + 3x + 14}; \qquad \qquad \text{r)} \quad \lim_{x \to -2} \frac{x^3 + 8}{\sqrt[3]{x - 6} + 2}$$

д)
$$\lim_{x \to 0} \frac{1 + 2 \operatorname{tg} x - \cos 2x}{1 - 3 \sin x - \cos x};$$
 e) $\lim_{x \to 0} \frac{\ln(1 + \operatorname{arctg}^2 3x)}{\sqrt{9 + x^2} - 3}.$

а) Так как $\lim_{x\to\infty}\frac{x^2+2x+3}{x^2-1}=1, \lim_{x\to\infty}\frac{x^2}{1-x}=\infty$, то мы имеем неопределённость 1^∞ . Выделяя в выражении в скобках целую часть, с использованием определения экспоненты получаем

$$\lim_{x\to\infty}\left(1+\frac{2x+4}{x^2-1}\right)^{\frac{x^2-1}{2x+4}\frac{(2x+4)x^2}{(x^2-1)(1-x)}}=e^{\lim_{x\to\infty}\frac{(2x+4)x^2}{(x^2-1)(1-x)}}=e^{-2}.$$

- б) Так как в числителе и знаменателе стоят многочлены пятидесятой степени, то предел равен отношению коэффициентов при этой (старшей) степени, т.е. $\frac{3^{30}\cdot 2^{20}}{3^{50}}=(2/3)^{20}.$
- в) Подставляя число -2 в числитель и знаменатель, получаем неопределённость $\frac{0}{0}$. Отыскав корни, можно заметить, что $x^2 + 3x + 2 = (x+2)(x+1)$, следовательно младшим нулём является двучлен x+2. Поделив углом $x^3+3x+14$ на x+2, получаем

 $x^2 - 2x + 7$, следовательно

$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x^3 + 3x + 14} = \lim_{x \to -2} \frac{x + 1}{x^2 - 2x + 7} = -\frac{1}{15}.$$

г) Аналогично предыдущему примеру имеем неопределённость $\frac{0}{0}$. Числитель раскладывается по формуле суммы кубов $x^3+8=(x+2)(x^2-2x+4)$, следовательно младшим нулём снова является двучлен x+2. Чтобы избавиться от кубического корня в знаменателе, домножим числитель и знаменатель на сопряжённое выражение $\sqrt[3]{(x-6)^2}-2\sqrt[3]{x+6}+4$. В итоге получаем

$$\lim_{x \to -2} \frac{(x+2)(x^2 - 2x + 4)(\sqrt[3]{(x-6)^2} - 2\sqrt[3]{x-6} + 4)}{(\sqrt[3]{x-6} + 2)(\sqrt[3]{(x-6)^2} - 2\sqrt[3]{x-6} + 4)} =$$

$$= \lim_{x \to -2} \frac{(x+2)(x^2 - 2x + 4)(\sqrt[3]{(x-6)^2} - 2\sqrt[3]{x-6} + 4)}{x-6+8} = 12 \cdot 12 = 144.$$

д) Имеем неопределённость $\frac{0}{0}$. Используя эквивалентные функции (первый замечательный предел) и сокращение на младший ноль, получаем

$$\lim_{x \to 0} \frac{1 + 2 \operatorname{tg} x - \cos 2x}{1 - 3 \sin x - \cos x} = \lim_{x \to 0} \frac{1 + 2x - (1 - 2x^2)}{1 - 3x - (1 - \frac{x^2}{2})} = \lim_{x \to 0} \frac{2 + 2x}{-3 + \frac{x}{2}} = -\frac{2}{3}.$$

е) Имеем неопределённость $\frac{0}{0}$. Используя эквивалентные бесконечно малые функции (второй замечательный предел), получаем

$$\lim_{x \to 0} \frac{\ln(1 + \operatorname{arctg}^2 3x)}{\sqrt{9 + x^2} - 3} = \lim_{x \to 0} \frac{\operatorname{arctg}^2 3x}{3(\sqrt{1 + (x/3)^2} - 1)} = \lim_{x \to 0} \frac{9x^2}{3/2 \cdot (x/3)^2} = 54.$$

Задание 3.2. Найти предел функции, не используя правило Лопиталя.

$$a. \lim_{x \to \infty} \frac{(2x-3)^{20} \cdot (3x+2)^{30}}{(2x+1)^{50}}; \qquad a. \lim_{x \to 0} \frac{\sin 3x - 2x}{\sin 7x - \sin 8x};$$

$$b. \lim_{x \to +\infty} \left(\frac{2x+1}{x-1}\right)^x; \qquad b. \lim_{x \to \infty} \frac{\sqrt[3]{x^4+3} - \sqrt[4]{x^7+1}}{\sqrt[5]{x^7+5}};$$

$$c. \lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}; \qquad c. \lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 + x + 6};$$

$$d. \lim_{x \to \infty} \left(\sqrt{x^2 + 2x + 3} - \sqrt{x^2 + 1}\right); \qquad d. \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x};$$

$$e. \lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 3} \right)^{x^2 + 4};$$

$$f. \lim_{x \to 0} \left(\frac{2}{\sin 2x \cdot \sin x} - \frac{1}{\sin^2 x} \right).$$
 $f. \lim_{x \to \infty} \left(\frac{1 - x - 3x^2}{2 - 3x^2} \right)^{2x + 1}.$

e.
$$\lim_{x\to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16};$$

$$f. \lim_{x \to \infty} \left(\frac{1 - x - 3x^2}{2 - 3x^2} \right)^{2x + 1}$$

a.
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$
;

b.
$$\lim_{x \to -\infty} \left(\frac{2x+1}{x-1} \right)^x;$$

c.
$$\lim_{x \to \infty} \frac{(x+3)^5 - (3x-1)^5}{(2x+1)^5 + (x+2)^5};$$

d.
$$\lim_{x \to -2} \frac{x^3 + 3x + 14}{x^2 + 3x + 2}$$
;

