МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ – MCXA имени К.A. ТИМИРЯЗЕВА

В.Г. Ляпин, В.И. Загинайлов, Д.А. Нормов, Д.С. Карлаков

ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Рабочая тетрадь Часть 1 Электротехника УДК 621.3+621.38 (076) ББК 31.2+32.85я81 Л 975

Рецензенты:

д.т.н., профессор РГАУ-МСХА имени К.А. Тимирязева Ю.Г. Иванов; к.т.н., профессор АГЗ МЧС России В.Ф. Войцеховский

Ляпин, В.Г. Электротехника и электроника. Рабочая тетрадь в 3-х частях. Часть 1. Электротехника/В.Г. Ляпин, В.И. Загинайлов, Д.А. Нормов, Д.С. Карлаков; Российский государственный аграрный университет—МСХА имени К.А. Тимирязева. - 2-е изд., перераб. и доп. – М.: РГАУ-МСХА имени К.А. Тимирязева, 2024. - 105 с. Текст: электронный.

ISBN 978-5-9675-2029-7

DOI: 10.26897/978-5-9675-2029-7-2024-105

Рабочая тетрадь содержит задания и методику проведения лабораторных работ в соответствии с учебными программами бакалавриата по дисциплинам «Электротехника и электроника», «Электротехника, электроника и электроника», «Общая электротехника и электроника», «Общая электротехника и электроника», «Общая электротехника и электроника. Автоматика». Каждый раздел рабочей тетради включает в себя порядок выполнения лабораторных работ, формы отчетов по выполненным работам и контрольные вопросы для проверки уровня полученных знаний. Издание может быть использовано студентами всех форм обучения по направлениям подготовки 13.03.01 «Теплоэнергетика и теплотехника», 15.03.02 «Технологические машины и оборудование», 19.03.01 «Биотехнология», 20.03.01 «Техносферная безопасность», 23.03.01 «Технология транспортных процессов», 23.03.02 «Наземные транспортно-технологические комплексы», 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», 27.03.01 «Стандартизация и метрология», 27.03.02 «Управление качеством», 35.03.06 «Агроинженерия», а также полезно при выполнении квалификационной работы, аналитическом, численном и экспериментальном исследовании систем электроснабжения, электропривода, электротехнологии и преобразовательной техники.

Рекомендовано к изданию учебно-методической комиссией Института механики и энергетики имени В.П. Горячкина (протокол №14 от 16.05.2024 г.).

Lyapin, V.G. Electrical engineering and electronics. Workbook in 3 parts. Part 1: Electrical Engineering/V.G. Lyapin, V.I. Zaginailov, D.A. Normov, D.S. Karlakov; Russian State Agrarian University-MSHA named after K.A. Timiryazev. - 2-nd edition, revision and additions - M.: K.A. Timiryazev Russian State Agrarian University-MSHA, 2024. - 104 c. Text: electronic.

The workbook contains tasks and methods of laboratory work in accordance with the bachelor's degree programs for the disciplines "Electrical Engineering and Electronics", "Electrical Engineering, Electronics and Electric Drive", "General Electrical Engineering and Electronics", "General Electrical Engineering and Electronics. Automation." Each section of the workbook includes the procedure for performing laboratory works, forms of reports on completed works and control questions to check the level of knowledge. The publication can be used by students of all forms of training in the areas of training 13.03.01 "Heat power engineering and heat engineering", 15.03.02 "Technological machines and equipment", 19.03.01 "Biotechnology", 20.03.01 "Technological complexes", 23.03.03 "Operation of transport processes", 23.03.02 "Land transport and technological complexes", 23.03.03 "Operation of transport and technological machines and complexes", 27.03.01 "Standardization and metrology", 27.03.02 "Quality management", 35.03.06 "Agroengineering", as well as useful in the performance of qualification work, analytical, numerical and experimental study of power supply systems, electric drive, electrical technology and converter technology.

Recommended for publication by the educational-methodical commission of the Institute of Mechanics and Energetics named after V.P. Goryachkin (Record № 14 from 16.05.2024).

© Ляпин В.Г., Соболев А.В., Игудин А.А., 2020 © Ляпин В.Г., Загинайлов В.И., Нормов Д.А., Карлаков Д.С., 2024 © РГАУ-МСХА им. К.А. Тимирязева, 2024

ПРЕДИСЛОВИЕ

Целью изучения дисциплины «Электротехника и электроника» является формирование знаний и практическая подготовка бакалавров в области электротехники и электроники, электропривода и электротехнологии, электроснабжения и электрооборудования. После изучения данного курса бакалавры должны уметь выбирать необходимые электротехнические устройства, уметь их правильно эксплуатировать и составлять технические задания на разработку электрических частей автоматизированных и автоматических устройств и установок для управления различными технологическими процессами.

Рабочая тетрадь ориентирована на подготовку бакалавров к выполнению лабораторных работ и охватывает все разделы рабочих программ по дисциплинам «Электротехника и электроника», «Электротехника, электроника и электропривод», «Электроника и электротехника», «Общая электротехника и электроника», «Общая электротехника и электроника. Автоматика». Содержанием рабочей тетради предусмотрено проведение глубоких исследований наиболее важных процессов в электрических цепях на основе теоретических расчетов и экспериментов с использованием компьютерных технологий. Теоретический материал дисциплины [1-14] при первоначальном изучении излагается в форме решения задач анализа, т.е. для заданных схем преобразования электрической энергии выводятся аналитические зависимости технических характеристик схемы в функции параметров её элементов. На основании этих установленных характеристик формулируются свойства анализируемой схемы в плане рекомендаций для её практического применения. В инженерной и технологической деятельности приходится решать в основном задачи проектирования схем, т.е. задачи синтеза, обратные задачам анализа. При этом по заданным требованиям к устройству преобразования электрической энергии требуется первоначально выбрать (интуитивно "угадать") схему преобразователя и для неё решить задачу синтеза, т.е. получить зависимости параметров её элементов схемы от заданных технических характеристик преобразователя. Решение этой задачи синтеза, как правило, менее формализовано, чем решение задачи анализа, и поэтому обычно неоднозначно, оставляя место творчеству проектировщика, его опыту и интуиции. Целью выполнения лабораторно-практических работ является лучшее усвоение теоретического курса, в т.ч. путём развития и углубления основных положений лекционных курсов теории электрических цепей и электронных преобразователей, стеснённых временными рамками. Материалы рабочей тетради содержат многовариантные задания на выполнение лабораторных работ. Приведены контрольные вопросы для самостоятельного контроля полученных знаний и подготовки к защите отчетов по лабораторным работам.

Исходя из вышеизложенного, программа лабораторных работ ориентирована в основном на решение задач анализа, т.е. исследования базовых схем, что обязательно для первоначального обучения, а затем преобразователей и стабилизаторов напряжения и сглаживающих фильтров. При этом студент, варьируя параметры элементов схемы преобразователя, получает зависимость от них ос-

новных энергетических и динамических характеристик. Вместе с тем, программы каждой лабораторной работы содержат и небольшое задание по синтезу, когда студенту перед началом исследования (анализа) схемы предлагается определить и задать в модель значение одного из параметров элемента схемы, обеспечивающего получение требуемого значения какого-то энергетического или динамического параметра преобразователя. Это соответствует новым тенденциям в методике обучения, когда оно проектируется на основе компетентностного подхода. Указанный подход направлен на формирование у студента знаний, навыков и умений, дающих возможность будущему специалисту решать все основные задачи его практической деятельности, ориентированной на инновации в условиях рынка и конкуренции. Лабораторные работы призваны не только закреплять у студентов базовые знания, но и порождать формирование начальных навыков проектирования, т.е. синтеза новых решений.

Модели базовых схем преобразователей и нагрузок могут быть использованы и при выполнении выпускной квалификационной работы. Владение понятиями в областях электротехники, силовой и преобразовательной техники, фактами при экспериментальных исследованиях и научной проблематикой источников питания, теориями электрических цепей и электронных преобразователей, современными правилами, методиками, процедурами и инструментами проектирования, аналитического, численного и экспериментального исследования электротехнических и электронных устройств и систем позволит упростить процесс разработки современных комплексов и технологий.

Рабочая тетрадь предназначена для бакалавров очного, заочного и очнозаочного обучения, обучающихся по направлениям подготовки 13.03.01 «Теплоэнергетика и теплотехника», 15.03.02 «Технологические машины и оборудование», 19.03.01 «Биотехнология», 20.03.01 «Техносферная безопасность», 23.03.01 «Технология транспортных процессов», 23.03.02 «Наземные транспортно-технологические комплексы», 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», 27.03.01 «Стандартизация и метрология», 27.03.02 «Управление качеством», 35.03.06 «Агроинженерия».

Общие требования к оформлению отчетов, порядок защиты лабораторных работ, инструкции пользователя программами приведены в приложениях A, Б, B, Г, отдельные фрагменты оформления отчетов по лабораторным работам – в приложении E.

линейные электрические цепи

Лабораторная работа №1

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

Часть 1

Изучение зависимости сопротивления проводников от их параметров 1.1. Задание

- 1.1.1. Исследовать зависимость сопротивления металлических проводников от их геометрических размеров и материала.
- 1.1.2. Определить экспериментально удельное сопротивление металлических проводников.
- 1.1.3. Изучить применения законов Ома и Кирхгофа при последовательном и параллельном соединении резисторов.
- 1.1.4. Определить экспериментально и расчетным путем эквивалентные значения сопротивлений резисторов.

1.2. Подготовка к работе

- 1.2.1. Изучить инструкцию пользователю программой и порядок измерения тока, напряжения и сопротивления с помощью мультиметра.
 - 1.2.2. Знать закон Ома для участка цепи.
 - 1.2.3. Записать в табл. 1.4.1 отчета исходные данные из таблиц 1.1 и 1.2.
- 1.2.4. Зарисовать в отчет схему для исследования сопротивления металлических проводников (рис. 1.1), указав на ней измерительные приборы (рис.1.4.1 отчета).
- 1.2.5. Зарисовать в отчет схему измерений сопротивлений резисторов (рис. 1.2), указав на ней измерительные приборы для измерения токов и напряжений на участке A-C, C-D, A-D. (рис.1.4.2 отчета).
- 1.2.6. Освоить расчет эквивалентных сопротивлений при последовательном, параллельном и смешенном соединении резисторов.
- 1.2.7. Изучить характер протекания токов через последовательно и параллельно соединенные резисторы. R_3

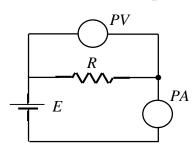


Рис. 1.1. Схема измерений сопротивления проводника

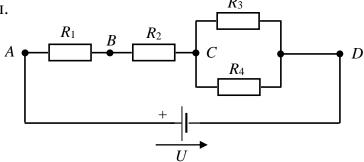


Рис. 1.2. Схема измерений сопротивлений резисторов

Параметры металлических проводников

№ вар.	1	2	3	4	5	6	7	8
Материал	медь	железо	алюминий	латунь	серебро	золото	платина	никель
Длина, м	100	100	100	100	100	100	100	100
Площадь, $мм^2$	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
№ вар.	9	10	11	12	13	14	15	16
Материал	олово	нихром	молибден	цинк	свинец	висмут	вольфрам	манганин
Длина, м	100	100	100	100	50	100	100	100
Площадь, $мм^2$	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
№ вар.	17	18	19	20	21	22	23	24
Материал	медь	железо	константан	латунь	серебро	золото	платина	никель
Длина, м	60	50	100	60	50	80	50	60
Площадь, мм^2	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
№ вар.	25	26	27	28	29	30	31	32
Материал	олово	нихром	алюминий	цинк	свинец	висмут	вольфрам	манганин
Длина, м	60	50	60	60	100	50	60	50
Площадь, $мм^2$	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3

Таблица 1.2

Удельное сопротивление металлов

Медь	Железо	Алюминий	Латунь	Серебро	Золото
0,01750,0182	0,098	0,0260,028	0,0310,079	0,0160,0162	0,0220,023
Олово	Нихром	Молибден	Цинк	Свинец	Висмут
0,110,12	1,1	0,0480,054	0,050,06	0,2170,222	0,0112
Вольфрам	Манганин	Константан	Платина	Никель	
0,0530,055	0,420,48	0,440,52	0,090,1	0,070,079	

1.3. Выполнение работы

- 1.3.1. Собрать на монтажной плате схему измерений (рис. 1.1). Значение ЭДС E элемента питания установить равным $10~\mathrm{B}$.
 - 1.3.2. Измерить напряжение и ток проводника с помощью мультиметра.
 - 1.3.3. Измерить с помощью мультиметра сопротивление проводника.
- 1.3.4. Повторить измерения по п.п. 1.3.1...1.3.3 при изменении длины проводника. Результаты измерений записать в табл. 1.4.2 отчета.

Часть 2

Исследование сопротивления резисторов при их последовательном и параллельном соединении

- 1.3.5. Собрать на монтажном столе схему измерений, изображенную на рис.
- 1.2. Значения сопротивлений резисторов принять равными:

$$R_1 = (5 + N) \text{ Om}, R_2 = (10 + N) \text{ Om}, R_3 = N \text{ Om}, R_4 = 2N \text{ Om},$$

где N - номер варианта.

Значения сопротивлений резисторов записать в табл. 1.4.3 отчета.

Напряжение источника U установить 30 B, внутреннее сопротивление источника установить 0,1 Ома.

1.3.6. Включить в цепь мультиметры в режиме измерения токов (амперметры).

Измерить с помощью мультиметра токи, протекающие на участках A-C, C-D, A-D. Результаты записать в табл. 1.4.3 отчета.

- 1.3.7. Измерить с помощью мультиметра напряжения участке A-C на резисторах R_3 и R_4 . Результаты записать в табл. 1.4.3 отчета.
- 1.3.8. Измерить с помощью мультиметра сопротивления резисторов между точками *A-C*, *C-D*, *A-D*. Результаты записать в табл. 1.4.3 отчета.
- 1.3.9. Рассчитать по результатам измерений токов и напряжений сопротивления участков A-C, C-D, A-D (R_{AC}, R_{CD}, R_{AD}).
- 1.3.10. Определить значения сопротивлений R_{AC} , R_{CD} , R_{AD} расчетным путем по результатам измерений токов и напряжений. Результаты записать в табл. 1.4.3.

1.4. Отчет по лабораторной работе №1 ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

1.4.1. Содержание отчета

- 1.4.1. Расчет сопротивления проводника различной длины.
- 1.4.2. Определение среднего удельного сопротивления заданного материала проводника и сравнение с его номинальным значением.
 - 1.4.3. Определение сопротивления проводника по результатам измерений.
- 1.4.4. Определение значений сопротивлений на каждом из участков цепи (R_{AC}, R_{CD}, R_{AD}) экспериментально и расчетным путем.
 - 1.4.5. Проверка выполнения первого и второго закона Кирхгофа в цепи.

1.4.2. Результаты исследования параметров линейной электрической цепи постоянного тока

Задание

Часть 1

Изучение зависимости сопротивления проводников от их параметров

Рис. 1.4.1. Схема измерений

Заланные параметры

Таблица 1.4.1

Заданные пара	метры
Вариант №	
Материал п	роводника
l =	M
S =	MM^2
Расчетная форму.	ла $R = \rho \frac{l}{S}$.

Результаты расчетов и измерений

			№ вај	рианта		Номинальное удельное					
Номер	<i>l</i> , м	<i>U</i> , B	I, A	R, C	R , Ом сопротивление ρ , $\frac{O_N}{I}$						
				Рассчитанное	Измеренное	Рассчитанное	Номинальное				
1											
2											
3											
4											
5											
6											

Выводы по результатам опытов:

Часть 2 Исследование сопротивления резисторов при их последовательном и параллельном соединении Задание

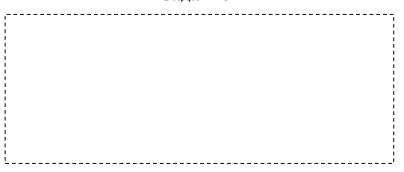
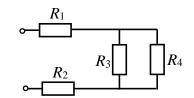


Рис.1.4.2. Исследуемая схема соединения резисторов

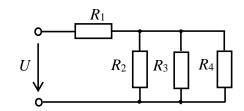
Таблица 1.4 3.

Результаты измерений и расчета

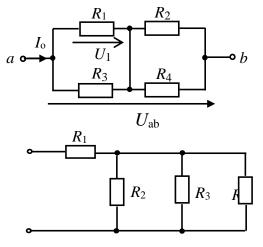
	ı cəy.	IDIAIDI NOM	срении и рас	icia										
	Результаты измерений													
$R_{\rm AC} =$		$R_{\rm CD} =$	$R_{ m AD} =$											
I_{AC} , A	$U_{\mathrm{AC}},\mathrm{B}$	$U_{\mathrm{CD}},\mathrm{B}$	I_{CD} , A	$U_{\mathrm{AD}},\mathrm{B}$	$I_{\mathrm{AD}},\mathrm{A}$									
	Резу.	пьтаты расче	та сопротивл	ений										
$R_{\rm AC} =$		$R_{\mathrm{CD}} =$		$R_{\mathrm{AD}} =$										


Расчет сопротивления участков схемы A-C, C-D, A-D (R_{AC}, R_{CD}, R_{AD}) по результатам измерений токов и напряжений:

Выводы (по п.п. 1.4.5 задания):


Выполнил Проверил

Контрольные вопросы


- 1. В каких единицах измеряются токи, напряжения?
- 2. В каких единицах измеряются сопротивления проводимости, напряжения?
 - 3. Какое внутреннее сопротивление имеет амперметр, почему?
 - 4. Какое внутреннее сопротивление имеет вольтметр, почему?
 - 5. Как следует включить амперметр для измерения тока на участке цепи?
- 6. Как следует включить вольтметр для измерения напряжения на участке цепи?
 - 7. Выразите ток резистора через напряжение и сопротивление резистора.
 - 8. Выразите сопротивление резистора через ток и напряжение.
- 9. Определите общее сопротивление резисторов, соединенных по приведенной схеме при $R_1 = R_2 = R_3 = R_4 = 10$ Ом.

10. Определить эквивалентное сопротивление цепи $R_{\mathfrak{I}}$ при $R_{\mathfrak{I}} = 10$ Ом, $R_{\mathfrak{I}} = R_{\mathfrak{I}} = R_{\mathfrak{I}} = R_{\mathfrak{I}} = R_{\mathfrak{I}}$ Ом.

- 11. Определить общий ток в цепи I_0 , и напряжение на резисторе R_1 , если напряжение $U_{ab} = 36$ B, а сопротивление каждого резистора R = 2 Ома.
- 12. Определить входное сопротивление цепи $R_{\rm BX}$ при $R_1=R_2=R_3=R_4=15$ Ом.

Лабораторная работа №2

ИССЛЕДОВАНИЕ РАЗВЕТВЛЕННОЙ ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

2.1. Залание

- 2.1.1. Проверить выполнение законов Кирхгофа в разветвленной линейной электрической цепи постоянного тока.
 - 2.1.2. Получить экспериментально потенциальную диаграмму цепи.
 - 2.1.3. Измерить мощность, потребляемую сопротивлением нагрузки.
 - 2.1.4. Проверить выполнение баланса мощности в цепи.

2.2. Подготовка к работе

- 2.2.1. Освоить порядок расчета разветвленных цепей на основе законов Кирхгофа.
 - 2.2.2. Уметь составлять уравнение баланса мощностей в цепи.
 - 2.2.3. Освоить расчет и построение потенциальной диаграммы цепи.
- 2.2.4. По заданной обобщенной схеме цепи (рис. 2.1), изобразить схему, соответствующую вашему варианту (рис. 2.4.1 отчета). При этом источники, значения ЭДС которых в табл. 2.1 не указаны, следует в схеме закоротить.