e.
$$\lim_{x \to \infty} \left(\frac{3x+5}{3x-7} \right)^{\frac{x^2+2}{2x-1}};$$

$$f. \lim_{x \to 0} \frac{\sin^2 2x}{1 - \cos x}.$$

Вариант 4

a.
$$\lim_{x\to 3} \frac{\sqrt{x+13}-2\sqrt{x+1}}{x^2-9}$$
;

b.
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 2x + 3} \right)^{\frac{x^2}{x+1}};$$

c.
$$\lim_{x\to 0} \frac{\sin^4 3x}{\cos 8x^2 - 1}$$
;

d.
$$\lim_{x \to \infty} \frac{(2x^3 + 5x - 4)^6}{(2x^6 - 7x^2 + 3x)^3};$$

e.
$$\lim_{x \to \pi} \frac{2 - \cos x \cdot \cos 2x \cdot \cos 3x}{1 + \cos x};$$

$$f. \lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right).$$

a.
$$\lim_{x \to \infty} \left(\frac{2x^2 + 3}{2x^2 - 1} \right)^{3x + 4}$$
;

b.
$$\lim_{x \to +\infty} (\sqrt{x + \sqrt{x}} - \sqrt{x});$$

c.
$$\lim_{x \to -1} \frac{x^7 + 1}{x^5 + 1}$$
;

$$d. \lim_{x \to +\infty} \left(\frac{x+1}{2x-1} \right)^{\frac{1-\sqrt{x}}{1-x}};$$

e.
$$\lim_{x \to \infty} \frac{\sqrt[5]{x^6 + 3} - \sqrt[3]{8x^4 + 1}}{\sqrt[6]{x^8 + x^7 + 1} + x};$$

$$f. \lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{2}{\sin x \cdot \sin 2x} \right).$$

a.
$$\lim_{x\to 0} \frac{x + \sin 3x}{\sin 8x - \sin 7x}$$

b.
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 3} \right)^{x^2 + 4};$$

c.
$$\lim_{x \to \infty} (\sqrt[3]{x^3 + x^2} - x);$$

d.
$$\lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}$$
;

$$e. \lim_{x \to -\infty} \left(\frac{x+1}{3x-1} \right)^{2x+1};$$

$$f. \lim_{x \to \infty} \frac{(2x-3)^{20} \cdot (3x+2)^{30}}{(2x+1)^{50}}.$$

$$a. \lim_{x \to \infty} \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x - 1} \right);$$

b.
$$\lim_{x \to -\infty} \left(\frac{x+1}{3x-1} \right)^{2x+1};$$

c.
$$\lim_{x \to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16};$$

d.
$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - 2\sin x}}{\operatorname{tg} 3x}$$
;

e.
$$\lim_{x \to \infty} \left(\frac{1 - x - 3x^2}{2 - 3x^2} \right)^{2x + 1}$$
;

$$f. \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}.$$

Вариант 9

$$a. \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x};$$

b.
$$\lim_{x \to +\infty} \left(\frac{2x+1}{x-1} \right)^x;$$

c.
$$\lim_{x \to \infty} \frac{(x+3)^5 - (3x-1)^5}{(2x+1)^5 + (x-2)^5};$$

d.
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$$
;

e.
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 2x + 3} \right)^{\frac{x^2}{x+1}}$$
; e. $\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 + x + 6}$;

$$f. \lim_{x \to 0} \left(\frac{2}{\sin x \cdot \sin 2x} - \frac{1}{\sin^2 x} \right).$$
 $f. \lim_{x \to -1} \frac{x^7 + 1}{x^5 + 1}.$

Вариант 8

a.
$$\lim_{x \to \infty} (\sqrt{x^2 + 2x + 3} - \sqrt{x^2 + 1});$$

$$b. \lim_{x \to +\infty} \frac{\sqrt[3]{x^4 + 3} - \sqrt[4]{x^7 + 1}}{\sqrt[5]{x^7 + 5}};$$

c.
$$\lim_{x \to -7} \frac{x^2 + 9x + 14}{2x^3 + 11x^2 - 21x}$$
;

d.
$$\lim_{x\to 0} \frac{1+\sin 2x - \cos x}{1-3\sin x + \cos x}$$
;

e.
$$\lim_{x \to \infty} \left(\frac{3x+5}{3x-7} \right)^{\frac{x^2+2}{2x-1}};$$

$$f. \lim_{x \to 1} \frac{\sin \pi x \cdot (x^2 + 1)}{x^2 - 1}$$

Вариант 10

$$a. \lim_{x \to 0} \frac{\sin^2 2x}{1 - \cos x};$$

b.
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$
;

c.
$$\lim_{x \to \infty} \left(\frac{2x^2 + 3}{2x^2 - 1} \right)^{3x + 4}$$
;

d.
$$\lim_{x \to \infty} \frac{\sqrt[5]{x^6 + 3} - \sqrt[3]{8x^4 + 1}}{\sqrt[6]{x^8 + x^7 + 1} + x};$$

e.
$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 + x + 6}$$
;

$$f. \lim_{x \to -1} \frac{x^7 + 1}{x^5 + 1}.$$

Вариант 11

a.
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 3} \right)^{x^2 + 4}$$
;

b.
$$\lim_{x\to 0} \frac{2x + \sin 3x}{\sin 8x - \sin 7x};$$

c.
$$\lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}$$
;

$$d. \lim_{x \to -\infty} \left(\frac{2x+1}{x-1}\right)^x;$$

e.
$$\lim_{x \to \infty} \frac{(2x^3 + 5x - 4)^6}{(2x^6 - 7x^2 + 3x)^3};$$

$$f. \lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}.$$

a.
$$\lim_{x \to \infty} \left(\frac{x^2 + 2x + 3}{x^2 - 1} \right)^{\frac{x^2}{1 - x}}$$
;

b.
$$\lim_{x \to 0} \frac{\sin^2 3x}{1 - \cos 4x};$$

c.
$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x^3 + 3x + 14}$$
;

d.
$$\lim_{x \to -2} \frac{x^3 + 8}{\sqrt[3]{x + 6} + 2}$$
;

e.
$$\lim_{x\to 0} \frac{1+2\sin x - \cos x}{1-3\sin x + \cos x}$$
;

$$f. \lim_{x \to \infty} \frac{(3x-2)^{30} \cdot (2x-3)^{20}}{(3x+5)^{50}}.$$

Вариант 15

$$a. \lim_{x\to 0} \frac{\sin 3x - x}{\sin 7x - \sin 8x};$$

b.
$$\lim_{x \to +\infty} \frac{\sqrt[3]{x^4 + 3} - \sqrt[4]{x^7 + 1}}{\sqrt[5]{x^7 + 5}};$$
 b. $\lim_{x \to -\infty} \left(\frac{x+1}{3x-1}\right)^{2x-1};$

a.
$$\lim_{x \to 0} \frac{\cos 8x^2 - 1}{\sin^4 3x}$$
;

b.
$$\lim_{x \to \infty} \left(\frac{1 - x - 3x^2}{2 - 3x^2} \right)^{2x + 1};$$

c.
$$\lim_{x \to +\infty} (\sqrt{x + \sqrt{x}} - \sqrt{x});$$

d.
$$\lim_{x\to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16}$$
;

$$e. \lim_{x \to \pi} \frac{2 - \cos x \cdot \cos 2x \cdot \cos 3x}{1 + \cos x};$$

$$f. \lim_{x \to \infty} \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x + 1} \right).$$

Вариант 14

a.
$$\lim_{x \to \infty} \frac{(2x-3)^{20} \cdot (3x+2)^{30}}{(2x+1)^{50}};$$

b.
$$\lim_{x \to +\infty} \left(\frac{2x-1}{x+1} \right)^{\frac{1-x}{1-\sqrt{x}}};$$

c.
$$\lim_{x \to 2} \frac{x^4 + x^2 - 12x + 4}{3x^2 - 5x - 2}$$
;

d.
$$\lim_{x \to \infty} (\sqrt[3]{x^3 + x^2} - x);$$

e.
$$\lim_{x \to \infty} \left(\frac{3x+5}{3x-7} \right)^{\frac{x^2+2}{2x-1}};$$

$$f. \lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{2}{\sin x \cdot \sin 2x} \right).$$

a.
$$\lim_{x \to \infty} (\sqrt{x^2 + 2x + 3} - \sqrt{x^2 + 1});$$

b.
$$\lim_{x \to -\infty} \left(\frac{x+1}{3x-1} \right)^{2x-1};$$

c.
$$\lim_{x \to -\infty} \left(\frac{x+1}{3x-1} \right)^{2x+1};$$

d.
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right);$$

e.
$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - 2\sin x}}{\operatorname{tg} 3x};$$
 e. $\lim_{x \to \infty} \left(\frac{2x^2 + 3}{2x^2 - 1}\right)^{3x + 4};$

$$f. \lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 2x + 3} \right)^{\frac{x^2}{x+1}}.$$

a.
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 3} \right)^{x^2 + 4}$$
;

b.
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x};$$

c.
$$\lim_{x \to 1} \frac{x^5 - 4x + 3}{x^4 - 3x + 2}$$
;

d.
$$\lim_{x \to \infty} \frac{(2x^3 + 5x - 4)^6}{2x^6 - 7x^2 + 3x)^3};$$

e.
$$\lim_{x\to 0} \frac{1+2\sin x + \cos x}{1-3\sin x - \cos x};$$

$$f. \lim_{x \to 1} \frac{1 - x^2}{(x^2 + 1)\sin \pi x}.$$

a.
$$\lim_{x \to \infty} \left(\frac{3x+5}{3x-7} \right)^{\frac{x^2+2}{2x-1}};$$

$$b. \lim_{x \to 0} \frac{x + \sin 3x}{\sin 7x - \sin 8x};$$

c.
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$
;

$$d. \lim_{x \to -2} \frac{x^4 - 16}{x^2 + 3x + 2};$$

c.
$$\lim_{x \to \infty} \frac{(x+3)^5 - (3x-1)^5}{(2x+1)^5 + (x-2)^5};$$

$$d. \lim_{x \to -1} \frac{x^5 + 1}{x^7 + 1};$$

e.
$$\lim_{x \to \infty} \left(\frac{2x^2 + 3}{2x^2 - 1} \right)^{3x + 4}$$

$$f. \lim_{x\to 0} \frac{1-\cos 2x}{\sin^2 3x}.$$

Вариант 18

a.
$$\lim_{x \to 3} (\frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9});$$

b.
$$\lim_{x \to 0} \left(\frac{2}{\sin 2x \cdot \sin x} - \frac{1}{\sin^2 x} \right);$$

c.
$$\lim_{x\to 2} \frac{x^4 - 8x^2 + 16}{x^3 - 2x^2 - 4x + 8}$$
;

$$d. \lim_{x \to +\infty} \left(\frac{2x+1}{x-1} \right)^x;$$

e.
$$\lim_{x \to \infty} \frac{\sqrt[5]{x^6 + 3} - \sqrt[3]{8x^4 + 1}}{\sqrt[6]{x^8 + x^7 + 1} + n};$$

$$f. \lim_{x \to \infty} \left(\frac{1 - x - 3x^2}{2 - 3x^2} \right)^{2x + 1}.$$

a.
$$\lim_{x \to \infty} \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x + 1} \right);$$

b.
$$\lim_{x \to +\infty} \left(\frac{2x+1}{x-1} \right)^x;$$

c.
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right);$$

$$d. \lim_{x \to +\infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right);$$

e.
$$\lim_{x \to \infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}};$$
 e. $\lim_{x \to \infty} \left(\frac{x^2-1}{x^2+2x+3}\right)^{\frac{x^2}{x+1}};$

$$f. \lim_{x \to -2} \frac{x^2 + x + 6}{x^3 + 3x^2 + 2x}.$$

a.
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 2x + 3} \right)^{\frac{x^2 - x}{3x + 2}};$$