Изобразить в схеме амперметры для измерения токов в цепи и ваттметр для измерения мощности, потребляемой нагрузкой $R_{\rm H}$.

- 2.2.5. Заданные в табл. 2.1 параметры элементов цепи записать в табл. 2.4.1 отчета.
- 2.2.6. Записать в отчет уравнения по законам Кирхгофа для заданной схемы цепи.

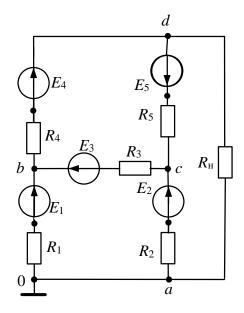


Рис. 2.1. Обобщенная схема цепи

2.3. Выполнение работы

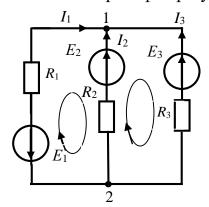
- 2.3.1. Собрать схему цепи (рис. 2.4.1) на рабочем поле программы EWB и установить параметры элементов (см. п.2.2.4).
- 2.3.2. Измерить токи в цепи и мощность, потребляемой нагрузкой $R_{\rm H}$. Результаты измерений записать в табл. 2.4.1 отчета.
- 2.3.3. Измерить с помощью вольтметра потенциалы точек соединения элементов относительно точки (0). Результаты измерений записать в табл. 2.4.1 отчета.

Параметры элементов цепи

No	E_1 ,	E_2 ,	E 3,	E 4,	E 5,	R_1 ,	R_2 ,	R 3,	R_4 ,	R_{5}	R _H ,
вар.	B	B	B	В	В,	Ом	Ом	Ом	Ом	Ом	Ом
1	150	50			300	70	60	20	60	60	10
2	150	200	50		150	90	90	90	70	10	20
3	350		_	300	250	10	10	60	30	90	50
4	_	100		250	250	30	30	40	90	70	80
5	150	_	300	300	_	70	70	20	10	20	90
6	50	250		100	200	30	30	10	20	80	20
7		150	50	300		60	60	20	60	60	10
8		100	300			90	90	10	30	40	50
9	150	50	200		300	10	20	30	70	80	20
10	100		200		100	50	50	80	20	40	20
11	200		150		100	80	80	20	80	30	60
12	300		100	300		40	20	30	90	80	70
13	100	350			50	10	10	30	50	80	20
14	50		200	100		20	20	90	70	50	25
15	150			100	300	25	25	80	45	10	50
16	100	300			50	50	50	20	20	40	20
17		350	100		200	30	30	60	20	80	50
18	250			300	50	40	30	50	70	60	15
19		50	200		250	20	20	60	10	90	50
20	150		400	100		50	50	10	60	20	80
21	-	100		350	400	55	55	20	35	40	20
22	50	200		150		30	30	50	70	60	15
23	-	150	200		100	10	10	90	40	30	15
24	400		150		200	20	20	70	30	20	20
25	50			100	200	80	80	50	20	20	40
26	100	300			50	30	30	90	50	70	40
27	200		50	150		20	20	90	20	40	60
28		100		350	250	60	60	20	80	10	90
29	400	-	150	300	-	30	30	50	70	60	15
30	200	40	150			85	85	20	55	30	10

2.4. Отчет по лабораторной работе №2

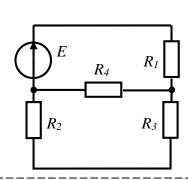
ИССЛЕДОВАНИЕ РАЗВЕТВЛЕННОЙ ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

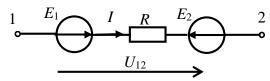

2.4.1. Содержание отчета

- 2.4.1. Результаты измерений токов, потенциалов точек цепи и мощности нагрузки.
 - 2.4.2. Результаты расчета токов цепи по законам Кирхгофа.
 - 2.4.3. Проверка выполнения баланса мощностей в цепи.
- 2.4.4. Расчет и построение потенциальной диаграммы цепи (рис. 2.4.2 отчета).

2.4.2. Результаты исслед		_	зленнои л юго тока	инеинои	электр	ическои
студента						
		Задани	e			
[
					İ	
					İ	
i I						
					İ	
 F	 Рис. 2.4.1. 3	 Заланная	 I схема цеп	 И	i	
			ам Кирхго			
[рависиня			фа 		
						ļ
						į į
L						 Таблица 1.4
Результать	ы расчета	и измере	ний парам	етров цеп	И	
Токи, А	I_1	I_2	<i>I</i> ₃	I_4	I_5	$I_{\scriptscriptstyle m H}$
Измеренные значения Рассчитанные значения						
Потенциалы точек цепи, φ_k	φ0	•••	•••	•••	•••	•••
Мощность нагрузки, <i>Р</i> (измеренная, рассчитанная)	$P_{\scriptscriptstyle m H3M}$	=	, Вт	$P_{pac^{q}}$	=	, Вт
(измеренная, расс интанная)			U			
	Бала	анс мощі	ностей 			
 Pa	CUET HOTEL		 ой диаграм			
			он диаграм 			
Рис. 2.4	4.2. Потен	циальна	я диаграмм	иа цепи		
Выводы:						
Выполнил			I	Проверил		

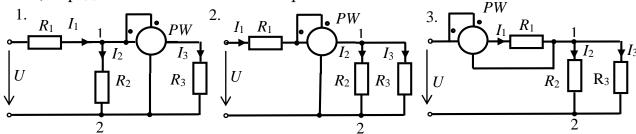
Контрольные вопросы

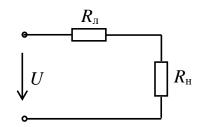

1. Указать систему уравнений, соответствующую расчету данной цепи по законам Кирхгофа при указанном на схеме направлении обхода контуров.


1.
$$I_1 - I_2 - I_3 = 0$$

 $I_1R_1 + I_2R_2 = E_1 + E_2$
 $I_2R_2 - I_3R_3 = E_2 - E_3$
2. $I_{11}(R_2 + R_3) - I_{22}R_2 = E_2 - E_3$
 $I_{22}(R_1 + R_2) - I_{11}R_2 = E_1 - E_2$

3.
$$I_{11}(R_2 + R_3) + I_{22}R_1 = E_2 + E_3$$
 4. $I_1 + I_2 + I_3 = 0$
 $I_{22}(R_1 + R_2) + I_{11}R_2 = E_1 - E_2$ $I_1R_1 - I_2R_2 = -E_2 - E_1$
 $I_2R_2 - I_3R_3 = E_2 - E_3$


- 2. Составить уравнения для расчета токов цепи по законам Кирхгофа.
- 3. Составить уравнения для расчёта токов цепи по методу контурных токов.
- 4. Составьте уравнения для расчёта токов цепи по методу двух узлов.


8. Определить ток на участке цепи 1-2.

11. При заданных параметрах элементов цепи, известных токах и напряжениях, определить показания ваттметра.

12. Мощность нагрузки $P_{\rm H}=200~{\rm Bt}.$ Определить напряжение источника, если $R_{\rm H}=2~{\rm Om},$ а $R_{\rm J}=1~{\rm Om}.$

Лабораторная работа №3

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК АКТИВНО-РЕАКТИВНЫХ ЦЕПЕЙ СИНУСОИДАЛЬНОГО ТОКА

3.1. Задание

- 3.1.1. Исследовать зависимость сопротивлений реактивных элементов от частоты.
- 3.1.2. Экспериментально определить углы сдвига фаз между напряжением и током (угол ф) в активно-реактивных цепях.
 - 3.1.3. Сравнить экспериментальные данные с результатами расчетов.

3.2. Подготовка к работе

3.2.1. Значения индуктивности катушки и емкости конденсатора определить по формулам: C = 100 + 10N мк Φ ; L = 100 - 2,5N м Γ н, где N — номер вашего варианта. Сопротивление резистора выбрать 10 Ом. Начальную фазу входного напряжения выбрать в соответствии с табл. 3.1. Значения параметров записать в табл. 3.2 отчета.

Значение начальной фазы напряжения

Таблица 3.1

				J1166 1		1166 1660	1011011	THOD.	114411	71711011	1171				
№ вар.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ψu	30°	-30°	45°	− 45°	60°	−60°	90°	− 90°	30°	-30°	45°	− 45°	60°	−60°	90°
№ вар.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$\Psi_{\rm u}$	60°	−60°	90°	−9 0°	30°	30°	-30°	45°	− 45°	60°	−60°	90°	30°	-30°	45°

3.2.2. Рассчитать индуктивное сопротивление катушки X_L и емкостное сопротивление конденсатора X_C на частотах 30, 40, 50, 60, 80, 100 и 120 Гц. Результаты расчетов записать в табл. 3.2 отчета.

3.3. Выполнение работы

- 3.3.1. Собрать схему цепи (рис. 3.1) на рабочем поле программы EWB и установить параметры элементов R, L, C (см. п. 1.3.1). Клавиши 1, 2, 3, 4, 5 и 6 клавиатуры управляют соответственно ключами 1, 2, 3, 4, 5, 6.
- 3.3.2. Действующее напряжение источника синусоидального напряжения установить равным 70,7 В.
- 3.3.3. Установить режим работы AC амперметра и вольтметра. Сопротивление амперметра установить 1 мОм, сопротивление вольтметра 1 МОм.
- 3.3.4. Осциллограф установить в режим DC и «Авто». Чувствительность канала A осциллографа установить 2 мВ/дел (mV/div), а чувствительность канала B 5 В/дел (20 V/div), длительность развертки (TIME BASE) в режиме Y/T установить 2 мс/дел (2 ms/div).
- 3.3.5. Изменяя частоту источника f в заданном диапазоне, измерить ток и напряжение на элементах L и C, замыкая поочередно ключи 2 и 3. Результаты записать в табл. 3.2 отчета.

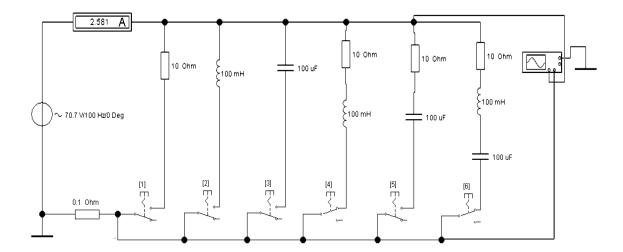


Рис. 3.1. Схема измерения параметров цепей (на вход канала A подается входное напряжение u, а на вход канала B подается напряжение с резистора $R_0 = 0,1$ Ом, пропорциональное току ветви)

- 3.3.6. На частоте 50 Гц источника получить на экране осциллографа осциллограммы напряжения и тока в цепях, содержащих соответственно резистивный, индуктивный и емкостный элементы, замыкая поочередно ключи 1, 2 и 3. Осциллограммы зарисовать в отчет (рис. 3.4).
- 3.3.7. Измерить ток, напряжение и угол сдвига фаз ф между ними на каждом из элементов. Результаты измерений и расчетов записать в табл. 3.2 отчета.

Указание: Угол сдвига фаз ϕ измерить путем измерения временного интервала Δt при помощи электронно-лучевого осциллографа между нулевыми значениями напряжения и тока. Интервал времени Δt целесообразно измерять с использованием визирных линий, расположенных слева и справа экрана осциллографа. При этом красную визирную линию следует установить в начале синусоиды напряжения (рис. 3.2), а синюю в начале синусоиды тока. Угол ϕ определить по формуле $\phi = 360^{\circ}\Delta t f$.

При $\Delta t = T2 - T1 > 0$ угол $\phi > 0$, а при $\Delta t < 0$ угол $\phi < 0$. На рис. 3.2 $\Delta t = T2 - T1 = 2,75$ ms > 0, следовательно, $\phi = 360^{\circ}\Delta t f = (360^{\circ} \cdot 2,75 \cdot 10^{-3}) \cdot 50 = 49,5^{\circ} > 0$.

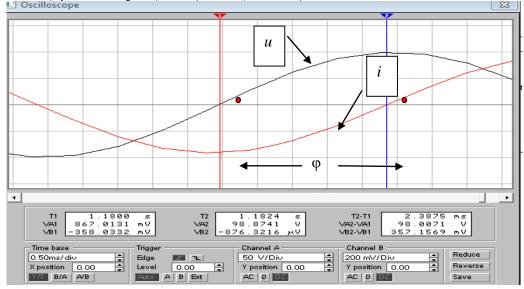


Рис. 3.2. Измерение угла ф

- 3.3.8. Получить на экране осциллографа осциллограммы напряжения и тока в цепях, содержащих элементы *RL*, *RC* на частоте 50Γ ц, а в цепи *RC* на частоте 50Γ ц и на частоте 100Γ ц и зарисовать их в отчет (рис. 3.4).
- 3.3.9. Провести измерение тока, напряжения и угла сдвига фаз ϕ поочередно в цепях RL, RC и RLC на частоте 50 Γ ц и на частоте 100 Γ ц. Результаты измерений записать в табл. 3.3 отчета.

3.4. Отчет по лабораторной работе №3 ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК АКТИВНО-РЕАКТИВНЫХ ЦЕПЕЙ СИНУСОИДАЛЬНОГО ТОКА

3.4.1. Содержание отчета

- 3.4.1. Графики зависимости реактивных сопротивлений X_L и X_C от частоты (рис. 3.3 отчета).
- 3.4.2. Осциллограммы напряжений и токов на элементах R, L и C, в цепях RL, RC на частоте 50 Γ ц и в цепи RLC на частотах 50 Γ ц и 100 Γ ц. Указать на них начальные фазы напряжения и тока и угол сдвига фаз (рис. 3.5 отчета).
- 3.4.3. Векторные диаграммы элементов R, L и C, векторные диаграммы цепей RL и RC на частоте 50 Γ ц (рис. 3.5 отчета).
- 3.4.4. Векторные диаграммы цепи *RLC* на частотах 50 Гц и 100 Гц (рис. 3.5 отчета).

3.4.2. Результаты исследования характеристик активно-реактивных цепей синусоидального тока

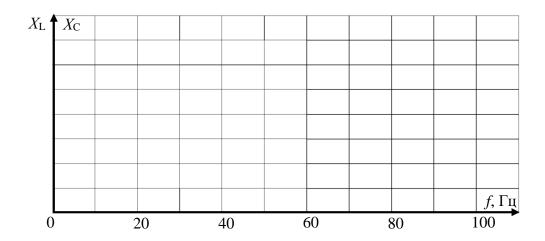
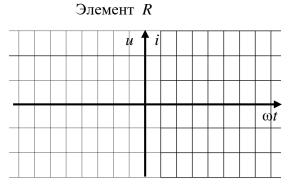
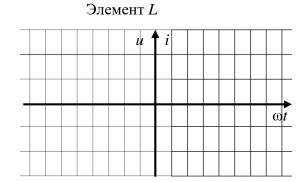
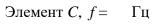
	Mo
студента	rp. №

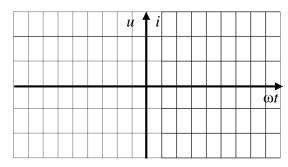
Задание

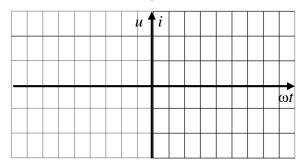
Результаты расчетов реактивных сопротивлений

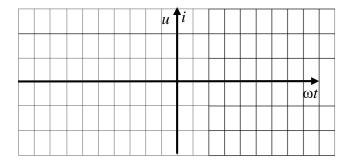
Таблица 3.2

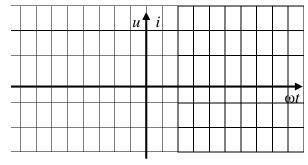
Парамеры элементов $E = 70.7 \text{ B}, \ \Psi e =$ L =м Γ н, C =мкФ, R = 10 OMНа частоте f, Гц Сопротивление X10 30 40 50 60 80 100 120 $X_{\rm L}$, Om Рассчитано U, B Измерено I, A Определено по результатам $X_{\rm L}$, Om измерений Рассчитано $X_{\rm C}$, Om U, B Измерено *I*, A Определено по результатам $X_{\rm C}$, Om измерений


Рис. 3.3. Зависимость реактивных сопротивлений от частоты




Цепь RL, $f = \Gamma$ ц



Цепь RC, $f = \Gamma$ ц

Цепь RLC, f = 50 Гц

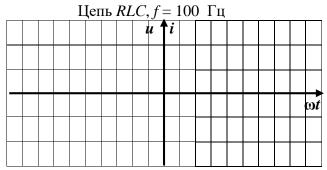


Рис. 3.4. **Осциллограммы** токов и напряжений

Результаты измерений и расчетов параметров цепей

Парамеры элементов	E = C	70,7 B,	Ψе =	$, f_3 =$	Гц, <i>L</i> =	$M\Gamma$ н, $C = MK^{C}$	D, R = 10 OM			
Попи		Изм	иерено		Рассчитано по результатам измерений					
Цепь	U, B	I, A	φ, гр.	cos φ	Z = U/I, Om	$R=Z\cos\varphi$, Ом	X=Zsinф, Ом			
R							_			
L						_				
C						_				
RL										
RC										
RLC , f =50 Γ ц										
$RLC, f=100\Gamma$ ц										

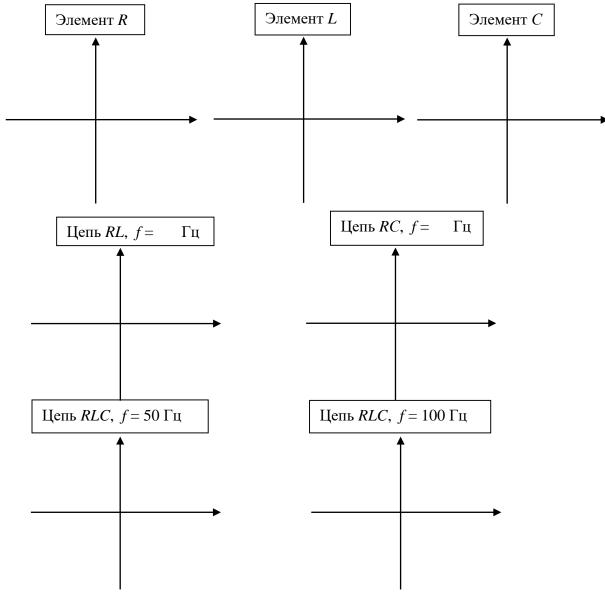
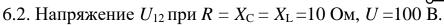


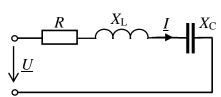
Рис. 3.5. Векторные диаграммы цепей


Выводы:

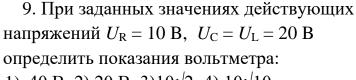
Выполнил

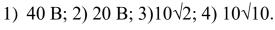

Проверил

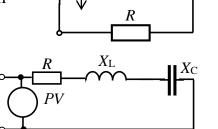
Контрольные вопросы


- 1. Что характеризует угол соѕф?
- 2. Запишите комплексное сопротивление $\underline{Z}_1 = -10 + j10$ в показательной форме.
 - 3. Дано: $I_{\rm m} = 2.82$ A; T = 0.002 с. Определить:
 - 1) частоту колебаний f и угловую частоту ω ;
 - 2) комплексный действующий ток в показательной и алгебраической формах;
 - 3) мгновенное значение тока $i(\omega t)$.
- 4. По заданному значению комплексной амплитуды тока $\underline{I}_{m}=28,2\,\mathrm{e}^{\mathrm{j}45^{\circ}}$ на частоте

- $f = 200 \ \Gamma$ ц определить действующий комплексный ток в алгебраической форме, угловую частоту ω , период T, мгновенное значение тока $i(\omega t)$. Изобразить вектор тока.
- 5. При заданном комплексном действующем токе $\underline{I} = -5 + j$ 5 A и периоде T = 0.02 с определить максимальное значение тока $I_{\rm m}$, действующий комплексный ток в показательной форме, угловую частоту ω и частоту колебаний f, мгновенное значение тока $i(\omega t)$. Изобразить вектор тока.
 - 6. Для заданной схемы цепи определить:
- 6.1. Активную мощность цепи при значениях мгновенного напряжения $u=20\sin(376,8t+60^{\circ})$ и тока $i=300\sin(376,8t-30^{\circ})$.