b.
$$\lim_{x \to +\infty} \frac{\sqrt[3]{x^4 + 3} - \sqrt[4]{x^7 + 1}}{\sqrt[5]{x^7 + 5}};$$
 b. $\lim_{x \to -\infty} \left(\frac{x+1}{2x-1}\right)^{\frac{1-\sqrt[3]{x}}{1-x}};$

c.
$$\lim_{x \to \pi} \frac{1 + \cos x}{2 - \cos x \cdot \cos 2x \cdot \cos 3x};$$

$$d. \lim_{x \to -1} \frac{x^7 + 1}{x^5 + 1};$$

e.
$$\lim_{x \to \infty} (\sqrt[3]{x^2 + x^3} - x);$$

$$f. \lim_{x \to 1} \frac{(x^2 + 1)\sin \pi x}{x^2 - 1}.$$

Вариант 23

a.
$$\lim_{x\to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16};$$

b.
$$\lim_{x \to \infty} (\sqrt{x^2 + 2x + 3} - \sqrt{x^2 + 1});$$

$$c. \lim_{x \to +\infty} \left(\frac{2x+1}{x-1}\right)^x;$$

$$d. \lim_{x \to \infty} \frac{\sqrt[6]{x^8 + 7x^7 + 1} - x}{\sqrt[5]{x^6 + 3} - \sqrt[3]{8x^4 + 1}};$$

e.
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 3} \right)^{x^2 + 4}$$
;

$$f. \lim_{x \to 0} \frac{\sin 3x - 2x}{\sin 8x - \sin 7x}$$

e.
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 2x + 3} \right)^{\frac{x^2}{x+1}}$$
;

$$f. \lim_{x \to 0} \frac{\sin^2 2x}{1 - \cos x}.$$

Вариант 22

$$a. \lim_{x \to 0} \frac{x + \sin 3x}{\sin 7x - \sin 8x};$$

b.
$$\lim_{x \to -\infty} \left(\frac{x+1}{2x-1} \right)^{\frac{1-\sqrt[3]{x}}{1-x}};$$

c.
$$\lim_{x \to \infty} \frac{(x+3)^5 - (3x-1)^5}{(2x+1)^5 - (x-2)^5}$$

d.
$$\lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}$$
;

$$e. \lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - 2\sin x}}{\operatorname{tg} 3x};$$

$$f. \lim_{x \to \infty} \left(\frac{2x^+3}{2x^2 - 1} \right)^{3x + 4}.$$

a.
$$\lim_{x\to 0} \frac{1-\cos x}{\sin^2 2x}$$
;

b.
$$\lim_{x \to -2} \frac{x^3 + 3x + 14}{x^2 + 3x + 2}$$
;

c.
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$
;

$$d. \lim_{x \to -\infty} \left(\frac{x-1}{2x+1}\right)^x;$$

e.
$$\lim_{x\to\infty} \frac{(2x^3+5x-4)^6}{(3x^6-7x^2+3x)^3}$$
;

$$f. \lim_{x \to \infty} \left(\frac{1 - x - 3x^2}{2 - 3x^2} \right)^{2x + 1}$$

a.
$$\lim_{x \to \infty} \left(\frac{3x - 7}{3x + 5} \right)^{\frac{x^2 + 2}{2x - 1}};$$

b.
$$\lim_{x\to 0} \frac{\cos 8x^2 - 1}{\sin^4 3x}$$
;

$$c. \lim_{x \to -7} \frac{2x^3 + 11x^2 - 21x}{x^2 + 9x + 14};$$

d.
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$
;

e.
$$\lim_{x \to 0} \left(\frac{1+x}{2+x} \right)^{\frac{1-\sqrt{x}}{1-x}};$$

$$f. \lim \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x + 1}\right).$$

Вариант 27

$$a. \lim_{x \to -\infty} \left(\frac{3x-1}{x+1} \right)^{2x+1};$$

b.
$$\lim_{x \to \infty} \frac{(2x+1)^5 + (x-2)^5}{(3x-1)^5 - (x+3)^5};$$

c.
$$\lim_{x \to \infty} \left(\frac{2x^2 - 1}{2x^2 + 3} \right)^{3x+4}$$
;

$$d. \lim_{x\to 0} \frac{\sin 9x - \sin 7x}{\sin 3x};$$

e.
$$\lim_{x \to -1} \frac{x^7 + 1}{x^5 + 1}$$
;

$$f. \lim_{x \to +\infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right).$$

Вариант 29

Вариант 26

a.
$$\lim_{x \to \infty} \frac{(2x+1)^{50}}{(2x-3)^{20}(3x+2)^{30}};$$

b.
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 2x + 3} \right)^{\frac{x^2}{x+1}};$$

c.
$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{2}{\sin x \cdot \sin 2x} \right);$$

d.
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right);$$

e.
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$
;

$$f. \lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 + x + 6}.$$

Вариант 28

a.
$$\lim_{x \to \infty} (x - \sqrt[3]{x^3 + x^2});$$

$$b. \lim_{x \to +\infty} \left(\frac{x+1}{3x-1} \right)^{2x+5};$$

c.
$$\lim_{x \to \infty} \frac{\sqrt[3]{8x^4} - \sqrt[5]{x^6 + 3}}{x + \sqrt[6]{x^8 + 7x^7 - 1}};$$

d.
$$\lim_{x \to \infty} \left(\frac{x^2 + 3}{x^2 - 1} \right)^{x^2 + 4}$$
;

e.
$$\lim_{x \to 0} \frac{1 - \cos 3x}{\sin^2 x}$$
;

$$f. \lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 + x + 6}.$$

$$a. \lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}; \qquad a. \lim_{x \to 0} \frac{1}{\sin^2 x} - \frac{2}{\sin 2x \cdot \sin x};$$

$$b. \lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - 2\sin x}}{\tan x}; \qquad b. \lim_{x \to 2} \frac{x^4 - 8x^2 + 16}{x^3 - 2x^2 - 4x + 8};$$

$$c. \lim_{x \to \pi} \frac{2 - \cos x \cdot \cos 2x \cdot \cos 3x}{1 + \cos x}; \qquad c. \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}};$$

$$d. \lim_{x \to \infty} \frac{(3x^3 + 5x - 2)^6}{(2x^6 - 7x^2 + 3x)^3}; \qquad d. \lim_{x \to \infty} \left(\frac{2 + x}{1 + x}\right)^{\frac{1 + x^2}{1 - \sqrt{x}}};$$

$$e. \lim_{x \to \infty} \left(\frac{2 - 3x^2}{1 - x - 3x^2}\right)^{2x - 1}; \qquad e. \lim_{x \to \infty} \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x + 1}\right);$$

$$f. \lim_{x \to 1} \frac{\sin \pi x(x^2 + 1)}{x^2 - 1}. \qquad f. \lim_{x \to \infty} \left(\frac{3x - 7}{3x + 5}\right)^{\frac{x^2 + 2}{1 - 2x}}.$$

3.3. Асимптотические формулы. Символы Ландау. 1

Чтобы сравнить поведение двух функций в окрестности данной точки x_0 используют так называемые асимптотические равенства.

В предыдущем пункте было сказано, что если для двух функций f(x) и g(x) выполнено равенство

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1,$$

то функции называют эквивалентными в окрестности точки x_0 (используется обозначение $f(x) \sim g(x)$). Для приложений это означает, что вблизи точки x_0 функции практически не отличимы друг от друга, и одну из них локально можно заменить на другую. Первый и второй замечательный предел формируют базовые классы эквивалентных функций.

Как правило сложные бесконечно малые (бесконечно большие) функции в окрестности точки x_0 заменяют на эквивалентные им степенные функции вида $c(x-x_0)^n$, где $c \in \mathbb{R} \setminus 0$, $n \in \mathbb{R}$ (при $x \to 0$ либо $x \to \infty$ используют cx^n). При этом число n называют nopad-ком бесконечно малой (бесконечно большой) функции, а выражение $c(x-x_0)^n-$ главным асимптотическим членом. В этом случае зачастую используют обозначение $f(x)=c(x-x_0)^n[1+o(1)]$ ($x\to x_0$).

 $^{^{1}{}m B}$ данной теме при вычислении пределов будет использоваться правило Лопиталя

Под символом o(1) ("о малое от единицы") понимают произвольную бесконечно малую функцию при $x \to x_0$. В общем случае символы Ландау "о малое" и "О большое" (Эдмунд Ландау (1877-1938) известный немецкий математик) используют для обозначения описанных ниже связей между двумя функциями f(x) и q(x).

Будем писать $f(x) = o(g(x)) \ (x \to x_0)$, если выполнено равенство

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

В случае бесконечно малых функций говорят, что функция f(x)является бесконечно малой более высокого порядка, чем q(x) при $x \to x_0$.

Запись f(x) = O(g(x)) $(x \rightarrow x_0)$ означает, что функция $\frac{f(x)}{g(x)}$ является ограниченной в некоторой проколотой окрестности $O_{\delta}^{0}(x_{0}) = (x_{0} - \delta; x_{0}) \cup (x_{0}; x_{0} + \delta), \text{ r.e.}$

$$\exists M > 0 \ \exists O_{\delta}^{0}(x_0) : \quad \left| \frac{f(x)}{g(x)} \right| < M \quad \forall x \in O_{\delta}^{0}(x_0).$$

Отметим, что если функция $\frac{f(x)}{g(x)}$ имеет конечный предел при $x \to x_0$, то автоматически f(x) = O(g(x)) $(x \to x_0)$, в частности из равенства f(x) = o(g(x)) следует, что f(x) = O(g(x)).

При решении приведённых ниже задач удобно пользоваться правилом Лопиталя: если предел отношения двух функций $\frac{f(x)}{q(x)}$ явля-

ется неопределённостью $\frac{0}{0}$ или $\frac{\infty}{\infty}$ при $x \to 0$, то

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

если предел отношения производных существует.

Пример 3.3. Доказать, что: a)
$$e^{-x} = o(1/x^2)$$
 $(x \to +\infty)$; 6) $2x^3 - x^2 + 1 = O(x^3)$ $(x \to \infty)$; B) $x^3 - 2x^2 + 1 = O(x-1)$ $(x \to 1)$; г) $\sin x = O(\arctan x)$ $(x \to \infty)$; Д) $\sqrt{x + \sqrt{x + \sqrt{x}}} \sim \sqrt{x}$ $(x \to +\infty)$. Решение:

а) Докажем, что $\lim_{x\to +\infty} \frac{e^{-x}}{1/x^2}=0$. Действительно, используя пра-

$$\lim_{x \to +\infty} \frac{x^2}{e^x} = \lim_{x \to +\infty} \frac{(x^2)'}{(e^x)'} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0.$$

- 6) Имеем $\lim_{x\to\infty}\frac{2x^3-x^2+1}{x^3}=2$, следовательно $2x^3-x^2+1=O(x^3)$ $(x\to\infty)$.

 в) Функция $\frac{x^3-2x^2+1}{x-1}=x^2-x-1\to -1$ при $x\to 1$, следовательно $x^3-2x^2+1=O(x-1)$ $(x\to 1)$.