- 6. 3. Комплексное и полное сопротивление цепи при R=10 Ом, $X_{\rm C}=X_{\rm L}=10$ Ом, $X_{\rm C}=20$ Ом.
 - 6.4 . Ток I при $R = X_{\rm C} = X_{\rm L} = 10$ Ом, U = 100 В.
- 7. В заданной схеме цепи $i=10\sin(314t+30^{\rm o})$ А, $R=X_{\rm L}=100$ Ом, $X_{\rm C}=200$ Ом.



Построить векторную диаграмму цепи.

8. Для заданной схемы цепи выразить напряжение \underline{U} и входное сопротивление цепи \underline{Z} в показательной и алгебраических формах при R=10 Ом, L=31,8 мГн и $e=100\sin{(314t-240^\circ)}$ В.

Лабораторная работа №4

ИССЛЕДОВАНИЕ РЕЗОНАНСОВ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

4.1. Задание

- 4.1.1. Провести анализ цепи с последовательным и параллельным соединением резистора, индуктивной катушки и конденсатора при синусоидальном источнике ЭДС.
- 4.1.2. Рассчитать и построить частотные характеристики и резонансные кривые последовательного и параллельного колебательного контура.
- 4.1.3. Экспериментально исследовать резонансные режимы в последовательном и параллельном колебательном контуре.
 - 4.1.4. Определить параметры контуров в режиме резонанса.
 - 4.1.5. Записать выводы по результатам работы.

4.2. Подготовка к работе

- 4.2.1. Используя элементы цепи (рис. 4.1), составить и зарисовать в отчёт схемы для исследования цепей с последовательным соединением резистора, катушки и конденсатора (последовательный колебательный контур рис. 4.2 отчета) и параллельным соединением этих элементов (параллельный колебательный контур рис. 4.3 отчета). Указать на схемах заданные параметры согласно варианту (где N номер вашего варианта): действующее значение ЭДС $E = 10 + 5 \cdot N$ В; $\psi_e = 0$. Значения R_1 , L_1 , C_1 и R_2 , L_2 и C_2 заданы в табл. 4.1 и 4.2.
- 4.2.2. Рассчитать резонансные частоты последовательного f_{01} и параллельного f_{02} колебательного контура. Значения этих частот в Γ ц записать соответственно в табл. 4.3 и 4.4 отчета.

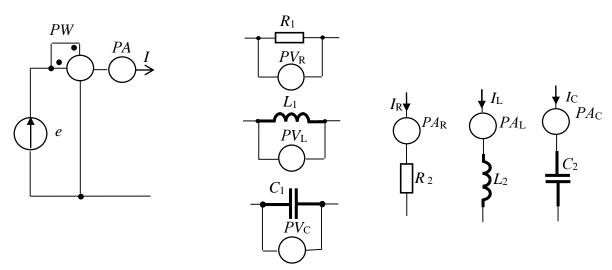


Рис. 4.1. Элементы цепи

4.2.3. Рассчитать сопротивления и проводимости элементов на одной частоте до резонанса ($f = 0.4f_0$), в момент резонанса ($f = f_0$) и после резонанса ($f = 1.6f_0$). Результаты расчета сопротивлений элементов записать в табл. 4.3, а проводимостей табл. 4.4 отчета.

4.2.4. Рассчитать для каждой из цепей токи, напряжения на элементах и активную мощность на одной частоте до резонанса ($f = 0.4f_0$), в момент резонанса ($f = f_0$) и после резонанса ($f = 1.6f_0$). Результаты расчета записать в табл. 4.3 и 4.4 отчета.

Таблица 4.1

N вар.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R_1 , Om	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
C_1 , мк Φ	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48
L_1 , м Γ н	110	120	130	140	150	160	170	180	190	200	200	220	230	240	250
N вар.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
R_1 , Om	10	10	10	10	10	10	10	10	10	10	9	9	9	8	8
C_1 , мк Φ	10	20	25	30	35	40	45	50	55	60	65	70	75	80	100
L_1 , м Γ н	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500

Таблица 4.2

Параметры элементов R_2 , L_2 и C_2 при их параллельном соединении

<i>N</i> вар.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
<i>R</i> ₂ , Ом	70	65	60	55	50	55	60	65	70	80	75	65	60	60	50
C_2 , мк Φ	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
L_2 , м Γ н	10	15	20	25	30	35	40	45	50	55	60	70	80	90	100
Nвар.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
R_{2} , Om	220	220	200	210	125	100	90	80	90	100	80	90	100	80	
C_2 , мк Φ	4	6	8	10	15	10	1	2	3	4	5	7	8	9	10
L_2 , м Γ н	80	100	120	130	140	150	40	45	50	55	60	70	75	80	100

4.3. Выполнение работы

- 4.3.1. Собрать поочередно цепь с последовательным (рис. 4.2 отчета) и с параллельным (рис. 4.3 отчета) соединением элементов, выбрать параметры цепи и источника ЭДС в соответствии со своим вариантом. Сопротивления амперметров (типа «AC») выбрать 1 мОм, вольтметров (типа «AC») 1 МОм.
- 4.3.2. Изменяя частоту источника от $0.2f_0$ до резонансной частоты f_0 и от f_0 до $2f_0$ (10 значений), измерить значения тока, мощности в цепи и напряжений на ее элементах. Результаты измерений записать в табл. 4.3 и 4.4 отчета.

4.4. Отчет по лабораторной работе №4 ИССЛЕДОВАНИЕ РЕЗОНАНСОВ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ 4.4.1. Содержание отчета

- 4.4.1. Результаты расчета параметров колебательных контуров (табл. 4.3 отчета).
- 4.4.2. По результатам измерений тока и напряжений на элементах в последовательном колебательном контуре (рис. 4.2 отчета) при заданных значениях частоты f определить реактивные сопротивления (X_L , X_C , X), полное сопротивление Z цепи, активную P, реактивную Q и полную S мощности, добротность контура D и угол φ . Результаты экспериментальных значений данных параметров записать в табл. 4.3 отчета.

- 4.4.3. По результатам измерений токов в параллельном колебательном контуре при заданных значениях частоты f определить активную G и реактивные проводимости (B_L , B_C , B), полную проводимость Y цепи, активную P, реактивную Q и полную S мощности, добротность контура D и угол φ . Результаты экспериментальных значений параметров записать в табл. 4.4 отчета.
- 4.4.4. По результатам измерений и расчетов построить в одной системе координат резонансные кривые, а в другой системе координат частотные характеристики контуров (рис.4.4 для последовательного контура, рис. 4.6 параллельного контура).
- 4.4.5. Построить в масштабе векторные диаграммы напряжений токов контуров на частотах $f = 0.4f_0$, $f = f_0$, $f = 1.6f_0$ (рис. 4.5 для последовательного контура, рис. 4.7 параллельного контура).
- 4.4.6. Сделать выводы по работе относительно значений параметров на частотах до резонанса, в момент резонанса и после резонанса.

Примечание: Экспериментально добротность D последовательного колебательного контура определять на резонансной частоте по формуле $D=\frac{U_{\rm L0}}{U}=\frac{U_{\rm C0}}{U}$, а для параллельного контура по формуле $D=\frac{I_{\rm L0}}{I}=\frac{I_{\rm C0}}{I}$. Здесь $U_{\rm L0}$, $U_{\rm C0}$, и $I_{\rm L0}$, $I_{\rm C0}$ - напряжения и токи в момент резонанса.

_	іьтаты исслед (і	_	нсов в электричес	ких цепях
Расчёт парамо	етров цепей (в	Задание ыполняется на	отдельных листах	: формата А4)
	L ₁ =	C ₁ =	$R_1 =$	

 $L_2 =$

Рис. 4.2. Схема для исследования последовательного колебательного контура

 $C_2 =$

 $R_2 =$

Рис. 4.3. Схема для исследования парадледьного колебательного контура

 $\it Tаблица~4.3$ Результаты расчетов и измерений параметров последовательного колебательного контура

	f	$0,2 f_{01}$	$0,4 f_{01}$	$0,6f_{01}$	$0.8 f_{01}$	f_{01}	$1,2f_{01}$	$1,4 f_{01}$	1,6 f ₀₁	1,8 f ₀₁	$2,0 f_{01}$
	<i>f</i> , Гц		_								_
I,	Рассчитано				—		—				
Α	Измерено										
U_{R} ,	Рассчитано			_	_						_
В	Измерено										
$U_{\rm L}$,	Рассчитано										_
В	Измерено										
$U_{\rm C}$,	Рассчитано										
В	Измерено										
X_{L} ,	Рассчитано			—	—		—				
Ом	Эксперимент										
$X_{\rm C}$,	Рассчитано			—	—		—				
Ом	Эксперимент										
Χ,	Рассчитано			—	—		—				
Ом	Определено										
Z,	Рассчитано			—	—		—				
Ом	Эксперимент										
Р,	Рассчитано										
Вт	Измерено										
Q,	Рассчитано										
вар	Эксперимент										
S,	Рассчитано	_			_			_			
BA	Определено										
0	Рассчитано	_						_		_	_
φ	Эксперимент										
D	Рассчитано										_
	Эксперимент										_

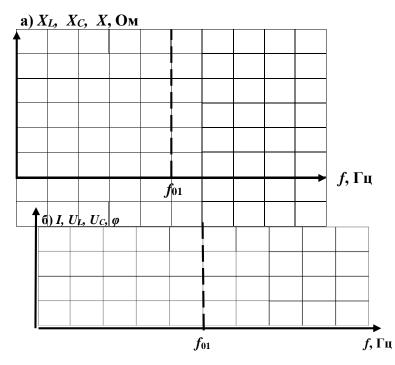


Рис. 4.4. Частотные характеристики (а) и резонансные кривые (б) последовательного колебательного контура

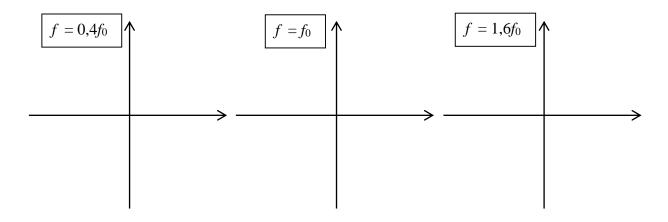
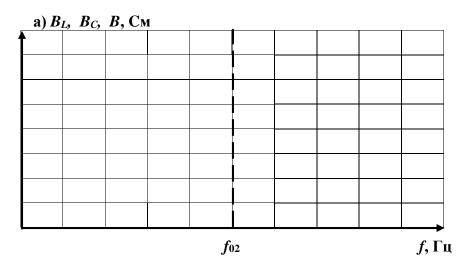



Рис. 4.5. Векторные диаграммы последовательного колебательного контура

 $\it Taблица~4.4$ Результаты расчетов и измерений параметров параллельного колебательного контура

			1				1				
		0,2	0,4	0,6	0,8	for	1,2	1,4	1,6	1,8	2,0
		f_{02}	f_{02}	f_{02}	f_{02}	f_{02}	f_{02}	f_{02}	f_{02}	f_{02}	f_{02}
	<i>f</i> , Гц										
I,	Рассчитано.	_		_							
A	Измерено										
IR,	Рассчитано	_									
A	Измерено										
IL,	Рассчитано			_							
A	Измерено										
Ic,	Рассчитано			_							
A	Измерено										
$B_{\rm L}$,	Рассчитано										
См	Эксперимент										
$B_{\rm C}$,	Рассчитано										
См	Эксперимент										
В,	Рассчитано										
См	Определено										
Υ,	Рассчитано										
См	Эксперимент										
Р,	Рассчитано										
Вт	Измерено										
Q,	Рассчитано										
вар	Эксперимент										
S,	Рассчитано										
BA	Определено										
<i>(</i> 2	Рассчитано										
φ	Эксперимент										
D	Рассчитано										
	Эксперимент										

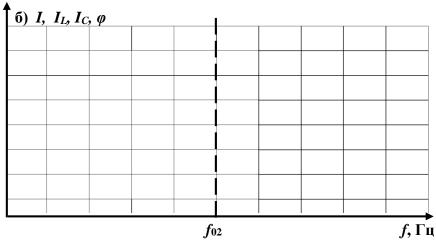
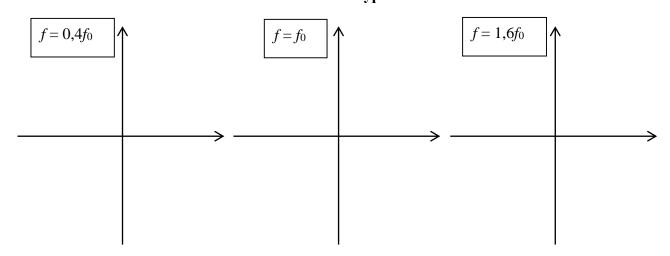
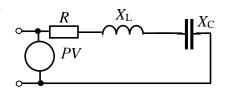


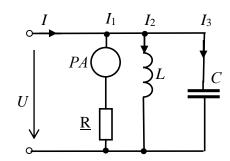
Рис. 4.6. **Частотные характеристики (а) и резонансные кривые (б) параллельного колебательного контура**




Рис. 4.7. Векторные диаграммы параллельного колебательного контура

Выводы:

Выполнил: Проверил:


Контрольные вопросы

- 1. Какое явление в электрических цепях называется резонансом?
- 2. Запишите условие возникновения резонанса в последовательном колебательном контуре.
- 3. Почему явление резонанса в последовательном колебательном контуре называется «резонансом напряжений?
- 4. Запишите условие возникновения резонанса в параллельном колебательном контуре.
- 5. Почему явление резонанса в параллельном колебательном контуре называется резонансом токов?
- 6. В схеме последовательного колебательного контура $u = 100\sin 314t$, $I = 2\sin 314t$, $R = X_L = 100$ Ом. Определить емкость конденсатора.
- 7. Определить действующее напряжение источника в схеме последовательного колебательного контура при $U_R = 100 \text{ B}$, $U_L = 200 \text{ B}$, $U_C = 80 \text{ B}$.
- 8. В схеме параллельного колебательного контура U = i100B, $I_R = 10$ A, $I_{\rm L} = 20$ A, $I_{\rm C} = 40$ A. Построить векторную диаграмму цепи.
- 9. Что покажет ваттметр на входе схемы параллельного колебательного контура при $R_2 = 100$ Ом и $I_2 = I_3 = I_4 = 1$ А?
- Установите соотношение между мощностями цепи последовательным соединением элементов R-L-C в момент резонанса.
 - 11. Что определяет добротность колебательного контура D при резонансе?
- 12. При заданных значениях действующих напряжений $U_R = 10 \text{ B}$, $U_C = U_L = 20 \text{ B}$ определить показания вольтметра:
 - 1) 40 B; 2) 20 B; 3)10 $\sqrt{2}$; 4) 10 $\sqrt{10}$.

13. $I_2 = 20$, $I_3 = 10$ A, R = 10 OM, U = 90 B. Определить показания амперметра:

1) 30 A; 2) 45 A; 3) 9 A; 4) $10\sqrt{2}$.

- 14. Чему равна реактивная мощность цепи в момент резонанса?
- 15. Чему равна полная мощность цепи в момент резонанса?

Лабораторная работа №5 ИССЛЕДОВАНИЕ ТРЕХФАЗНЫХ ЦЕПЕЙ

5.1. Задание

- 5.1.1. Изучить схемы соединения трехфазных цепей.
- 5.1.2. Определить фазные и линейные напряжения трехфазного источника, токи в цепях и соотношения между ними.
- 5.1.3. Построить векторные диаграммы напряжений и токов для симметричных и несимметричных режимов.
 - 5.1.4. Записать выводы по результатам.

5.2. Подготовка к работе

- 5.2.1. Трехфазной цепью называют электрическую цепь, содержащую трехфазный источник ЭДС, трехфазный приемник электрической энергии и соединяющие их провода. В электроэнергетике трехфазными являются большинство электротехнических систем и устройств (линии электропередачи, электрические машины и др.).
- 5.2.2. Самостоятельно составить и зарисовать в отчет схему трехфазной цепи при соединении нагрузки по схеме «звезда» с нейтральным проводом (рис. 5.1 отчета) и схему цепи при соединении нагрузки «треугольником» (рис. 5.2 отчета).

Изобразить на схемах вольтметры для измерения линейных и фазных напряжений источника, фазных напряжений нагрузки, напряжения смещения нейтрали, а также амперметров для измерения фазных и линейных токов и тока в нейтральном проводе.

- 5.2.3. Фазное напряжение трехфазного источника принять равным
- $U_{\Phi}=127~{
 m B}.$ Начальные фазы напряжений трехфазного источника принять равными исходя из условия: $\psi_{
 m A}=10N^{\circ},$ где N номер Вашего варианта. Сопротивление нагрузки в каждой фазе $R_{\Phi}=10+10N~{
 m Om}.$

Комплексные значения фазных и линейных напряжений источника записать в табл. 5.1 отчета.

5.2.4. Рассчитать комплексные действующие значения фазных и линейных токов трехфазной цепи в симметричном режиме для каждой из схем.

Результаты расчета записать в табл. 5.1 отчета.

5.3. Выполнение работы

- 5.3.1. Показать подготовленный отчет преподавателю.
- 5.3.2. Установить ЭДС трехфазного источника 127 В, начальные фазы источников в соответствии с вашим вариантом, сопротивления измерительных приборов в режиме «АС»: вольтметров 1 МОм, амперметров 1 мОм.
- 5.3.3. Собрать цепь в соответствии с составленной схемой «звезда» с нейтральным проводом, установив симметричную нагрузку. Измерить напряжения на

нагрузках в фазах цепи, напряжение смещения нейтрали, линейные токи и ток в нейтральном проводе. Результаты измерений записать в табл. 5.2 отчета.

- 5.3.4. Установить несимметричную нагрузку (по вашему выбору) и повторить измерения по п. 5.3.3. Результаты измерений записать в табл. 5.2 отчета.
- 5.3.5. Собрать цепь в соответствии с составленной схемой «звезда» без нейтрального провода, установить симметричную нагрузку и измерить параметры цепи в соответствии с п. 5.3.1. Затем перевести цепь в несимметричный режим и повторить измерения параметров. Результаты всех измерений записать в табл. 5.2 отчета.
- 5.3.5. Собрать цепь, включив симметричную нагрузку по схеме треугольник. Измерить напряжения на фазах нагрузки, фазные и линейные токи цепи. Результаты измерений записать в табл. 5.3 отчета.
- 5.3.7. Установить несимметричную нагрузку и повторить измерения по п. 5.3.3. Результаты измерений записать в табл. 5.3 отчета.

5.4. Отчет по лабораторной работе №5 ИССЛЕДОВАНИЕ ТРЕХФАЗНЫХ ЦЕПЕЙ

5.4.1. Содержание отчета

- 5.4.1. Схемы цепей при соединении фаз приемника «звездой» и «треугольником».
- 5.4.2. Расчет комплексных действующих значений фазных и линейных токов трехфазной цепи в симметричном режиме для каждой из схем.
 - 5.4.3. Расчет активной мощности цепей.
- 5.4.4. Векторные диаграммы для симметричных и несимметричных режимов для каждой из схем.
 - 5.4.5. Выводы по результатам работы.

5.4.2. Результаты исследования трехфазных цепей Отчет по лабораторной работе №5 Задание

Рис. 5.1. Схема цепи при соединении нагрузки «звездой»

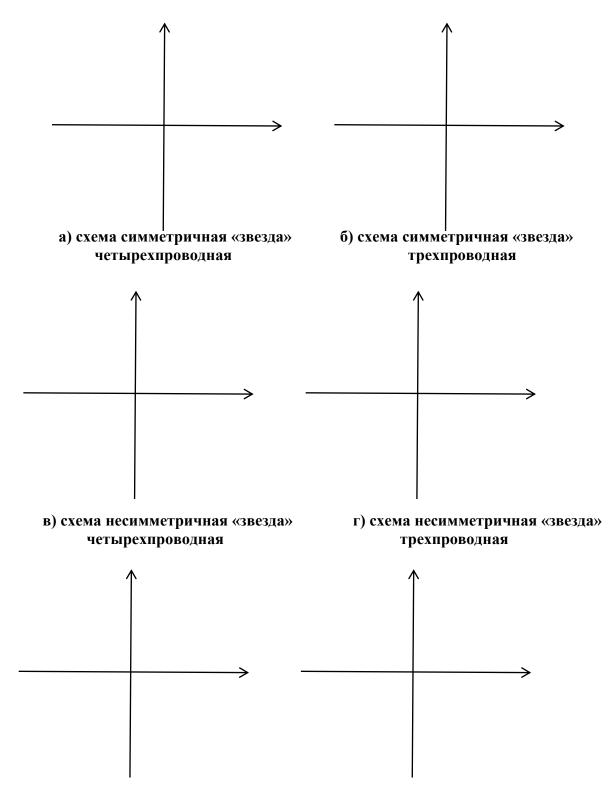
5.2. Схема цепи при соединении нагрузки «треугольником»

Расчет параметров трехфазных цепей

(расчет выполняется на отдельных листах формата А4)

Tаблица 5.1 Значения напряжений и токов трехфазных цепей по результатам расчета

		1	1	,	1 0							
Цопрам	· OIIII a			Ток	И							
Напряж	кинэ	<u>I</u> A	<u> </u>	<u> </u>	<u> I</u> ab	<u>I</u> bc	<u> I</u> ca					
			Схема	«звезда»								
<u>U</u> _A =	, В — — — — — — — — — — — — — — — — — —											
$\underline{U}_{\mathrm{B}} = \underline{U}_{\mathrm{C}} =$, B				_	_	_					
<u>U</u> _C =	, B		_		_	_	_					
			Схема «т	реугольник»								
<u>U</u> _{AB} =	, B											
$U_{ m BC}$ =	, B											
$U_{ m BC}$ = $U_{ m CA}$ =	, B											
			$U_{\scriptscriptstyle m II}$	$U_a =$								


Таблица 5.2 Результаты измерений параметров схемы «звезда»

		Фаз	ные напр	яжения		Линейн	ые (фа	вные)	
Режим	цепи	нагрузки			II D	токи		, ,	
		$U_{\rm a},{ m B}$	$U_{\mathrm{b}},\mathrm{B}$	$U_{\rm c},{ m B}$	\underline{U}_{nN} , B	I_{A}, A	<i>I</i> _B , A	Ic, A	\underline{I}_{nN}, A
С нейтральным	Симметричный								
проводом	Несимметричный								
Без нейтрального Симметричный		•							
провода									

Таблица 5.3

Результаты измерений параметров схемы «треугольник»

	<u> </u>									
Режим цепи		ые (линейі жения нагр	,	Фаз	вные тог	ки	Линейные токи			
	$U_{\mathrm{ab}},\mathrm{B}$	$U_{\mathrm{bc}},\mathrm{B}$	$U_{\mathrm{ca}},\mathrm{B}$	I _{ab} , A	I _{bc} , A	I_{ca} , A	I_{A}, A	<i>I</i> _B , A	<i>I</i> _C , A	
Симметричный										
Несимметричный.										

д) схема симметричный «треугольник» е) схема несимметричный «треугольник» Рис. 5.3. Векторные диаграммы

Выводы:

Выполнил: Проверил:

Контрольные вопросы

- 1. Определите фазный ток, если $Q_{\Phi}=1000$ вар, $U_{\Phi}=100$ В, сопротивление фазы нагрузки X=10 Ом.
- 2 Определите комплексные действующие токи в симметричной четырех проводной трехфазной цепи при $\underline{U}_{\rm A}=100~{\rm B}$ и $\underline{Z}_{\rm \varphi}=j10~{\rm B}$.
- 3. В трехфазной симметричной цепи, соединенной треугольником, линейное напряжение равно $380e^{j50^{\circ}}$. Чему равны комплексные линейные токи цепи, если фазное сопротивление нагрузки равно 10 Ом?
- 4. Запишите формулу мгновенного линейного тока $i_{\rm B}$ симметричной трехфазной цепи при соединении нагрузки треугольником, если $U_{\Phi}=220~{\rm B}$ и $\underline{Z}_{\Phi}=-j10~{\rm Om}$.
- 5. Запишите, чему равны ток $I_{\rm C}$ и фаза $\Psi_{\rm C}$, если в трехфазной цепи при симметричной нагрузке ток $I_{\rm A}=20$ A, $\Psi_{\rm A}=-30^{\circ}$.
- 5. Определите фазный ток, если $P_{\Phi}=1000~{\rm Br}$, сопротивление фазы нагрузки $\underline{Z}_{\Phi}=10{\rm e}^{j45^{\circ}}~{\rm Om}.$
- 7. В трехфазной цепи при симметричной нагрузке ток $I_{\rm A}$ =10 A, $\Psi_{\rm A}$ =30°. Запишите комплексные действующие токи $\underline{I}_{\rm B}$, $\underline{I}_{\rm C}$.
- 8. В трехфазной цепи при симметричной нагрузке ток $I_{\rm C}$ = 10 A, $\Psi_{\rm C}$ = 50°. Запишите мгновенное значение тока $i_{\rm B}$.
- 9 Запишите формулу полной мощности симметричной трехфазной цепи при известном линейном напряжении $\underline{U}_{\Pi}=U_{\Pi}\mathrm{e}^{\mathrm{j}\psi\mathrm{u}}$ и линейном токе $\underline{I}_{\Pi}=I_{\Pi}\mathrm{e}^{\mathrm{j}\psi\mathrm{i}}$: S=
- 10 Запишите формулу полной мощности S трехфазной несимметричной цепи при соединении нагрузки треугольником при известных фазных напряжениях, токах и углах сдвига фаз φ в каждой фазе приемника: S =______.
- 11. Запишите формулу полной мощности S трехфазной симметричной цепи при известном фазном напряжении U_{ϕ} , токе I_{ϕ} и сдвиге фаз ϕ_{ϕ} : S=_______.
- 12. Определить комплексное линейное напряжение трехфазного источника \underline{U}_{CA} при напряжении $\underline{U}_{ab} = j220$ на нагрузке, соединенной треугольником: $\underline{U}_{CA} = \underline{\hspace{1cm}}$.

НЕСИНУСОИДАЛЬНЫЕ И НЕЛИНЕЙНЫЕ ЦЕПИ, ПЕРЕХОДНЫЕ ПРОЦЕССЫ

Лабораторная работа №6 ИССЛЕДОВАНИЕ ЦЕПИ НЕСИНУСОИДАЛЬНОГО ТОКА

6.1. Задание

- 6.1.1. Представить несинусоидальную функцию времени тригонометрическим рядом Эйлера-Фурье.
- 6.1.2. Рассчитать параметры цепи с последовательным соединением элементов R-L-C с несинусоидальным источником ЭДС.
- 6.1.3. Экспериментально определить параметры цепи с последовательным соединением элементов R-L-C с несинусоидальным источником ЭДС.
- 6.1.4. Экспериментально получить осциллограмму несинусоидальной ЭДС и тока в цепи с последовательным соединением элементов *R-L-C*.

6.2. Подготовка к работе

6.2.1. Записать в табл. 6.3 отчета заданные в табл. 6.1 параметры элементов цепи - значения сопротивлений на первой гармонике. Определить и записать в табл. 6.3 отчета значение индуктивности и емкости элементов цепи.

Таблица 6.1 Параметры элементов цепи на 1-й гармонике

$N_{\underline{0}}$	R,	$X_{L(1)}$,	$X_{\mathrm{C}(1)}$,	No	R,	$X_{L(1)}$,	$X_{\mathrm{C}(1)}$,	$N_{\underline{0}}$	R,	$X_{L(1)}$,	$X_{\mathrm{C}(1)}$,
вар.	Ом	Ом	Ом	вар.	Ом	Ом	Ом	вар.	Ом	Ом	Ом
1	10	15	20	11	5	20	15	21	25	15	30
2	15	20	25	12	10	25	20	22	30	20	35
3	20	25	30	13	15	30	25	23	35	25	40
4	25	30	35	14	20	35	30	24	40	45	45
5	30	35	40	15	25	40	35	25	3045	50	30
6	35	40	45	16	30	45	40	26	50	60	35
7	40	45	50	17	20	50	45	27	60	30	40
8	45	50	60	18	15	60	50	28	10	35	45
9	50	60	30	19	10	30	60	29	15	40	30
10	60	40	35	20	5	35	40	30	20	30	20

- 6.2.2. Записать в табл. 6.3 отчета значения несинусоидальной ЭДС, заданные в табл. 6.2.
- 6.2.3. Построить в масштабе временную диаграмму заданной несинусои-дальной ЭДС (на миллиметровом листе бумаги формата А4).
- 6.2.4. Рассчитать по методу трапеций амплитуду и начальную фазу одной из гармоник тригонометрического ряда несинусоидальной ЭДС. Результаты записать в табл. 6.4 отчета (пункт выполняется по указанию преподавателя).
- 6.2.5. Разложить заданную несинусоидальную ЭДС в тригонометрический ряд до шестой гармоники включительно.

			3	наче	ния	ЭДС	в точ	іках ,	делеі	ния п	ерио	да на	a 20 ч	асте	й	1.	uOnini,	,a 0.2
№ вар.	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	e_6	<i>e</i> ₇	e_8	e 9	e_{11}	e_{12}	e_{13}	e_{14}	e ₁₅	e_{16}	e ₁₇	e_{18}	<i>e</i> ₁₉
1	15	20	30	50	60	55	45	30	15	-15	-20	-30	-50	-60	-55	-45	-30	-15
2	20	30	45	55	60	50	30	20	15	-15	-20	-30	-50	-60	-55	-45	-30	-20
3	15	20	30	50	60	50	30	20	15	-15	-20	-30	-50	-60	-50	-30	-20	-15
4	18,5	35,3	48,5	57,1	60	57,1	48,5	35,3	18,5	18,5	35,3	48,5	57,1	60	57,1	48,5	35,3	18,5
5	22,5	30	45	75	90	82,5	67,5	45	22,5	-22,5	-30	-45	-75	-90	-82,5	-67,5	-45	-22,5
6	30	40	60	100	120	110	90	60	30	-30	-40	-60	-100	-120	-110	-90	-60	-30
7	37,5	50	75	125	150	137	112	75	37,5	-37,5	-50	-75	-125	-150	-137	-112	-75	-37,5
8	45	60	90	150	180	165	135	90	45	-45	-60	-90	-150	-180	165	-135	-90	-45
9	30	45	67,5	82,5	90	75	45	30	22,5	-22,5	-30	-45	-75	-90	-82,5	-67,5	-45	-30
10	45	67,5	101	123	135	112	67,5	45	33,8	-33,8	-45	-67,5	-112	-135	-123	-101	-67,5	-45
11	60	90	135	165	180	150	90	60	45	-45	-60	-90	-150	-180	-165	-135	-90	-60
12	40	60	90	110	120	100	60	40	30	-30	-40	-60	-100	-120	-110	-90	-60	-40
13	30	40	60	100	120	100	60	40	30	-30	-40	-60	-100	-120	-100	-60	-40	-30
14	45	60	90	150	180	150	90	60	45	-45	-60	-90	-150	-180	-150	-90	-60	-45
15	90	120	180	300	360	300	180	120	90	-90	-120	-180	-300	-360	-300	-180	-120	-90
16	60	80	120	200	240	200	120	80	60	-60	-80	-120	-200	-240	-200	-120	-80	-60
17	37	70,6	97	114,2	120	114,2	97	70,6	37	37	70,6	97	114,2	120	114,2	97	70,6	37
18	74	141,2	194	228,4	240	228,4	194	141,2	74	74	141,2	194	228,4	240	228,4	194	141,2	74
19	49,3	94,1	129,3	152,3	160	152,3	129,3	94,1	49,3	49,3	94,1	123,3	152,3	160	152,3	129,3	94,1	49,3
20	98,6	188,2	258,6	304,6	320	304,6	258,6	188,2	98,6	0	0	0	0	0	0	0	0	0
21	15	20	30	50	60	50	30	20	15	15	20	30	50	60	50	30	20	15
22	30	40	60	100	120	100	60	40	30	30	40	60	100	120	100	60	40	30
23	22,5	30	45	75	90	82,5	67,5	45	22,5	0	0	0	0	0	0	0	0	0
24	45	67,5	101,3	123,8	135	112,5	67,5	45	33,8	33,8	45	67,5	112,5	135	123,8	101,3	67,5	45
	1	1	1			1				1			1		1	1		

Примечание. Значения ЭДС в точках деления периода на 20 частей $e_0=e_{10}=e_{20}=0$.

25 | 45 | 67,5 | 101,3 | 123,8 | 135 | 112,5 | 67,5 | 45 | 33,8 | 0 120 | 200 | 240 | 200 | 120 | 80

Расчет постоянной составляющей, амплитуд и начальных фаз гармоник выполнить с помощью компьютера по программе «Расчет коэффициентов Фурье» (см. инструкцию пользователю программы). Значения амплитуд, начальных фаз и действующие значения гармоник записать в табл. 6.4.

60

- 6.2.6. Зарисовать в отчет расчетную схему цепи (рис. 6.2 отчета)
- 6.2.7. Рассчитать действующее и мгновенное значение несинусоидальной ЭДС. Результаты записать в табл. 6.4 отчета.
- 6.2.8. Рассчитать действующий и мгновенный ток на каждой гармонике и действующие значение несинусоидального тока цепи, активную, реактивную и полную мощность цепи. Результаты записать в табл. 6.5 отчета.

6.3. Выполнение работы

6.3.1. В соответствии с полученным рядом гармоник (см. п. 6.2.5) собрать схему для экспериментального исследования цепи (рис. 6.1). Установить параметры элементов цепи (R, L, C), действующие значения ЭДС и начальные фазы каждой гармоники (отрицательные начальные фазы гармоник следует пересчитать в положительные).

- 6.3.2. Включить схему и измерить действующее значение несинусоидальной ЭДС, действующий ток цепи. Результаты записать в табл. 6.4 отчета.
- 6.3.3. Зарисовать с экрана осциллографа экспериментальную кривую несинусоидальной ЭДС (рис. 6.3) и совместить ее с кривой заданной ЭДС (см. п. 6.2.3).
- 6.3.4. Зарисовать с экрана осциллографа экспериментальную кривую тока (рис. 6.3) и совместить ее с кривыми ЭДС (см. п. 6.2.3).

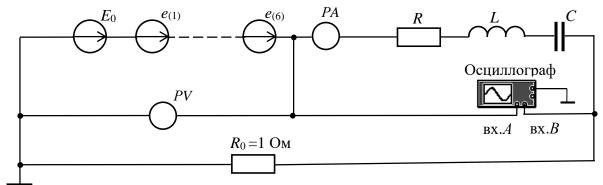


Рис. 6.1. Схема для исследования цепи несинусоидального тока

6.4. Отчет по лабораторной работе №6 ИССЛЕДОВАНИЕ ЦЕПИ НЕСИНУСОИДАЛЬНОГО ТОКА

6.4.1. Содержание отчета

- 6.4.1. Тригонометрический ряд заданной несинусоидальной ЭДС (амплитуды, действующие значения и начальные фазы гармоник).
 - 6.4.2. Расчет цепи с последовательным соединением элементов R, L, C.
 - 6.4.3. Рассчитанные и экспериментальные осциллограммы ЭДС и тока.
 - 6.4.4. Выводы по результатам расчетов и измерений.

6.4.2. Результ	гаты исследования цепи нес	инусоидального тока
студента	гр. №	
	Задание	
i ! !		
! ! !		
1 		
!		

Рис. 6.2. Расчетная схема цепи

Расчёт параметров цепи (выполняется на отдельных листах формата А4)

Значения несинусоидальной ЭДС и параметров цепи

				, , ,	1211011 07	1		1 -		
Вари-					Парамет	ры цепи				
ант №	R =	Ом	$X_{L(1)} =$	Ом	$X_{\rm C(1)} =$	Ом	L=	Гн	C =	мкФ
		•	Значе	ния нес	инусоида	льной Э	ДС	•	•	
e_0	e_1	e_2	e_3	e_4	<i>e</i> ₅	e_6	e_7	e_8	e 9	e_{10}
<i>e</i> ₁₁	e_{12}	<i>e</i> ₁₃	<i>e</i> ₁₄	<i>e</i> 15	<i>e</i> ₁₆	<i>e</i> 17	<i>e</i> ₁₈	e 19	<i>e</i> ₂₀	
						•				

Таблица 6.4

Результаты расчетов и измерений

Результаты расчета по п. 6.2.4: $e_k = E_{mk} \sin(k\omega t + \psi_k) =$									
$B_{\mathrm{km}} = $; $C_{\mathrm{km}} =$;	$A_{\rm km} =$; $\Psi_k =$; $A_0 =$:		
Результаты разлож	сения нес	синусоид	альной	ЭДС в тр	оигоном	етрическ	ий ряд		
Амплитуды гармоник	E_0	$E_{1\mathrm{m}}$	$E_{ m 2m}$	$E_{3\mathrm{m}}$	$E_{ m 4m}$	$E_{5\mathrm{m}}$	$E_{6\mathrm{m}}$		
ЭДС									
Начальные фазы гармо-		Ψ_{e1}	Ψ e2	Ψ_{e3}	Ψ e4	Ψ e5	Ψ_{e6}		
ник ЭДС									
Действующие значения	E_0	E_1	E_2	E_3	E_4	E_5	E_6	$\boldsymbol{\mathit{E}}$	
гармоник ЭДС									
Измерить	E =	В;		I =	A				

Таблица 6.5

Результаты расчета цепи

Амплитуды	$I_{\mathrm{m}1}$	I_{2m}	$I_{3\mathrm{m}}$	$I_{4\mathrm{m}}$	$I_{5\mathrm{m}}$	$I_{6\mathrm{m}}$	
гармоник тока							
Начальные фазы	Ψ_{i1}	Ψ i2	Ψ i3	Ψ_{i4}	Ψ i5	Ψ i6	
гармоник тока							
Действующие	I_1	I_2	I_3	I_4	I_5	I_6	I
токи							
Мгновенный ток	i =						
Активная	P_1	P_2	P_3	P_4	P_5	P_6	P
мощность							
Реактивная	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q
мощность							
Полная мощность	S =						

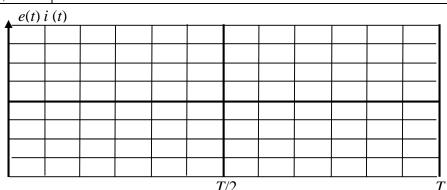


Рис. 6.3. Осциллограммы ЭДС и тока в цепи

Выполнил: Проверил:

Контрольные вопросы

1. Сопротивление току шестой гармонике $\underline{Z}^{(6)}$ =30e^{- j 60°} Ом. Определить сопротивление $\underline{Z}^{(2)}$ второй гармонике ($f^{(2)}$ = 100 Γ ц).