 г) В данном примере функция $\frac{\sin x}{\operatorname{arctg} x}$ не является сходящей-
- ся при $x \to \infty$. Однако, при |x| > 1 выполнено неравенство $|\arctan x| > \pi/4$. Отсюда

$$\left| \frac{\sin x}{\arctan x} \right| \le \frac{1}{|\arctan x|} < \frac{4}{\pi}$$

в окрестности $O_1(\infty)=(-\infty;1)\cup(1;+\infty)$. Следовательно $\sin x = O(\operatorname{arctg} x) \ (x \to \infty).$

д) Докажем, что
$$\lim_{x\to +\infty} \frac{\sqrt{x+\sqrt{x}+\sqrt{x}}}{\sqrt{x}} = 1$$
. Действительно, $\lim_{x\to +\infty} \frac{\sqrt{x+\sqrt{x}}}{x} = \lim_{x\to +\infty} \sqrt{\frac{x}{x^2}+\frac{\sqrt{x}}{x^2}} = 0$, отсюда
$$\lim_{x\to +\infty} \frac{\sqrt{x+\sqrt{x}+\sqrt{x}}}{\sqrt{x}} = \lim_{x\to +\infty} \sqrt{1+\frac{\sqrt{x+\sqrt{x}}}{x}} = 1.$$

Пример 3.4. Найти главный член асимптотики функции $\sin x - x$ при $x \to 0$.

Решение:

Подберём действительное число n таким образом, чтобы существовал конечный ненулевой предел функции $\frac{\sin x - x}{x^n}$ при $x \to 0$. С учетом первого замечательного предела n > 1. С помощью правила Лопиталя получаем

$$\lim_{x \to 0} \frac{\sin x - x}{x^n} = \lim_{x \to 0} \frac{\cos x - 1}{nx^{n-1}} = \lim_{x \to 0} \frac{-\sin x}{n(n-1)x^{n-2}} =$$

$$= \lim_{x \to 0} \frac{-\cos x}{n(n-1)(n-2)x^{n-3}} = \frac{-1}{6},$$

если n=3. Отсюда

$$\sin x - x = -\frac{1}{6}x^3[1 + o(1)] = -\frac{1}{6}x^3 + o(x^3) \quad (x \to 0).$$

Задание 3.3. а. Доказать указанное соотношение. b. Найти главный член асимптотики $c(x-x_0)^n$ при $x\to x_0$ (либо cx^n при $x\to \infty$).

Вариант 1

a.
$$2x - x^2 = O(x), x \to 0;$$

b.
$$tg x - \sin x$$
, $x \to 0$;

Вариант 2

$$a. x \sin \sqrt{x} = o(x), x \to 0;$$

b.
$$x^3 - 3x + 2$$
, $x \to 1$;

Вариант 3

a.
$$\arctan \frac{1}{x} = O(1), x \to 0$$

b.
$$\sqrt{1+x} - \sqrt{1-x}, \ x \to 0;$$

Вариант 4

$$\begin{array}{ll} a. \ \mathrm{arctg} \ \frac{1}{x} = O(1), \ x \to 0; & a. \ \frac{x+1}{x^2+1} = O(1/x), \ x \to \infty; \\ b. \ \sqrt{1+x} - \sqrt{1-x}, \ x \to 0; & b. \ \ln x, \ x \to 1; \end{array}$$

b.
$$\ln x, x \to 1$$

Вариант 5

a.
$$\cos x = O(\arccos 2x), x \to 0$$

$$b. \sqrt{\sqrt{x} + 2x}, \ x \to +0;$$

Вариант 6

a.
$$\cos x = O(\arccos 2x), \ x \to 0;$$
 a. $x^3 - 2x^4 = o(\sin^2(2x)), \ x \to 0;$

$$b. \sqrt{\sqrt{x} + 2x}, \ x \to +\infty;$$

Вариант 7

$$a. \sqrt{x^2 + 5} = O(1/x), \ x \to \infty;$$

b.
$$\sqrt[3]{8\sqrt{x}+x}, \ x\to 0$$

Вариант 8

a.
$$(1+x)^5 = 1 + 5x + o(x), x \to 0;$$

b.
$$\sqrt[3]{8\sqrt{x}+x}$$
, $x \to 0$; b. $\sqrt[3]{\cos 4x} = 1 - \frac{8}{3}x^2 + o(x^2)$, $x \to 0$;

Вариант 9

$$a. \sqrt[3]{8\sqrt{x}+x}, \ x\to\infty;$$

$$b. e^x - e, x \rightarrow 1;$$

$$a. x = O(25x - x\sin x), x \to \infty;$$

b.
$$x^x - 1, x \to 1;$$

$$a. \frac{1}{\sin \pi x}, x \to 1;$$

b.
$$\sqrt{\frac{1+x}{1-x}}, \ x \to 1;$$

Вариант 13

a.
$$\frac{\operatorname{arctg} x}{1+x^2} = O(1/x^2), \ x \to \infty;$$
 a. $\ln x = o(\sqrt[3]{x}), \ x \to +\infty;$

b.
$$\sqrt{1+\sqrt{1+\sqrt{x}}}$$
, $x \to +\infty$; b. $\operatorname{tg} \frac{\pi x}{2}$, $x \to 0$;

Вариант 15

$$a. \sqrt{x^2 + x} = x + o(1), \ x \to +\infty;$$
 $a. \sqrt{x^2 + x} = x + o(x^2), \ x \to -\infty;$

b.
$$\sqrt{\frac{1-x^3}{1+x}}, \ x \to 1;$$

Вариант 17

a.
$$\ln(1+e^x) = o(1), x \to -\infty$$
;

b.
$$\sqrt{x + \sqrt{x + \sqrt{x}}}, \ x \to +0;$$
 b. $\frac{x+1}{x^4 - x}, \ x \to \infty;$

Вариант 19

a.
$$e^{-x} = o(x^{-10}), x \to +\infty$$

a.
$$e^{-x} = o(x^{-10}), x \to +\infty;$$
 a. $\sqrt{1+4x} = 1+2x - o(x), x \to +0;$
b. $\frac{\arctan x}{x^2+x-1}, x \to 0;$ b. $\frac{\arctan x}{x^2+x-1}, x \to +\infty;$

Вариант 21

a.
$$\sin^2 x \, \text{tg} \, 2x = O(x^3), \ x \to 0$$

b.
$$\frac{1}{\sqrt{x+2}-\sqrt{x-1}}, \ x \to +\infty;$$
 b. $\sqrt[3]{x^2-x}-\sqrt{x}, \ x \to +\infty;$

Вариант 12

a.
$$x \sin 1/x = O(|x|), x \to 0;$$

b.
$$\sqrt{x^2 + 1} - |x| = O(1/x), \ x \to \infty;$$

Вариант 14

$$a. \ln x = o(\sqrt[3]{x}), \ x \to +\infty;$$

b.
$$\operatorname{tg} \frac{\pi x}{2}, \ x \to 0;$$

Вариант 16

$$a. \sqrt{x^2 + x} = x + o(x^2), \ x \to -\infty$$

$$b. \frac{1}{\sin x}, x \to 0;$$

Вариант 18

a.
$$\ln(1+e^x) = o(1), \ x \to -\infty;$$
 a. $\ln(1+e^x) = x + o(x), \ x \to +\infty;$

b.
$$\frac{x+1}{x^4-x}$$
, $x\to\infty$

Вариант 20

$$a. \sqrt{1+4x} = 1 + 2x - o(x), \ x \to +0;$$

b.
$$\frac{\arctan x}{x^2+x-1}$$
, $x\to +\infty$

a.
$$\sin^2 x \operatorname{tg} 2x = O(x^3), \ x \to 0;$$
 a. $1 - \cos \sqrt[3]{x} \sim \frac{x^{2/3}}{2}, \ x \to 0;$

b.
$$\sqrt[3]{x^2-x}-\sqrt{x}$$
, $x\to+\infty$

a.
$$(\sin x - x)^2 = o(x^5), x \to 0;$$

b.
$$\frac{\arctan x}{x^2 + x - 1}$$
, $x \to -\infty$; b. $\frac{\sin^2 3x}{\sqrt{1 + \sqrt[3]{x}}}$, $x \to 0$;

Вариант 25

a.
$$\cos^2 x = o(x - \pi/2), x \to \pi/2;$$
 a. $\ln \sin x = o(\pi/2 - x), x \to \pi/2;$

b.
$$x \ln x$$
, $x \to 1$;

Вариант 27

$$a. \ \frac{1}{e^x - \cos x}, \ x \to 0;$$

$$b. \ \frac{\arctan x}{x^2 + x - 1}, \ x \to 0;$$

Вариант 29

$$a. \ x\cos 1/x = O(\operatorname{arctg} x), \ x\to\infty; \qquad a. \ \operatorname{ctg} x = o(5/x^2), \ x\to 0;$$

b.
$$\sin(\sqrt{x^2+3}-2), x \to 1;$$

Вариант 24

a.
$$(\sin x - x)^2 = o(x^5), \ x \to 0;$$
 a. $\ln \cos x = -\frac{x^2}{2}(1 + o(1)), \ x \to +\infty;$

b.
$$\frac{\sin^2 3x}{\sqrt{1+\sqrt[3]{x}}}, \ x \to 0$$

Вариант 26

a.
$$\ln \sin x = o(\pi/2 - x), x \to \pi/2$$

b.
$$1 - \sqrt{\cos x}$$
, $x \to 0$;

Вариант 28

a.
$$\ln(x^2 + 2^x) = O(x), x \to +\infty;$$

$$b. \frac{\sin(1/x)}{\sqrt{1+\sqrt[3]{x}}}, \ x \to +\infty;$$

$$a \cot x = a(5/r^2) \quad r \to 0$$

$$b. \ \sin(\sqrt{x^2+3}-2), \ x\to 1; \qquad \qquad b. \ 1/x^3 = o(\arcsin\frac{2x+3}{4x^3+x}), \ x\to \infty.$$

- 3.4. Исследование функции на разрывы. Функция y = f(x)называется непрерывной в точке x_0 , если $x_0 \in \mathcal{D}(f)$ и $\lim_{x \to \infty} f(x) = f(x_0)$. Точку x_0 не являющуюся точкой непрерывности будем называть точкой разрыва функции, если для всякого $\varepsilon > 0$ каждое из множеств $(x_0 - \varepsilon; x_0) \cap \mathcal{D}(f)$ и $(x_0 - \varepsilon; x_0) \cap \mathcal{D}(f)$ не пусто (т.е. точка не является изолированной и расположена "внутри" $\mathcal{D}(f))$ и кроме того $\lim_{x \to x_0} f(x) \neq f(x_0)$ либо предел не существует. При этом реализуется одна из трех ситуаций:
- 1. Если существует конечный предел $\lim_{x \to x_0} f(x) \neq f(x_0)$, то говорят, что в точке x_0 устранимый разрыв первого рода.
- 2. Если существуют не равные, но конечные односторонние пределы $\lim_{x\to x_0-0}f(x)\neq \lim_{x\to x_0+0}f(x)$, то говорят, что в точке x_0 неустранимый разрыв первого рода (употребляется также слово "скачок").

3. В остальных случаях говорят, что в точке x_0 разрыв второго рода.

Все элементарные функции (т.е. многочлены, степенные, тригонометрические, логарифмические функции, арифметические операции над ними и их композиции) являются непрерывными функциями на своей области определения. Следовательно такие функции могут иметь разрывы лишь на концах интервалов, входящих в область определения. Например, функция y=1/x имеет область определения $(-\infty;0)\cup(0;+\infty)$, поэтому она может иметь разрыв лишь лишь в точке x=0 (в данном примере это разрыв второго рода). Кусочно заданные функции могут терять непрерывность в точке, где меняется аналитический вид функции. Например, функция "сигнум"

$$sign x := \begin{cases} 1, & x > 0; \\ -1, & x < 0; \\ 0, & x = 0 \end{cases}$$

имеет неустранимый разрыв первого рода (скачок) в точке x=0.

Пример 3.5. Найти точки разрыва и определить их тип:

a)
$$f(x) = \frac{x-1}{x^2-4x+3}$$
; 6) $f(x) = \begin{cases} \sin\frac{1}{x}, & x < 0; \\ x^2, & 0 \le x < 2; \\ 3-x, & x \ge 2 \end{cases}$

B)
$$f(x) = \frac{x}{2^{\frac{2x+1}{x-2}} - 2}$$
.