2. Сопротивление току шестой гармонике $\underline{Z}^{(6)} = 30 \ e^{-j \ 60^{\circ}}$ Ом. Определить сопротивление $\underline{Z}^{(3)}$ третьей гармонике ($f^{(3)} = 150 \ \Gamma$ ц).

3. Сопротивление первой гармонике $\underline{Z}^{(1)} = 20 \ e^{-j90^{\circ}}$ Ом. Определить сопротивление $\underline{Z}^{(5)}$ пятой гармонике ($f^{(5)} = 150 \ \Gamma$ ц).

4. Определить действующее значение тока в данной цепи, если $X_L^{(1)}=10$ Ом,

 $e = 100\sin 314t + 100\sin (942t + 180^\circ)$ B.

5. $e = 100\sin 314t$ B,

 $u = 100\sin(314t + 180^{\circ})$ B,

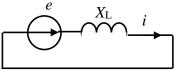
 $R = 10 \text{ Om}, X_L^{(1)} = X_C^{(1)} = 20 \text{ Om}.$

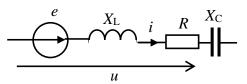
Определить мгновенное значение тока i.

6. Определить мгновенное значение напряжения на индуктивности при сопротивлениях первой гармоники $R = X_L^{(1)} = X_C^{(1)} = 30$ Ом и напряжении источника $u = 300 + 100\sin 628t$ В.

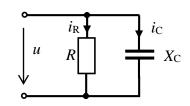
$$u = 50 + 200\sin 314t$$
 B, $R = X_C^{(1)} = 10$ Om.

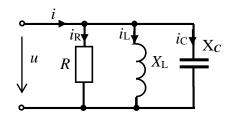
Определить действующее значение тока в ветви с резистором $i_{\rm R}$.

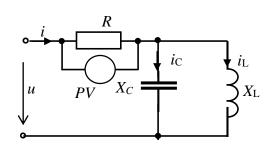

8. Напряжение источника


$$u = 100\sin 314t + 50\sin 942t$$
 B.

Определить действующее значение тока i при сопротивлениях первой гармоники R=10 Ом, $X_{\rm C}{}^{(1)}=20$ Ом, $X_{\rm L}{}^{(1)}=20$ Ом.


9. Напряжение источника *u*=100sin 314*t* +50sin 942*t* В.


Определить действующее значение тока i при сопротивлениях первой гармоники R=10 Ом, $X_{\rm C}{}^{(1)}=20$ Ом,



Лабораторная работа №7 ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В НЕРАЗВЕТВЛЕННОЙ ЛИНЕЙНОЙ ЦЕПИ ПЕРВОГО ПОРЯДКА

7.1. Задание

- 7.1. Рассчитать переходные процессы в неразветвленных цепях с элементами RL и RC при их включении на постоянное напряжение и при коротком замыкании.
- 7.2. Получить осциллограммы переходных токов и напряжений в цепях с элементами RL и RC при их включении на постоянное напряжение и при коротком замыкании.
- 7.3. Определить экспериментально постоянную времени каждой цепи (τ_{RL} и τ_{RC}) и сравнить ее рассчитанным значением
 - 7.4. Сравнить результаты расчётов и экспериментов.

7.2. Подготовка к работе

- 7.2.1. Изменение режима работы электротехнических устройств называют коммутацией. Переход от одного режима работы к другому происходит не мгновенно, а в течение некоторого промежутка времени. Процессы, происходящие в цепи в этот период времени, называют переходными процессами.
- 7.2.2. Зарисовать в отчет расчетные схемы при подключении элементов RL и RC к источнику постоянного напряжения и при их коротком замыкании (рис. 7.2 для цепи RL и рис. 7.3 для цепи RC отчета).

Заданные параметры цепей

					* *		- PDI Gent				
№ вар.	<i>R</i> , Ом	L, м Γ н	<i>С</i> , мкФ	№ вар.	<i>R</i> , Ом	L , м Γ н	C , мк Φ	№ вар.	<i>R</i> , Ом	<i>L</i> , мГн	<i>С</i> , мкФ
1.	15	15	60	11.	24	28	40	21.	60	20	20
2.	16	18	58	12.	26	30	38	22.	70	18	18
3.	17	17	56	13.	28	31	36	23.	80	16	16
4.	18	20	54	14.	30	33	34	24.	100	14	14
5.	17	21	52	15.	34	40	32	25.	120	12	12
6.	20	22	50	16.	37	45	30	26.	140	10	10
7.	20	23	48	17.	40	50	28	27.	160	8	8
8.	21	24	46	18.	43	55	26	28.	170	7	7
7.	22	25	44	17.	45	60	24	27.	180	6	6
10.	23	27	42	20.	50	65	22	30.	200	5	5

7.2.3. Используя заданные параметры элементов, рассчитать переходные токи и напряжения на реактивных элементах при включении элементов RL и RC на постоянное напряжение 10 В и при их коротком замыкании ($i_L(t)$ и $u_L(t)$, $u_C(t)$ и $i_C(t)$). Определить постоянные времени этих цепей - τ_{RL} и τ_{RC} .

Результаты записать в табл. 7.2 отчета.

7.2.4. Построить в отчете рассчитанные графики переходных параметров: $i_L(t)$ и $u_L(t)$, $u_C(t)$ и $i_C(t)$ - рис. 7.4 для цепи RL, рис. 7.5 отчета для цепи RC.

7.3. Выполнение работы

- 7.3.1. Показать преподавателю подготовленный отчёт.
- 7.3.2. Собрать поочередно схемы на рис. 7.1а и рис. 7.1б. Установить параметры элементов схем в соответствии с заданием (табл. 7.1).
- 7.3.3. Для получения осциллограмм переходного тока i(t) в исследуемых цепях подключить вход «A» осциллографа (в режиме «DC») к резистору с сопротивлением 1 Ом (напряжение на сопротивлении 1 Ом равно току в цепи).

Для получения осциллограмм переходного напряжения на катушке $u_L(t)$ или на конденсаторе $u_C(t)$ вход «A» осциллографа подключить к индуктивному или емкостному элементам (рис. 7.1).

7.3.4. Выбрать источник импульсного напряжения. Установить его частоту 100 Гц, длительность цикла - 50%, амплитуду импульса - 10 В.

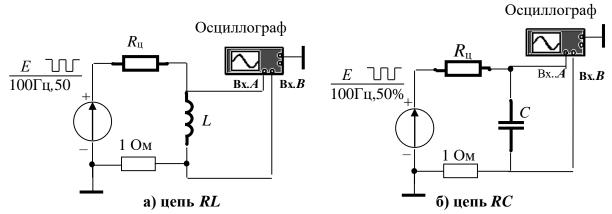


Рис. 7.1. **Схема для экспериментального исследования цепей** (при появлении импульса источника импульсного напряжения происходит подключение цепи к источнику постоянного напряжения; в паузах между импульсами цепь замыкается накоротко)

- 7.3.5. Включить схему. Настройкой осциллографа и подбором частоты источника импульсного напряжения добиться устойчивого изображения на его экране кривых переходного тока и напряжения. Зарисовать в отчет (в масштабе) с экрана осциллографа полученные кривые для цепей RL и RC (рис. 7.5).
- 7.3.6. Получить на экране осциллографа **крупным планом** отдельно кривую тока $i_L(t)$ при включении цепи RL и кривую напряжения на конденсаторе $u_C(t)$ при включении цепи RC. Зарисовать в отчет с экрана осциллографа эти кривые вместе с масштабной сеткой (рис. 7.6 отчета).
- 7.3.7. Записать в отчет в табл. 7.3 отчета установившееся значение тока $i_{Ly}(t)$ в цепи RL и установившееся напряжение $u_{Cy}(t)$ в цепи RC.

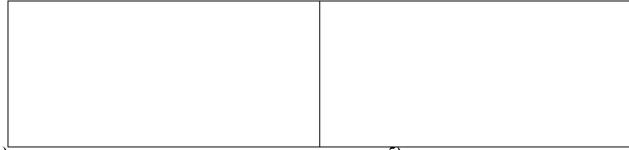
Указание 1: Значения установившихся параметров целесообразно определять с помощью визирных линий осциллографа.

7.3.8. Устанавливая поочередно в цепи RС (рис. 7.1б) значения сопротивления, равные R, 2R, 3R, 4R и не изменяя настройки осциллографа, получить на экране осциллографа семейство кривых переходных напряжений на конденсаторе. Зарисовать осциллограммы в одной системе координат (рис. 7.7 отчета).

7.4. Отчет по лабораторной работе №7 ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В НЕРАЗВЕТВЛЕННОЙ ЛИНЕЙНОЙ ЦЕПИ ПЕРВОГО ПОРЯДКА 7.4.1. Содержание отчета

- 7.4.1. Формулы рассчитанных аналитически переходных токов и напряжений в исследуемых цепях: $i_L(t)$ и $u_L(t)$; $u_C(t)$ и $i_C(t)$.
 - 7.4.2. Графики переходных токов и напряжений по результатам расчета.
 - 7.4.3. Осциллограммы переходных токов и напряжений.
- 7.4.4. Экспериментально полученные значения постоянной времени для цепи RL и цепи RC (τ_{RL} и τ_{RC}).

Указание 2: Для определения τ_{RL} на кривой переходного тока $i_L(t)$ на при включении цепи RL на постоянное напряжение (рис. 7.6) для произвольно выбранной точки (1) определить ток i_1 и соответствующее ему время t_1 ; по найденным значениям i_1 и t_1 рассчитать постоянную времени цепи τ_{RL} . Аналогично определить постоянную времени τ_{RC} для цепи RC.


Расчет постоянных времени цепей привести в отчете. Записать полученное значение τ_{RL} и τ_{RC} в табл. 7.3 отчета.

- 7.4.5. Построить в одной системе координат полученные экспериментально осциллограммы переходного напряжения на конденсаторе при различных сопротивлениях цепи $R_{\rm u}$ (рис. 7.7 отчета).
- 7.4.6. С помощью полученных в п.7.3.8 осциллограмм переходного напряжения на конденсаторе $u_{\rm C}(t)$ определить время Δt , за которое напряжение $u_{\rm C}$ изменится от 0 до 5 В и построить график зависимости $\Delta t(R_{\rm H})$ рис. 7.8 отчета.

7.4.2. Результаты исследования переходных процессов в неразветвленной линейной цепи первого порядка Отчет по лабораторной работе №7

Залание

а) при включении цепи на постоянное напряжение б) при коротком замыкании цепи Рис. 7.2. Расчетные схемы цепи *RL*

а) при включении цепи на постоянное напряжение б) при коротком замыкании цепи Рис. 7.3. Расчетные схемы цепи *RC*

Аналитический расчет цепей (выполняется на листах формата А4)

Таблица 7.2

Результаты расчета переходных параметров

The second secon									
Параметры цепи									
Цепь RL : $U = B$; $R = OM$; $L = M\Gamma H$ Цепь RC : $U = B$; $R = OM$; $C =$									
Вид коммутации	Формулы пере	еходных параметров	Значения р и т						
Вкл. цепи <i>RL</i>	i(t) =	$u_{\rm L}(t) =$	$p_{\rm RL}$ =						
К.З. цепи <i>RL</i>	i(t) =	$u_{\rm L}(t) =$	$\tau_{RL}=$						
Вкл. цепи <i>RC</i>	$u_{\rm C}(t) =$	i(t) =	$p_{\rm RC} =$						
К.3. цепи <i>RC</i>	$u_{\rm C}(t) =$	i(t) =	$ au_{ m RC} =$						

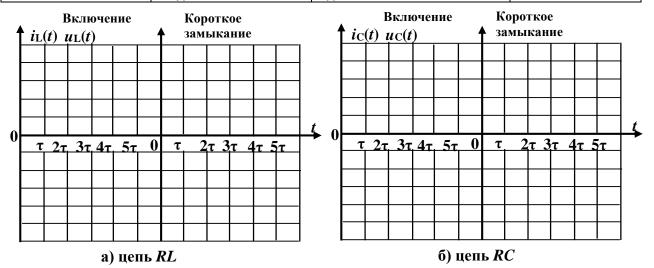


Рис. 7.4. Графики переходных параметров по результатам расчета

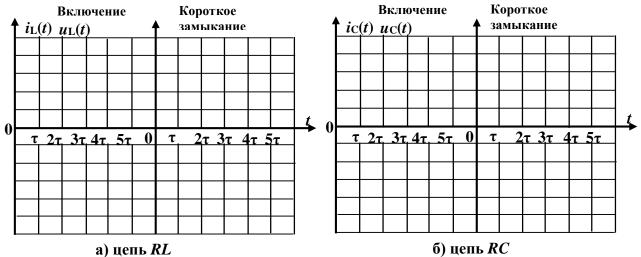


Рис. 7.5. Осциллограммы переходных параметров по результатам измерений

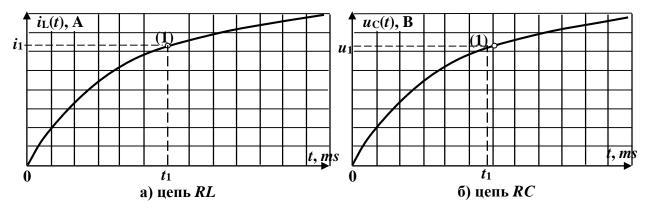


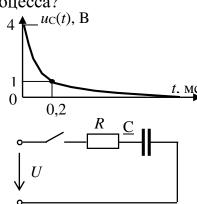
Рис. 7.6. Графики переходных параметров для экспериментального определения постоянной времени цепей

 Таблица 7.3

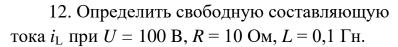
 Расчет постоянных времени цепей по графикам переходных параметров

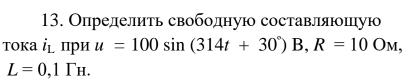
	Цепь <i>R</i>	RL		Цепь <i>RC</i>			
$i_{\rm Ly},{ m A}$	t_1, ms	$i(t_1)$, A	$\tau_{\rm RL}$, ms	$u_{\rm Cy},{ m B}$	t_1 , ms	$u_{\rm C}(t_1)$, B	$\tau_{\rm RC},\ ms$

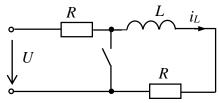
Рис. 7.7. Графики зависимости $u_C(t)$ при изменении $R_{\rm H}$

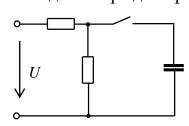

Рис. 7.8. Зависимость длительности переходного процесса от сопротивления цепи

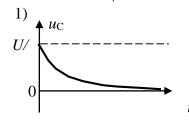
Выводы:

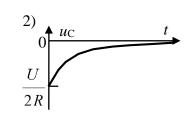

Выполнил: Проверил:


Контрольные вопросы


- 1. Какие процессы в электрических цепях называются переходными процессами?
 - 2. В чём причина возникновения переходных процессов?
 - 3. Что называется независимыми начальными условиями?
 - 4. Что характеризует постоянная времени цепи τ?
 - 5. Что называется моментом коммутации?
 - 6. Что называют зависимыми начальными условиями?
 - 7. Как определяются зависимые начальные условия?
 - 8. Как определяются независимые начальные условия?
 - 9. Как определить длительность переходного процесса?
- 10. По заданному графику записать выражение для переходного напряжения на конденсаторе и определить значение постоянной времени цепи т.


11. Определить свободное напряжение на конденсаторе при $u=100(314t+30^{\circ})$ В, R=10 Ом и C=100 мкФ.





14. Установить, какая кривая соответствует закону изменения напряжения $u_{\rm C}$ на конденсаторе для приведенной схемы цепи.

Лабораторная работа №8

ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В НЕРАЗВЕТВЛЕННОЙ ЛИНЕЙНОЙ ЦЕПИ ВТОРОГО ПОРЯДКА

8.1. Задание

- 8.1.1. Исследовать переходные процессы при коротком замыкании цепи с последовательным соединением элементов *RLC*.
- 8.1.2. Получить осциллограммы переходного тока и напряжения на конденсаторе при апериодическом и периодическом разряде конденсатора.
 - 8.1.3. Записать выводы по результатам.

8.2. Подготовка к работе

- 8.2.1. Цепью второго порядка является цепь, содержащая индуктивный и емкостной элементы. В зависимости от параметров цепи переходные процессы в цепях второго порядка могут протекать либо апериодически, когда токи и напряжения изменяются монотонно, либо носят колебательный характер.
 - 8.2.2. Записать в отчёт задание.
- 8.2.3. Зарисовать в отчёт расчетную схему цепи с последовательным соединением элементов *RLC* при ее коротком замыкании и указать на ней заданные параметры (рис. 8.2 отчета).
- 8.2.4. Записать в отчёт в табл. 8.3 исходные данные своего варианта из табл. 8.1, где N номер вашего варианта.

Таблица 8.1

Исходные данные

N	L,	С,	N	L,	С,	N	L,	С,
вар.	мΓн	мкФ	вар.	мΓн	мкФ	вар.	мΓн	мкФ
1	80	0,5	11	80	0,4	21	200	0,5
2	150	0,4	12	150	0,5	22	50	0,4
3	200	0,3	13	200	0,2	23	80	0,3
4	250	0,2	14	250	0,3	24	150	0,2
5	300	0,1	15	300	0,1	25	80	0,1
6	80	0,3	16	200	0,5	26	200	0,1
7	150	0,6	17	150	0,4	27	150	0,5
8	200	0,5	18	80	0,3	28	80	0,2
9	250	0,3	19	150	0,2	29	150	0,6
8	300	0,1	20	80	0,1	30	80	0,6

- 8.2.5. Рассчитать критическое сопротивление $R_{\text{кр}}$. Определить значения сопротивлений $R=0.25R_{\text{кр}}$, $R=2R_{\text{кр}}$ и записать их в табл. 8.2 отчета.
- 8.2.6. Рассчитать переходный ток i(t) и напряжение на конденсаторе $u_{\rm C}(t)$ при сопротивлениях резисторов, больше критического ($R=2R_{\rm kp}$), равному критическому ($R=R_{\rm kp}$), и меньше критического ($R=0.25R_{\rm kp}$). Выбрать значение входного напряжения 8 В. Результаты расчёта в табл. 8.3 отчета.

8.3. Выполнение работы

- 8.3.1. Показать преподавателю подготовленный отчёт.
- 8.3.2. Собрать на экране компьютера схему для исследования переходных процессов в цепи второго порядка (рис. 8.1). Установить параметры элементов схемы в соответствии с заданием (п. 8.2.4).

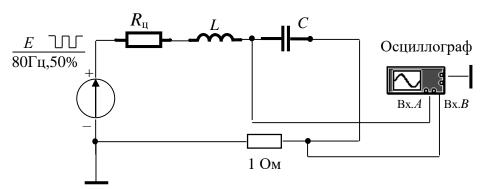


Рис. 8.1. Схема для экспериментального исследования цепи

- 8.3.3. Подключить осциллограф (в режиме «Auto», «DC») для получения осциллограмм напряжения на конденсаторе $u_C(t)$ (Bx.A) и переходного тока i(t) (Bx.B напряжение на сопротивлении 1 Ом численно равно току).
- 8.3.4. Подключить генератор прямоугольных импульсов (*Function Generator*). Его частоту выбрать $80 \, \Gamma$ ц, длительность цикла (*DUTY CYCLE*) 50%, амплитуду выходного сигнала $5...8 \, \text{B}$, а *OFFSET* равным выбранной амплитуде.
- 8.3.5. Регулировкой частоты и длительности цикла генератора импульсов, а также настройкой осциллографа добиться устойчивого изображения на его экране кривых тока и напряжения при коротком замыкании цепи (в паузах между импульсами).
- 8.3.6. Зарисовать в отчет (с изображением масштабной сетки с экрана осциллографа) или отпечатать эти кривые для трех значений сопротивления цепи: $R = 2R_{\text{KD}}$, $R = R_{\text{KD}}$, $R = 0.25R_{\text{KD}}$ (рис. 8.4 отчета).