Решение:

а) Очевидно, область определения функции состоит из всех действительных $x: x^2-4x+3\neq 0$. Решая квадратное уравнение, получаем $x\in (-\infty;1)\cup (1;3)\cup (3;+\infty)$. Отсюда точками разрыва могут быть лишь x=1 и x=3. Вычисляем пределы в этих точках:

$$\lim_{x\to 1}\frac{x-1}{x^2-4x+3}=\lim_{x\to 1}\frac{x-1}{(x-1)(x-3)}=-\frac{1}{2},$$

следовательно в точке x=1 имеем устранимый разрыв первого рода;

$$\lim_{x \to 3} \frac{x - 1}{x^2 - 4x + 3} = \infty,$$

следовательно в точке x = 3 разрыв второго рода.

- б) Так как функция является кусочно заданной, то необходимо исследовать точки стыковки x=0 и x=2 (также точка x=0 не входит в область определения функции $\sin\frac{1}{x}$). Предел $\lim_{x \to -0} f(x) = \lim_{x \to -0} \sin \frac{1}{x}$ не существует, следовательно точка x = 0 является разрывом второго рода. В точке x = 2 имеем: $\lim_{x\to 2-0} f(x) = \lim_{x\to 2-0} x^2 = 4$, $\lim_{x\to 2+0} f(x) = \lim_{x\to 2+0} 3-x = 1$. Так как односторонние пределы не равны, то в этой точке имеется неустранимый разрыв первого рода (скачок).
- в) Область определения данной функции состоит из всех действительных $x \in (-\infty; -3) \cup (-3; 2) \cup (2; +\infty)$ (в точке x = -3 выполнено равенство $\frac{2x+1}{x-2} = 1$). Имеем $\lim_{x \to -3} \frac{x}{2^{\frac{2x+1}{x-2}} - 2} = \infty$, поэтому в точке x=-3 разрыв второго рода. В точке x=2, используя вспомогательные пределы $\lim_{x\to 2-0}\frac{2x+1}{x-2}=-\infty, \lim_{x\to 2+0}\frac{2x+1}{x-2}=+\infty,$ получаем

$$\lim_{x \to 2-0} \frac{x}{2^{\frac{2x+1}{x-2}} - 2} = \frac{2}{0-2} = -1, \quad \lim_{x \to 2+0} \frac{x}{2^{\frac{2x+1}{x-2}} - 2} = \frac{2}{\infty} = 0.$$

Следовательно в точке x=2 неустранимый разрыв первого рода (скачок).

Задание 3.4. Найти точки разрыва функции и определить их тип.

1.
$$f(x) = \arctan \frac{1}{x}$$
; 2. $f(x) = e^{\frac{x+2}{x-1}}$;

3.
$$f(x) = \frac{1}{\lg x}$$
; 4. $f(x) = \frac{x-1}{|x-1|}$;

7.
$$f(x) = \operatorname{ctg} \frac{1}{x}$$
; 8. $f(x) = -\frac{1}{\sin x}$

9.
$$f(x) = sign(sin x);$$
 10. $f(x) = sign(x^2 - x - 12);$

11.
$$f(x) = -\frac{x}{e^{\frac{1}{x}} - e};$$
 12. $f(x) = e^{\frac{x+1}{x^2 + 4x + 4}};$

13.
$$f(x) = \begin{cases} x+1, & x \le 2; \\ x^2-1, & x > 2; \end{cases}$$
 14. $f(x) = \begin{cases} x-2, & x \le 2; \\ 4-x^2, & x > 2; \end{cases}$

15.
$$f(x) = \frac{1}{2^{\frac{x-3}{5-x}} - 1};$$

17.
$$f(x) = \frac{1}{e^{\frac{x-2}{3+x}} - 1};$$

19.
$$f(x) = \frac{1}{(1/3)^{\frac{x-5}{7-x}}}$$
;

21.
$$f(x) = \frac{1}{(1/2)^{\frac{x-2}{x+2}} - 1}$$

$$23. \quad f(x) = \cos^2 \frac{1}{x};$$

25.
$$f(x) = \sqrt{x} \arctan \frac{1}{x}$$
27.
$$f(x) = \frac{1}{\sin(x^2)}$$
;

29.
$$f(x) = \sqrt{\frac{1 - \cos \pi x}{4 - x^2}};$$
 30. $f(x) = \operatorname{sign} \sin \frac{\pi}{x}.$

16.
$$f(x) = \frac{1}{3^{\frac{x-4}{7-x}} - 1};$$

18.
$$f(x) = \frac{1}{1 - 5^{\frac{x-3}{6-x}}}$$

20.
$$f(x) = \frac{1}{5^{\frac{x+2}{x-4}}}$$

24.
$$f(x) = \frac{1}{x^3 - 3x + 1}$$

26. $f(x) = \frac{\cos \frac{\pi}{x}}{x}$

28.
$$f(x) = \frac{1+x}{1+x^3}$$
;

30.
$$f(x) = \operatorname{sign} \sin \frac{\pi}{x}$$

Учебное издание

Войтицкий В. И., Коваленко А. И.

Введение в математический анализ и теорию пределов

Учебно-методическое пособие для студентов

Печатается в авторской редакции

Подписано в печать ____ г.
Формат 60х84/16. Усл. п. л. 2,62.
Тираж: печать по требованию. Заказ № ____.
Бумага офсетная. Гарнитура Times. Печать цифровая.

Издательский дом ФГАОУ ВО "КФУ имени В. И. Вернадского". 295051, Республика Крым, г. Симферополь, бул. Ленина, 5/7, тел.: +7 978 823 14 29, e-mail: print@cfuv.ru

Отпечатано с готового оригинал-макета в типографии Издательского дома ФГАОУ ВО "КФУ имени В. И. Вернадского". 295051, Республика Крым, г. Симферополь, бул. Ленина, 5/7, тел.: +7 978 823 14 29, e-mail: print@cfuv.ru