8.4. Отчет по лабораторной работе №8 ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В НЕРАЗВЕТВЛЕННОЙ ЛИНЕЙНОЙ ЦЕПИ ВТОРОГО ПОРЯДКА 8.4.1. Содержание отчета

- 8.4.1. Схема исследования переходных процессов.
- 8.4.2. Расчёты параметров переходных процессов.
- 8.4.3. Таблицы с исходными данными и результатами расчётов.
- 8.4.4. Графики переходного напряжения на конденсаторе и тока, полученные по результатам расчетов и экспериментально при различных сопротивлениях резистора R (построить в одной системе координат).

- 8.4.5 Проверка выполнение условий возникновения апериодического и периодического характера переходного процесса в цепи с учётом критического сопротивления.
- 8.4.6. Определение периода $T_{\text{св}}$, угловой частоты $\omega_{\text{св}}$ свободных колебаний и коэффициента затухания δ при периодическом разряде конденсатора по осциллограмме напряжения на конденсаторе.

Указание: Период $T_{\text{св.}}$ определяется с помощью визирных линий как промежуток времени между любыми соседними максимальными значениями напряжения $u_{\text{C}}(t)$. Коэффициент затухания δ рассчитывается как отношение напряжений u_{C} , соответствующих моментам времени t_1 и $t_1 + T_{\text{св.}}$: $u_{\text{C}}(t)/u_{\text{C}}(t+T_{\text{св.}}) = \mathrm{e}^{\delta T_{\text{св.}}}$. Отсюда $\delta = \ln(ab/cd)$, где ab и cd -- отрезки, соответствующие напряжениям в моменты времени t_1 и $t_1 + T_{\text{св.}}$.

Рассчитанные параметры $T_{\text{св.}}$, $\omega_{\text{св.}}$ и δ записать в табл. 8.2 отчета.

8.4.7. Вывод о характере переходных процессов в цепи.

8.4.2. Результаты исследования переходных процессов в неразветвленной линейной цепи первого порядка

	Отчет по лабораторной работе № 8
студента	rp. №
	Задание

Рис. 8.2. Расчетная схема цепи

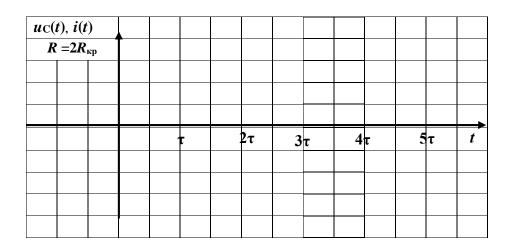

Результаты расчетов

Таблица	8	2

$R_{ m \kappa p}$ =	Ом;		L =	Гн;	C =	мкФ
$R=2R_{\rm Kp}=$	Ом	i(t) =			$u_{\rm C}(t) =$	
$R = R_{\rm Kp} =$	Ом	i(t) =			$u_C(t) =$	
D = 0.25D =	0.4	i(t) =			$u_C(t) =$	
$R=0.25R_{\rm kp}=$	Ом	$T_{\text{cb.}} =$	c ; $\omega_{cB} =$	c ⁻¹ ;	δ =	

Аналитический расчет цепей

(выполняется на отдельных листах формата А4)

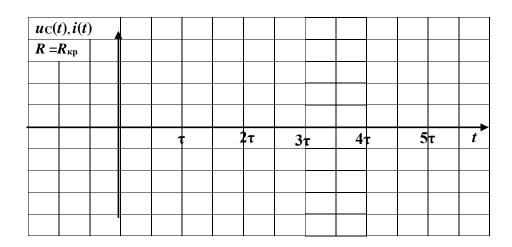
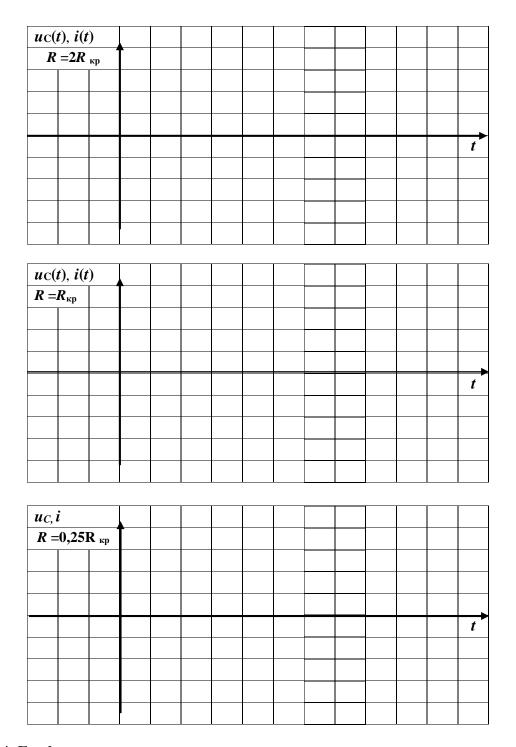
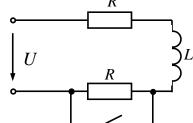
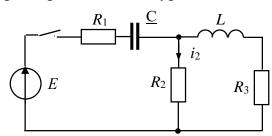


Рис. 8.3. Графики переходного напряжения на конденсаторе и тока по результатам расчетов



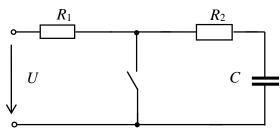

Рис. 8.4. Графики переходного напряжения на конденсаторе и тока по результатам измерений

Расчет $T_{\rm cb}$, $\omega_{\rm cb}$, δ по результатам измерений

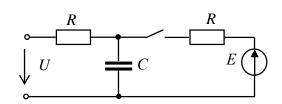

Выводы:		
Выполнил:	47	Проверил:
	47	

Контрольные вопросы

- 1. Какой переходной процесс в цепях второго порядка называется периодическим? В чём состоит особенность этого процесса?
- 2. Какой переходной процесс в цепях второго порядка называется апериодическим? В чём состоит особенность этого процесса?
- 3. При каких условиях в *RLC* цепи возникает апериодический переходной процесс и периодический?
 - 4. Что называется критическим сопротивлением цепи?
- 5. Как изменится характер переходного процесса в неразветвленной цепи второго порядка при $R \to 0$?
- 6. Определить свободную составляющую тока в момент коммутации, если установившийся ток равен 10 A, а L=0,1 Γ H, R = 10 Oм.



7. E = 120 В, R = 30 Ом, C = 0, 1 мкФ, L = 0.01 Гн. Определить ток i_2 в момент коммутации. Найти корни характеристического уравнения.


8. Дано: $U = 200 \text{ B } R_1 = 5 \text{ OM}, R_2 = 10 \text{ OM}, C = 100 \text{ мк}\Phi.$

Определить свободную составляющую напряжения на конденсаторе $u_{\text{C.c.B}}(t)$.

9. U = 100 B, E = 200 B, $R = 10 \text{ Om}, C = 300 \text{ мк}\Phi.$

Определить переходное напряжение на конденсаторе $u_{\mathbb{C}}(t)$.

Лабораторная работа №9 ИССЛЕДОВАНИЕ НЕЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

9.1. Задание

- 9.1.1. Рассчитать графическим и аналитическим методами токи цепи со смешанным соединением нелинейного элемента и резисторов.
- 9.1.2. Экспериментально исследовать цепь со смешанным соединением нелинейного элемента и резисторов.
- 9.1.3. Построить зависимости напряжений на резисторах от напряжения источника в схеме цепи со стабилитроном.

9.2. Подготовка к работе

- 9.2.1. В качестве нелинейного элемента на занятии используется стабилитрон. Стабилитрон полупроводниковый прибор, предназначенный для стабилизации напряжения в электронных схемах. Основным параметром стабилитрона является напряжение стабилизации $U_{\text{ст.}}$ в рабочей области ВАХ, когда при большом изменении тока, протекающего через прибор, напряжение на нём практически не изменяется.
- 9.2.2. По данным табл. 9.1 на листе миллиметровой бумаге формата A4 построить BAX стабилитрона ($U_2 = f(I_2)$).
- 9.2.3. На основе схемы, приведенной на рис. 9.1, нарисовать в отчет (рис. 9.2а отчета) расчетную схему цепи со смешанным соединением нелинейного и линейных резисторов. Сопротивления резисторов R_1 и R_2 задаются соответственно по формулам 20 + |10 2N| Ом и 100 + |15 2N| Ом, где N номер варианта.

Таблица 9.1

BAX стабилитрона

U_2 , B	0	39,5	38,8	39,9	39,95	39,98	40	40,5	41	42	45
$I_2 \cdot 10^{-3}$, A	0	0,00913	0,135	4,9	19	36,8	40	332	653,4	1310	3300

9.2.4. Рассчитать графически и аналитически токи в цепи (I_1 , I_2 , I_3 ,) и напряжения U_1 , U_2 при значениях ЭДС источника $E = 1,6U_{ct}$ и $E = 2,0U_{ct}$.

При аналитическом расчете аппроксимировать BAX стабилитрона отрезками прямых и нарисовать в отчет эквивалентную линейную схему цепи (рис. 9.2б отчета). Расчет выполнить на отдельных листах.

Результаты расчета записать в табл. 9.2 отчета.

9.3. Выполнение работы

- 9.3.1. Показать преподавателю результаты подготовки к работе.
- 9.3.2. «Собрать» схему (рис. 9.1). Внутреннее сопротивление амперметра (типа «DC») выбрать 1 мОм.

9.3.3. Выбрать стабилитрон. Для этого двойным нажатием на клавишу «мыши» на изображении стабилитрона открыть окно его параметров. В окне *Library* выбрать *general*, а в окне *Model* - *GLL*4935. В окне *Model* нажать на клавишу *Edit* и установить напряжение стабилизации (*Zener test voltage*) $U_{\text{ст.}}$ =40 В, сопротивление стабилитрона (*Ohmik ristance*) установить равным R = 1,5 Ом.

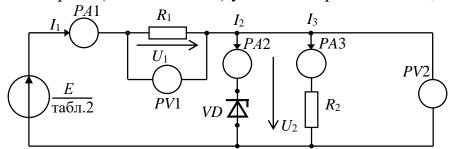


Рис. 9.1. Схема для экспериментального исследования цепи

9.3.4. Поочередно устанавливая значения ЭДС источника $1,2U_{\rm ct},~1,4U_{\rm ct},~1,6U_{\rm ct},~1,8U_{\rm ct},~2U_{\rm ct}$ измерить токи в ветвях цепи и напряжения на резисторах.

Результаты записать в табл. 9.2 отчета.

9.4. Отчет по лабораторной работе №9

ИССЛЕДОВАНИЕ НЕЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

9.4.1. Содержание отчета

- 9.4.1. Расчетные схемы цепей.
- 9.4.2. Результаты графического расчета нелинейной цепи постоянного тока
- 9.4.3. Таблица результатов графического и аналитического расчёта цепи и результатов измерения» параметров цепи.
- 9.4.4. Графики зависимости напряжений на резисторах R_1 и R_2 от напряжения на входе цепи.
 - 9.4.5. Записать выводы о характере полученных кривых.

9.4.2. Результаты исследования нелинейной электрической цепи постоянного тока

Отчет по лабораторной работе №9

студента	гр. №	· · · · · · · · · · · · · · · · · · ·							
студентагр. № Задание									

а) нелинейная схема цепи

б) линейная схема цепи

Рис. 9.2. Расчетные схемы цепи

Результаты расчетов и измерений

<i>E</i> , B	I_1 , A		I_2 , A		<i>I</i> ₃ , A		U_1 , B		U_2 , B	
E, \mathbf{D}	рассч.	изм.	рассч.	изм.	рассч.	изм.	рассч.	изм.	рассч.	изм.
$1,2U_{\mathrm{cr}}$										
$1,4U_{\mathrm{cr}}$										
$1,6U_{\mathrm{c}_{\mathrm{T}}}$										
1,00 ст										
$1,8U_{\mathrm{cr}}$										
2011						_				
$2,0U_{\mathrm{cr}}$										

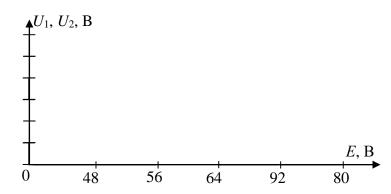
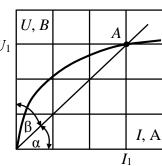


Рис. 9.3. Графики зависимости $U_1,\,U_2$ от E

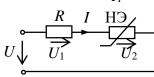
Выводы

Выполнил: Проверил:

Контрольные вопросы

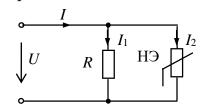

1. Укажите выражение для определения статического сопротивления нелинейного элемента в точке A:

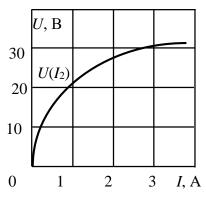
1)
$$R_{_{\rm II}} = \frac{dU_{_1}}{dI_{_1}}$$
 2) $R_{_{\rm II}} = \frac{U_{_1}}{I_{_1}} = \frac{m_{_{\rm u}}}{m_{_{\rm i}}} tg\alpha$ 3) $R_{_{\rm II}} = \frac{U_{_1}}{I_{_1}} = \frac{m_{_{\rm u}}}{m_{_{\rm i}}} tg\beta$


4)
$$R_{_{\rm II}} = \frac{U_{_{1}}}{I_{_{1}}} = \frac{m_{_{\rm u}}}{m_{_{\rm i}}} tg(90^{\circ} - \alpha)$$
 5) $R_{_{\rm II}} = \frac{U_{_{1}}}{I_{_{1}}} = \frac{m_{_{\rm u}}}{m_{_{\rm i}}} tg(180^{\circ} - \alpha)$

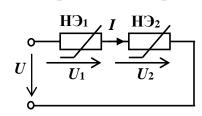
2. Укажите выражение для определения динамического сопротивления нелинейного элемента в точке A:

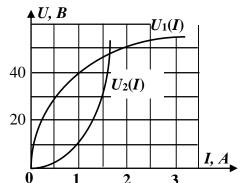
1)
$$R_{_{\rm II}} = \frac{dU_{_{1}}}{dI_{_{1}}}$$
 2) $R_{_{\rm II}} = \frac{U_{_{1}}}{I_{_{1}}} = \frac{m_{_{\rm u}}}{m_{_{\rm i}}} tg\alpha$ 3) $R_{_{\rm II}} = \frac{U_{_{1}}}{I_{_{1}}} = \frac{m_{_{\rm u}}}{m_{_{\rm i}}} tg\beta$




3. Дано: U = 100 В; R = 10 Ом. ВАХ нелинейного элемента аппроксимирована функцией $U_2 = f(I) = 0.5I^2$. Определить ток I.

4. Дано: $U_2 = 20$ В; R = 5 Ом. ВАХ нелинейного элемента аппроксимирована функцией $U_2 = f(I) = 0,5I^2$. Определить напряжение U.


5. В схеме цепи с параллельным соединением линейного и нелинейного резистора ток I=2 A, R=10 Ом и BAX нелинейного элемента. Определить напряжение источника и токи I_1 и I_2 .



6. Назовите методы аппроксимации ВАХ нелинейных резисторов.

7. Напряжение на входе цепи $U = 30 \, B$. ВАХ нелинейных элементов заданы графически. Определить напряжение U_1 $\blacktriangle U, B$

Лабораторная работа №10 ИССЛЕДОВАНИЕ НЕЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА (цепь зарядки аккумулятора)

10.1. Задание

- 10.1.1. Исследовать процесс зарядки аккумулятора от однополупериодного выпрямителя.
- 10.1.2. Рассчитать графически и аналитически цепь при последовательном соединении источника синусоидальной ЭДС $e(\omega t)$, резистора R, нелинейного элемента и источника постоянного напряжения E_0 (аккумулятора).
 - 10.1.3. Экспериментально исследовать процесс зарядки аккумулятора.

10.2. Подготовка к работе

- 10.2.1. В качестве нелинейного элемента на занятии используется полупроводниковый выпрямительный диод. Основными параметрами диода являются прямое и обратное напряжения, максимальный и средний выпрямленные токи, прямое и обратное сопротивления и др.
 - 10.2.2. Записать в отчёт задание.
- 10.2.3. На основе схемы, представленной на рис. 10.1, изобразить в отчете расчетную схему (рис. 10.2 отчета).
- 10.2.4. Действующее значение синусоидальной ЭДС $e(\omega t)$ с частотой $f=50\Gamma$ ц принять равным $E=1+1\cdot N$ В. ЭДС источника постоянного напряжения (остаточное напряжение аккумулятора) $E_0=1+0.2N$ В, где N номер вашего варианта. Сопротивление резистора R=10 Ом. ВАХ диода считать идеальной, прямое напряжение на диоде $U_{\rm пр.}=0.75$ В.

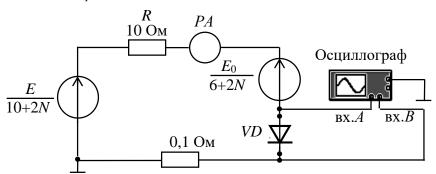


Рис. 10.1. Схема для экспериментального исследования цепи

- 10.2.5. Построить график мгновенного тока $i(\omega t)$ на листе миллиметровой бумаги формата A4 и графически определить максимальное значение тока $I_{\rm m}$ и максимальное обратное напряжение на диоде $U_{\rm m.oбp.}$ Результаты записать в табл. 10.1 отчета.
- 10.2.6. Аналитически определить среднее значение выпрямленного тока (среднее значение тока за период $I^{\text{T}}_{\text{ср}}$). Результаты записать в табл. 10.1 отчета.

10.3. Выполнение работы

10.3.1. Показать преподавателю результаты подготовки к работе.

- 10.3.2. На экране компьютера собрать цепь (рис. 10.1). Выбрать нелинейный элемент (диод). Для этого двойным нажатием на клавишу «мыши» на изображении диода открыть окно его параметров. В окне *Library* выбрать *default*, а в окне *Model ideal*.
- 10.3.3. Выбрать действующее значение напряжения источника синусоидального напряжения, а также ЭДС источника постоянного напряжения E_0 в соответствии со своим вариантом. Сопротивление амперметра (типа «DC») выбрать равным 1 мОм и включить цепь.
- 10.3.4. На вход «А» осциллографа подается напряжение на диоде, на «В» напряжение $U_{0,1}$ с сопротивления 0,1 Ом, численно равное току в цепи $I = \frac{U_{0,1}}{0.1}$.
- 10.3.5. Коэффициент отклонения осциллографа по горизонтали установить таким, чтобы на его экране были видны два-три периода напряжения и тока. Зарисовать осциллограммы тока и напряжения на диоде (рис. 10.2 отчета).
- 10.3.6. По осциллограммам напряжения и тока определить амплитуду тока $I_{\rm m}$ и максимальное обратное напряжение на диоде $U_{\rm m.oбp.}$ Значения этих параметров записать в табл. 10.1 отчета.
 - 10.3.7. Записать показание амперметра в табл. 10.1 отчета.

10.4. Отчет по лабораторной работе №10 ИССЛЕДОВАНИЕ НЕЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА

10.4.1. Содержание отчета

- 10.4.1. Результаты графического расчета цепи с определением максимального тока $I_{\rm m}$ и обратного напряжения на диоде $U_{\rm m.oбp}$ Результаты записать в табл. 10.2 отчета.
- 10.4.2. Расчет и результаты аналитического расчета среднего значения выпрямленного тока $I^{\mathsf{T}}_{\mathsf{cp}}$. Результаты записать в табл. 10.1 отчета.
 - 10.4.3. Осциллограммы тока и напряжения на диоде.
- 10.4.4. Экспериментально полученные значения $I_{\rm m},\ U_{\rm m.o6p}$. и $I^{\rm T}_{\rm cp}$ (показания амперметра)
- 10.4.5. Выводы по результатам сравнения результатов расчёта и экспериментов.

10.4.2. Результаты исследования нелинейной электрической цепи переменного тока Отчет по лабораторной работе №10 Задание

1		
1		

Рис. 10.2. Расчетная схема цепи

Результаты расчетов и измерений

Em, B	E_0 , B	$I_{ m m},$	A	$I_{\scriptscriptstyle{\mathrm{cp}}}^{\scriptscriptstyle{\mathrm{T}}}$,	A	<i>U</i> _{т.обр,} В		
Задано	Задано	Определить графически	Измерить	Рассчитать аналитически	Измерить	Определить графически	Измерить	

Графический расчет цепи (выполняется на миллиметровой бумаге формата А4)

Аналитический расчет цепи (выполняется на отдельных листах)

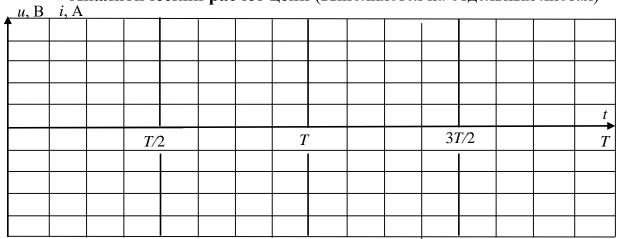
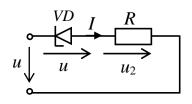
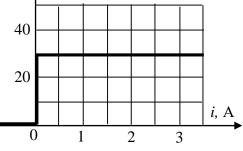


Рис. 10.2. Осциллограммы напряжения и тока


Выводы:


Выполнил:

Проверил:

Контрольные вопросы

Построить график тока в цепи i = f(t).

2. Напряжение источника $u = 30\sin(314t + 30^{\circ})$ В. R = 10 Ом. ВАХ диода $u_1 = f(i)$ считать идеальной.

Построить график зависимости $u_2 = f(t)$.

3. Напряжение источника $u = 40 \sin(314t + 90^\circ)$ В, R = 10 Ом. ВАХ диода $u_1 = f(i)$ считать идеальной.

Построить графики зависимости i = f(t), $u_2 = f(t)$.

ДВУХПОЛЮСНИКИ И ЧЕТЫРЕХПОЛЮСНИКИ

Лабораторная работа №11

ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТОВ ИССЛЕДОВАНИЯ КАК ДВУХПОЛЮСНИКОВ (на примере конструктивов, электродных систем, почвенных и биологических объектов)

11.1. Аналитические исследования

В прикладном значении для растительных объектов (РО) и почвы используются следующие параметры из электрических характеристик веществ (γ , ρ , ε , μ , δ или tg_{ε}): электрическая проводимость γ , диэлектрическая проницаемость ε , диэлектрические потери δ или tg_{ε} , электрическая прочность E, а под электрическими свойствами РО понимают совокупность параметров, характеризующих поведение биоматериалов в электрической составляющей электромагнитного поля (ЭМП). Пассивные электрические свойства РО и почвы характеризуются полным сопротивлением (импедансом) Z или комплексной проводимостью (иммитансом) Y. Величина иммитанса определяется емкостной +iB и активной Gпроводимостью с соответствующей индуктивностью тканей и почвы. В РО активная составляющая электропроводности на низких частотах обусловлена в основном количеством и электролитным составом межклеточной жидкости, а на высоких частотах дополнительный вклад в нее вносит электропроводность клеток. Резистивное сопротивление клетки включено последовательно с емкостью клеточной мембраны, поэтому наблюдается явление частотной дисперсии электропроводности РО.

Обладая диэлектрическими свойствами и малой толщиной [12], клеточные (бислойные липидные) мембраны характеризуются высокой удельной емкостью. Большая емкость мембран, следовательно, и емкостные свойства РО обусловлены поляризационной способностью мембран, зависящей от ее относительной диэлектрической проницаемости. В области низких частот импеданс РО определяется в основном их резистивными свойствами (проводящие ткани), средних и резистивными и емкостными свойствами (паренхиматозные ткани), высоких емкостным характером (мембраны, липиды). На высоких частотах выключаются механизмы поляризации с замедлением времени релаксации, поэтому с повышением частоты емкость РО должна уменьшаться, как и при повышении диэлектрической проницаемости. Замедленные механизмы поляризации в этой области частот могут приводить к значительным диэлектрическим потерям в тканях нагреванию. Это является доказательством того, что живой РО, в т.ч. и клетку можно представить в виде контура RC, причем C (мембрана) определяется свободно радикальными реакциями и системой антиоксидантной защиты, а *R* - ферментативным окислением.

Известно, что вектор электрической индукции \dot{D} , называемый электрическим смещением, является суммой двух векторов различной природы: напряженности электрического поля \dot{E} и поляризации \dot{P} . Последний определяет электрическое состояние вещества, в нашем случае РО и почвы в этом поле. В системе Гаусса $D=E+4\pi P$ (4π - постоянный коэффициент), в системе СИ $D=\varepsilon_0 E+P$ (ε_0 -

электрическая постоянная, или диэлектрическая проницаемость вакуума). Вектор P представляет собой электрический дипольный момент единицы объёма ткани и почвы в поле E, т.е. сумму электрических дипольных моментов p_i отдельных молекул внутри малого объёма ΔV , деленную на величину этого объёма $P = \sum p_i/\Delta V$.

В изотропном веществе, не обладающем сегнетоэлектрическими свойствами, при слабых ЭМП вектор P прямо пропорционален E. В системе Гаусса $P=\chi_e E$, где χ_e - безразмерная величина, называемая коэффициентом поляризации или диэлектрической восприимчивостью. Именно она характеризует электрические свойства РО и почвы. Подставляя последнее выражение в $D=E+4\pi P$, получают $D=(1+4\pi\chi_e)E=\varepsilon E$. Величина $\varepsilon=1+4\pi\chi_e$, также характеризующая электрические свойства вещества, называется диэлектрической проницаемостью. В системе СИ $P=\chi_e\varepsilon_0 E$ и, соответственно, $D=\varepsilon_0\varepsilon E$, $\varepsilon=1+\chi_e$.

Вектор напряженности магнитного поля \dot{H} является разностью двух векторов различной природы: магнитной индукции \dot{B} и намагниченности \dot{I} . Вектор B представляет собой среднее значение суммарной напряжённости микроскопических магнитных полей, созданных отдельными электронами и другими элементарными частицами. В системе Гаусса $H=B-4\pi I$ или $B=H+4\pi I$. В нашем случае намагниченность представляет собой магнитный момент единицы объёма и характеризует магнитное состояние PO и почвы. В изотропной среде при слабых полях намагниченность прямо пропорциональна H, к примеру, $I=\chi_m H$, где χ_m магнитная восприимчивость, характеризующая магнитные свойства PO. Подставляя $I=\chi_m H$ в $B=H+4\pi I$, получают $B=(1+4\pi\chi_m)H=\mu H$. Величина $\mu=1+4\pi\chi_m$, также характеризующая магнитные свойства PO, называется магнитной проницаемостью. В системе СИ $B=\mu_0 H+I$, $I=\mu_0 \chi_m H$, $B=\mu_0 \mu H$, $\mu=1+\chi_m$ (μ_0 - магнитная постоянная, или магнитная проницаемость вакуума).

При определении электрических параметров РО и почвы, анализе работы и проектировании электротехнических и электронных систем необходимо знать обобщенные параметры отдельных устройств или фрагментов сложных систем относительно каких-либо двух выводов (полюсов). В этих случаях устройство или фрагмент с двумя выделенными выводами (полюсами) представляют двух-полюсником. Пассивный двухполюсник не содержит источников энергии и в цепях синусоидального тока электротехнических и электронных систем полностью характеризуется своим комплексным входным сопротивлением $Z_{\rm BX}$ или входной проводимостью $Y_{\rm BX}$ (рис. 11.1).

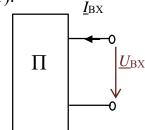


Рис. 11.1. РО и почва как пассивный двухполюсник

$$\underline{Z}_{\rm BX} = \frac{\underline{U}_{\rm BX}}{\underline{I}_{\rm BX}} = R + jX\;;\;\;\underline{Y}_{\rm BX} = \frac{1}{\underline{Z}_{\rm BX}} = \frac{\underline{I}_{\rm BX}}{\underline{U}_{\rm BX}} = G - jB.$$

Любой пассивный двухполюсник может быть представлен эквивалентной схемой из двух элементов - активного и реактивного, соединенных последовательно (рис. 11.2a) или параллельно (рис. 11.2б).

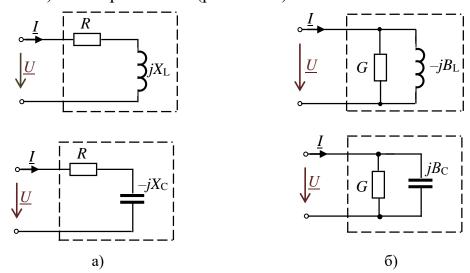


Рис. 11.2. Эквивалентные схемы пассивных двухполюсников

Для схем двухполюсника с элементами RL комплексное входное сопротивление

$$\underline{Z}_{\rm BX} = R_{\rm BX} + j\omega L = Z_{\rm BX} \, {\rm e}^{{\rm j}\phi}$$
, где $Z_{\rm BX} = \sqrt{R^2 + (\omega L)^2} = \sqrt{R^2 + X_{\rm L}^2}$, $\phi = {\rm arctg} \, \frac{X_{\rm L}}{R}$.

Комплексная входная проводимость этого же двухполюсника

$$\underline{Y}_{\mathrm{BX}} = \frac{1}{\underline{Z}_{\mathrm{BX}}} = \frac{1}{Z_{\mathrm{BX}}} e^{\mathrm{j}\varphi} = Y_{\mathrm{BX}} e^{-\mathrm{j}\varphi} = Y_{\mathrm{BX}} \cos(-\varphi) + jY_{\mathrm{BX}} \sin(-\varphi) = G - jB_{\mathrm{L}}.$$

Для схем двухполюсника с элементами *RC*

$$\underline{Z}_{\rm BX} = R - j X_{\rm C} = Z_{\rm BX} \, {\rm e}^{{\rm j}\phi}, \quad {\rm где} \, \, Z_{\rm BX} = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2} = \sqrt{R^2 + X_{\rm C}^2} \, , \, \, \phi = {\rm arctg} \, \frac{-X_{\rm C}}{R};$$

$$\underline{Y}_{\rm BX} = \frac{1}{\underline{Z}_{\rm BX}} = \frac{1}{Z_{\rm BX}} = \frac{1}{Z_{\rm BX}} \, {\rm e}^{{\rm j}\phi} = Y_{\rm BX} \, {\rm e}^{-{\rm j}\phi} = Y_{\rm BX} \cos \phi + j Y_{\rm BX} \sin \phi = G + j B_{\rm C},$$

где
$$G = Y\cos\varphi$$
, $B_{\rm C} = Y\sin\varphi$, $Y = \sqrt{G^2 + B_{\rm C}^2}$.

Проводимости G, B и сопротивления R, X связаны соотношениями:

$$G = \frac{R}{R^2 + X^2}, B = \frac{X}{R^2 + X^2}; R = \frac{G}{G^2 + B^2}, X = \frac{B}{G^2 + B^2}.$$

11.2. Оборудование, приборы, приспособления и материалы для экспериментальных исследований

Параметры эквивалентных схем РО и почвы как двухполюсника могут быть определены экспериментально по результатам измерений. Для измерения комплексных сопротивлений РО и почвы на различных частотах применяют приборы *RLC* (в соответствии с классификацией приборы обозначаются Е7-хх) - так называемые измерители импеданса или иммитанса Е7-4, Е7-8, Е7-11, Е7-22, МІС-4070D, UT612 и др. В приборах реализованы методы измерения электрических параметров: мостовые и связанный с использованием соотношений закона

Ома на переменном токе. Принцип измерения приборов Е7-хх (рис. 11.3) основан на анализе прохождения тестового сигнала с заданной частотой через измеряемую цепь, обладающую комплексным сопротивлением. Напряжение рабочей частоты с внутреннего генератора подается на измеряемый объект - фиксированный участок РО, измерительную ячейку с почвой. На фиксированном участке измеряется напряжение, ток и фазовый сдвиг между ними. Эти величины используют для расчета электрических параметров РО и почвы.

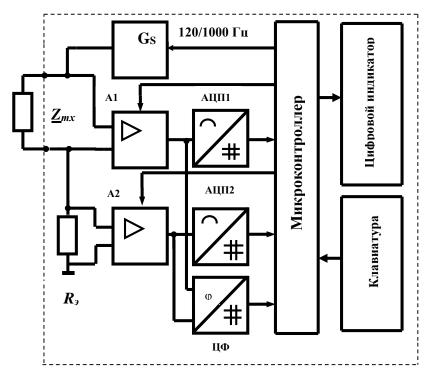


Рис. 11.3. Структурная схема, поясняющая принцип действия измерителя иммитанса

Измеряемое сопротивление \underline{Z}_{mx} (рис. 11.3) подключают к внешним зажимам измерителя, так что вместе с генератором тест-сигнала G_S и известным активным сопротивлением R_9 образуется последовательная цепь. Напряжения \overline{U}_{Zmx} и \overline{U}_{R_9} преобразуются усилителями A1 и A2 с изменяемыми коэффициентами усиления для обеспечения нескольких пределов измерителя. Выходные напряжения усилителей кодируются аналого-цифровыми преобразователями АЦП1 и АЦП2. Одновременно цифровым фазометром (ЦФ) измеряется фазовый сдвиг и результаты обрабатываются микроконтроллером. Управление работой измерителя осуществляли через клавиатуру прибора. Измерения прибором E7-22 электрических параметров PO и почвы проводят на частотах тест-сигнала 120 и 1000 Гц (уровень сигналов 0,5 В).

В экспериментах определение R_{mx} , Z_{mx} , Y_{mx} и других электрических составляющих РО и почвы связано с техническими трудностями обеспечения токоподвода, т.е. контакта почвенного образца и биологической ткани с электродами и подбора материалов электродов. Измерители RLC имеют два способа подключения тестируемых компонентов: с помощью выносного щупа, либо через тестовую площадку. Для реализации режимов измерения электрических свойств РО и почвы используют разнотипную электродную технику (рис. 11.4), включая электрически изолированные друг от друга и закрепленные на расстоянии a=10 мм

стальные иглы диаметром 0,1-0,5 мм (рис. 11.5). Для удобства работы приборы имеют компенсацию начальной емкости измерительных проводов в четырехпроводной схеме и с постоянным смещением, а также интерфейс RS-232 с оптической развязкой, что позволяет построить и эксплуатировать систему импедансного контроля PO и почвы на базе ПЭВМ с использованием среды Lab VIEW в вегетационно-климатической камере (рис. 11.5).

Рис. 11.4. Унитарные схемы и структуры-топологии электродных систем (а: 1 - радиально-кольцевая, 2...11 - пяти, четырех, трех, двухэлектродные, 12 - двухэлектродная с делителем) и наиболее общие формы электродов (б: 1-диск, 2-цилиндр, 3-пластина, 4-сетка, 5-кольцо, 6-пружина, 7-стержень, 8-спиральная проволока, 9-треугольник, 10-игла, 11-конус, 12-тор)

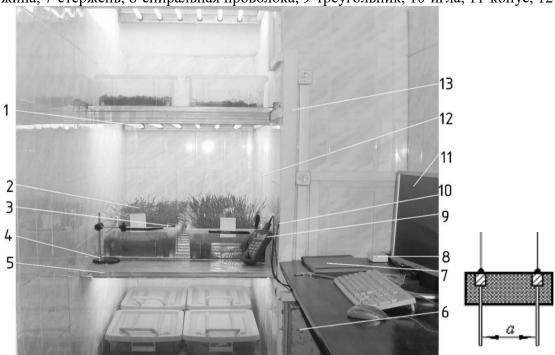


Рис. 11.5. Система импедансного контроля растений и почвы в вегетационно-климатической камере (1 - облучательные лампы секции; 2 - контейнер с почвенно-растительными материалами; 3 - рН-метр; 4 - штатив; 5 - основание секции; 6 - пускорегулирующая аппаратура; 7 - журнал регистраций; 8 - набор электродов; 9 - измеритель иммитанса Е7-22; 10 - датчик температуры воздушной среды; 11- монитор; 12 - термометр; 13 - кабельный канал), справа конструкция измерительных игл-электродов (а - расстояние между иглами)

11.3. Получение информативных параметров и статистическая обработка

В экспериментальных исследованиях электрических свойств растительных тканей используют контактные методы измерения активного электрического сопротивления R_{mx} . В основе контактного метода лежит закон Ома: на фик-

сированном участке растительной ткани, имеющего длину l и площадь поперечного сечения S, определяется R_{mx} . Из соотношения $\rho_m = 1/\gamma_m = R_{mx} \cdot S/l$ устанавливают значения удельного активного сопротивления ткани ρ_m . Для определения R_{mx} применяют:

- измерительную схему вольтметра-амперметра, в которой при помощи вольтметра измеряют падение напряжения на фиксированном участке растительной ткани U_{mx} , амперметра силу тока I. В этом случае значение R_{mx} определяют по закону Ома $R_{mx}=U_{mx}/I$. Точность метода невысокая ($\leq 1\%$), определяется классом точности приборов;
- более точный компенсационный метод: в цепь включают эталонное сопротивление $R_{\mathfrak{I}}$ и с помощью потенциометра измеряют падение напряжения на растительной ткани U_{mx} и эталоне $U_{\mathfrak{I}}$. Расчет по формуле $R_{mx}=U_{mx}R_{\mathfrak{I}}/U_{\mathfrak{I}}$;
- измерительную схему с использованием моста Уитстона или двойного моста Томсона: точность 0,2-0,3%, но необходимо учитывать контактные сопротивления и сопротивление проводов.

Известное отношение $\bar{U}_{Zmx}/\bar{I}_{Zmx}$ определяет импеданс цепи - комплексное сопротивление растительной ткани, представленное последовательным соединением сопротивлений: активного R_S и реактивного $\pm jX_S$, т.е. $\underline{Z}_{mx}=\bar{U}_{Zmx}/\bar{I}_{Zmx}=R_S \pm jX_S$, причем при индуктивном характере цепи реактивное сопротивление $+jX_S$, емкостном $-jX_S$. Модуль комплексного сопротивления Z_{mx} и его составляющие определяются: $Z_{mx}=U_{Zmx}/I_{Zmx}$, $R_S=Z_{mx}cos\varphi$, $X_S=Z_{mx}sin\varphi$. При последовательном соединении R_S и jX_S : $L_S=X_S/2\pi f$, $C_S=1/2\pi fX_S$, $tg\varphi=Q=X_S/R_S=2\pi fL_S/R_S=1/2\pi fC_SR_S$, $tg\delta=D=R_S/X_S=R_S/2\pi fL_S=2\pi fC_SR_S$. Параметры Q и D называются соответственно добротностью и тангенсом угла потерь, по которым косвенно можно судить об активных потерях в цепи. В современных измерителях E_7 -хх тест-сигнал формируется с помощью технологии прямого цифрового синтеза, что дает широкую сетку частот, а Z_{mx} вычисляется через значения тока и напряжения на измеряемом объекте с помощью цифровой обработки.

Отношение $\bar{I}_{Ymx}/\bar{U}_{Ymx}$ определяет иммитанс цепи - полную проводимость ткани, представленную параллельным соединением проводимостей: активной G_P и реактивной $\pm jB_P$, т.е. $\underline{Y}_{mx}=\bar{I}_{Ymx}/\bar{U}_{Ymx}=G_P\pm jB_P$. При индуктивном характере цепи реактивное сопротивление $-jB_P$, емкостном $+jB_P$. Модуль комплексной проводимости Y_{mx} , её составляющие определяются: $Y_{mx}=I_{Ymx}/U_{Ymx}$, $G_P=Y_{mx}cos\,\varphi$, $B_P=Y_{mx}sin\,\varphi$. При параллельном соединении R_P и jX_P : $L_P=1/2\pi jB_P$, $C_P=B_P/2\pi j$, $tg\,\varphi=Q=B_P/G_P=1/2\pi jL_PR_P=2\pi jC_PR_P$, $tg\,\delta=D=G_P/B_P=2\pi jL_P/R_P=1/2\pi jC_PR_P$. Соотношения между параметрами для последовательной и параллельной схем замещения определяются: при индуктивном и емкостном характерах сопротивления $R_S=R_P/(1+Q^2)$; индуктивном $L_S=L_P/(1+1/Q^2)$; емкостном $C_S=C_P(1+1/Q^2)$.

11.4. Численные исследования с использованием программы EWB

В учебно-исследовательской практике экспериментальные работы по исследованию параметров РО и почвы выполняются на учебных лабораторных установках и сопровождаются численными исследованиями путём математического

моделирования с использованием различных программ, включая EWB. При численном моделировании в пакете EWB:

измерительная схема включает двухлучевой осциллограф, ваттметр, вольтметр, амперметр, двухполюсник (рис. 11.6);

исследование РО и почвы проводится по методике, приведенной в табл. 11.1, с внесением результатов измерений в табл. 11.2 и 11.3 отчета;

построение частотной характеристики $Z_{\rm BX}(f)$ и векторных диаграмм схем замещения двухполюсника на трех частотах $0,25F,\ F,\ 10F$ проводится, соответственно, на рис. 11.7 и 11.8 отчета.

Таблица 11.1 Методика исследования электродной системы с РО и почвой при численном моделировании в пакете EWB

№п.п	Последовательность проведения исследования
1	"Собрать" схему исследований с РО и почвенной средой как двухполюсника (рис. 11.6)
2	Выбрать тип двухполюсника в соответствии с объектом исследования. Для этого двойным нажа-
	гием клавиши «мыши» на изображении окна «Sub» открыть окно его элементов. В окне выбрать
	гип двухполюсника $2PLN$, где N номер варианта объекта исследования. Вместо двухполюсника в
	качестве РО можно ввести элементы <i>RC</i>
3	Выбрать частоту источника $f = F(F - 3$ аданная частота двухполюсника $2PLN$). Действующее
	вначение Е источника установить на уровне тест-сигнала 0,5 В
4	Сопротивление амперметра (типа « AC ») выбрать равным 1 мОм. Сопротивление вольтметра
	(типа « AC ») выбрать равным 1 МОм. Осциллограф установить в режим DC и «Авто»
5	Включить схему и измерить напряжение, ток и активную мощность двухполюсника на за-
	данной частоте $f = F$. Результаты измерений записать в таблицу опытов
6	Получить на экране осциллографа изображение синусоидального тока и напряжения, опре-
	делить угол сдвига фаз $oldsymbol{\phi}$ путем измерения временного интервала Δt при помощи электронно-луче-
	вого осциллографа между нулевыми значениями напряжения и тока. Интервал времени Δt целе-
	сообразно измерять с использованием визирных линий, расположенных слева и справа экрана
	осциллографа. При этом красную визирную линию следует установить в начале синусоиды
	напряжения, а синюю в начале синусоиды тока. Угол ϕ вычислить по формуле $\phi = 360^{\circ} \Delta t f$, где
	Δt - временной интервал между началами синусоид напряжения и тока
7	Изменять частоту f источника E от 1 Γ ц до 10 к Γ ц и снять показания амперметра и вольт-
	метра. На разных частотах измерить угол сдвига фаз ф
	Результаты измерений записать в таблицу опытов
	По результатам измерений (таблица опытов) определить комплексное входное сопротивле-
	ние $Z_{\rm BX}$ и комплексную входную проводимость $Y_{\rm BX}$ двухполюсника на частотах $0,25F,F,$
	$10F$. Значения $Z_{\rm BX}$ и $Y_{\rm BX}$ записать в таблицу опытов
	На заданной частоте F для исследуемого двухполюсника определить: полное, активное, ре-
	активное и комплексное входное сопротивление; полную, активную, реактивную и комплекс-
	ную входную проводимость; полную, активную, реактивную и полную мощность двухпо-
	люсника. Результаты записать в таблицу опытов
	Определить и указать на схемах замещения двухполюсника значения параметров элементов
	Рассчитать по эквивалентной схеме замещения с последовательным соединением элементов
	на частоте F комплексное сопротивление двухполюсника, действующий ток, активную, реак-
	гивную и полную мощность. Результаты записать в таблицу опытов. Сравнить результаты рас-
	чета с результатами измерения этих параметров
	По результатам измерений и расчетов построить на рис. 11.7 частотную характеристику
	двухполюсника $Z_{\mathrm{BX}}(f)$
	Построить на рис 11.8 векторные диаграммы схем замещения двухполюсника на трех часто-
	$\max 0.25F, F, 10F$

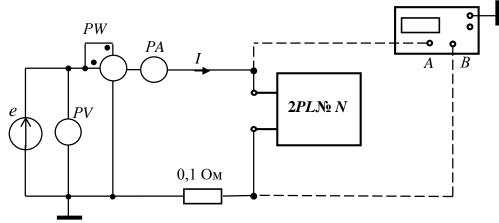


Рис. 11.6. Схема исследования электродной системы с РО и почвой как двухполюсника

Таблица 11.2 Результаты измерений и расчетов параметров схемы замещения на заданной частоте f=F

Результаты из	мерении и	грасчетов пар	раметров	схемы зам	ещения на задан	нои частоте <i>ƒ=F</i>						
	Двух	полюсник тип	a 2 <i>PL</i> №	F = 1	Γ ц, $E = 0.5 B$							
f F		Измер	ено	Определено								
<i>f</i> , Гц	P_W , BT	U, B	I, A	φ, гр.	$\underline{Z}_{\text{BX}}, \text{OM}$	$\underline{Y}_{\text{BX}}$, CM						
0,25 F												
F												
10F												
Определить п	о результа	там измерени	й парамет	ры схем зам	мещения на частот	$ref = F = \Gamma$ ц						
С последователы	ным соеди	нением RC эле	ементов	С паралл	ельным соединен	ием RC элементов						
$Z_{\text{BX}} = O_{\text{M}}, R = O$	M, X = O	ϕ_{M} , $\phi = {}^{o}$, Z_{BX}	= Ом	$Y = C_M, G$	$G = CM, B = CM, \varphi$	$o = {}^{o}, \underline{Y}_{BX} = C_{M}$						
$P=$; $Q=$; $S=$; $R=$ OM, $L=$ ГH, $C=$ МК Φ												
	Результаты расчета параметров схемы замещения											
	$Z_{\scriptscriptstyle \mathrm{BX}}$	= ; $I =$	$:\overline{P}=$: O =	:S=	·						

Таблица 11.3

Результаты измерений и расчетов параметров схемы замещения на частотах 1...10000Гц

J	<u> Результат</u>	ы изме	рении	и расч	етов пај	раметр	ов схем	ы замец	цения н	а часто	Tax 1	<u>тоооот ц</u>
	f, Γų	1	50	100	300	500	700	1000	3000	5000	7000	10000
	<i>U</i> , <i>B</i>											
	I, A											
	Z_{BX} , O_M											
	φ, гр.											
	Z_{BX} , O_M											
	Y_{BX} , C_M											

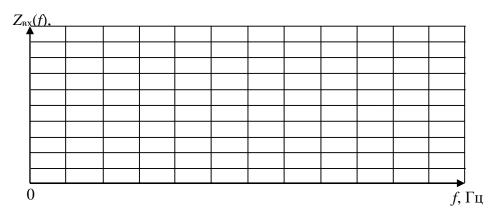


Рис. 11.7. Частотная характеристика двухполюсника

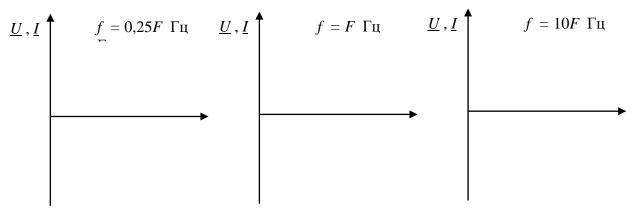


Рис. 11.8. Векторные диаграммы двухполюсника

Вместо двухполюсника в качестве РО можно ввести элементы RC каскадной (цепной, транспортной) схемы замещения растительной ткани стебля (рис. 11.9) или корневой системы (рис. 11.10). В аналитическом обзоре (п.11.1) отмечено, что пассивные электрические свойства РО характеризуются полным сопротивлением \underline{Z} или комплексной проводимостью \underline{Y} . Применение этих показателей разрабатывается в качестве диагностического метода повреждения РО. Моделирование плотности распределения тока по сечению РО (рис. 11.11) проводится путём разбиения биологической ткани на их совокупное множество, связанных между собой ёмкостными составляющими. При этом каждый элементарный участок ткани характеризуется величиной комплексного сопротивления (рис. 11.9), полученной исходя из формы, линейных размеров и относительного положения в совокупности других проводников.

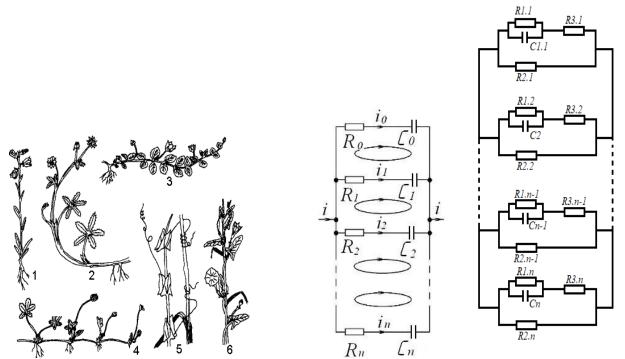


Рис. 11.9. Стебли, справа каскадные схемы замещения участка растительной ткани в электромагнитном поле: $R_0...R_n$ и $C_0...C_n$ - активные и ёмкостные составляющие; $i_0...i_n$ - токи участков при разбиении ткани на локальные зоны; i - ток, протекающий через ткань; U - направление ёмкостных токов в локальных зонах

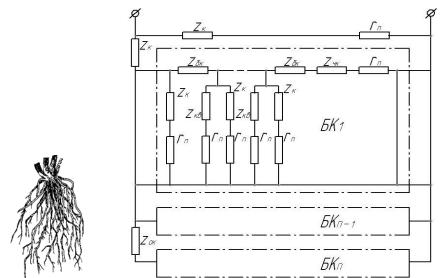


Рис. 11.10. Каскадная схема замещения корневой системы растения: $\mathbf{Z}_{o\kappa}$ и $\mathbf{Z}_{o\kappa}$ - сопротивления внутренних тканей основных и боковых корней; \mathbf{Z}_{κ} , $\mathbf{Z}_{\kappa g}$ и $\mathbf{Z}_{u\kappa}$ - переходные сопротивления между внутренними тканями корней и почвой через кору, корневые волоски и чехлики; \mathbf{r}_n - сопротивления участков почвы; $\mathbf{E}\mathbf{K}_1$... $\mathbf{E}\mathbf{K}_n$ - ответвления боковых корней

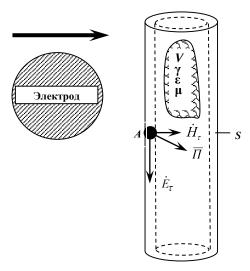


Рис. 11.11. Растительная ткань в ЭМП электрода испытательного прибора, аппарата или установки: \rightarrow — направление движения электрода; \dot{E}_{τ} , \dot{H}_{τ} — касательные составляющие вектора Пойтинга Π на поверхности ткани

Выводы:

Выполнил: Проверил (научный руководитель):

Контрольные вопросы

- 1. Что называют пассивным двухполюсником?
- 2. Изобразите возможные эквивалентные схемы пассивных двухполюсников с последовательным и параллельным соединением элементов.
- 3. Определить сопротивления \underline{Z} , R и X_L схемы замещения двухполюсника с последовательным соединением элементов R и L при заданных значениях показаний приборов:
 - 1) U = 100 B, I = 10 A, P = 500 BT;
 - 2) U = 200 B, I = 10 A, P = 1500 BT.
- 4. Определить проводимости \underline{Y} , G и B схемы замещения двухполюсника с параллельным соединением элементов при заданном значении комплексного сопротивления \underline{Z} схемы с последовательным соединением элементов и изобразить эту схему замещения:
 - 1) $\underline{Z} = 10 + j5$ Om; 2) $\underline{Z} = 10 j10$ Om; 3) $\underline{Z} = 20e^{j30^{\circ}}$ Om.
- 5. Определить сопротивления \underline{Z} , R и X схемы замещения двухполюсника с последовательным соединением элементов при заданном значении комплексной проводимости $\underline{Y} = 0.0012 + j0.006$ См схемы с параллельным соединением этих элементов и изобразить ее схему замещения.
- 6. Определить проводимости \underline{Y} , G и B схемы замещения двухполюсника с параллельным соединением элементов при заданном значении комплексного сопротивления $\underline{Z} = 10$ –j10 Ом схемы с последовательным соединением этих элементов и изобразить ее схему замещения.
- 7. Определить сопротивления \underline{Z} , R и X_C схемы замещения двухполюсника с последовательным соединением элементов R и C при заданных значениях показаний приборов:

$$U = 100 \text{ B}, I = 10 \text{ A}, P = 500 \text{ Bt}.$$

- 8. Определить проводимости \underline{Y} , G и $B_{\rm C}$ схемы замещения двухполюсника с параллельным соединением элементов R и C при заданных значениях показаний приборов: $U=100~{\rm B}$, $I=10~{\rm A}$, $P=500~{\rm Br}$.
- 9. Определить проводимости \underline{Y} , G и B схемы замещения двухполюсника с параллельным соединением элементов при заданном значении комплексного сопротивления $\underline{Z} = 10 + j10$ Ом схемы с последовательным соединением этих элементов и изобразить ее схему замещения.

Лабораторная работа №12

ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТОВ ИССЛЕДОВАНИЯ КАК ЧЕТЫРЕХПОЛЮСНИКОВ (на примере

электропреобразователей, воздушных и кабельных линий)

12.1. Теоретические сведения

четырехполюсником (рис. 12.1).

Пассивные четырехполюсники не содержат источников электрической энергии. Пассивные четырехполюсники как цепи синусоидального тока

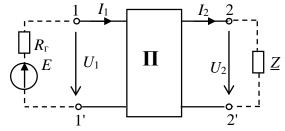


Рис. 12.1. Пассивный четырехполюсник

характеризуются четырьмя комплексными входными и выходными параметрами: $\underline{I}_1, \underline{I}_2, \underline{U}_1, \underline{U}_2$.

Для электротехнических и электронных систем с прямой передачей энергии, т.е. от входа к выходу, взаимосвязь входных и выходных параметров устанавливают уравнения четырехполюсника в форме ||A||:

$$\underline{U}_1 = \underline{AU}_2 + \underline{BI}_2;$$

$$\underline{I}_1 = \underline{CU}_2 + \underline{DI}_2.$$

Зная коэффициенты \underline{A} , \underline{B} , \underline{C} , \underline{D} , с помощью данных уравнений можно рассчитать различные режимы работы четырехполюсника при двух параметров из четырех (\underline{I}_1 , \underline{I}_2 , \underline{U}_1 , \underline{U}_2). Коэффициенты пассивного четырехполюсника связаны между собой соотношением $\underline{AD} - \underline{BC} = 1$.

Характеристическим сопротивлением четырехполюсника называется такое сопротивление \underline{Z}_c , при подключении которого к выходным зажимам 2-2 четырехполюсника на входе образуется такое же сопротивление, т.е. $\underline{Z}_{BX} = \underline{Z}_c$.

Режим работы четырехполюсника, нагруженного на характеристическое сопротивление ($\underline{Z}_H = \underline{Z}_C$), является *режимом согласованной нагрузки*.

Для несимметричного четырехполюсника характеристические сопротивления определяют со стороны входных \underline{Z}_{c1} и выходных \underline{Z}_{c2} зажимов (рис. 12.2).

Если четырехполюсник со стороны зажимов 2-2' нагружен на сопротивление \underline{Z}_{c2} , то его входное сопротивление \underline{Z}_{bx} равно сопротивлению \underline{Z}_{c1} .

Если же со стороны зажимов 1-1' четырехполюсника подключено сопротивление Z_{c1} , то выходное сопротивление Z_{bbix} равно Z_{c2} .

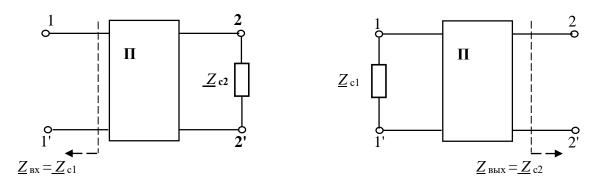


Рис. 12.2. К определению характеристического сопротивления

Тогда из равенства $\underline{Z}_{H} = \underline{Z}_{C2}$ и $\underline{Z}_{BX} = \underline{Z}_{C1}$ следует:

$$\underline{Z}_{\rm c1} = \frac{\underline{U}_{1}}{\underline{I}_{1}} = \frac{\underline{A}\underline{U}_{2} + \underline{B}\underline{I}_{2}}{\underline{C}\underline{U}_{2} + \underline{D}\underline{I}_{2}} = \frac{\underline{A}\underline{Z}_{\rm c2} + \underline{B}}{\underline{C}\underline{Z}_{\rm c2} + \underline{D}}; \ \underline{Z}_{\rm c2} = \frac{\underline{D}\underline{Z}_{\rm c1} + \underline{B}}{\underline{C}\underline{Z}_{\rm c1} + \underline{A}}.$$

Решив совместно эти равенства относительно \underline{Z}_{c1} и \underline{Z}_{c2} , найдем:

$$\underline{Z}_{c1} = \sqrt{\frac{\underline{A}\underline{B}}{\underline{C}\underline{D}}}; \ \underline{Z}_{c2} = \sqrt{\frac{\underline{D}\underline{B}}{\underline{C}\underline{A}}}.$$

Для симметричного четырехполюсника $\underline{A} = \underline{D}$.

Следовательно
$$\underline{Z}_{c} = \frac{\underline{A}\underline{Z}_{c} + \underline{B}}{\underline{C}\underline{Z}_{c} + \underline{D}} = \sqrt{\frac{\underline{B}}{\underline{C}}}.$$

Таким образом, основные характеристики четырехполюсников могут быть выражены через его коэффициенты $A,\,B,\,C,\,D.$

Коэффициенты четырехполюсника на практике могут быть определены экспериментально в результате проведения трех опытов: опыта холостого хода (XX) со стороны выходных полюсов при подключении источника электрической энергии ко входу (прямая передача, рис. 12.3а), опыта короткого замыкания (КЗ) при прямой передаче (рис. 12.3б) и опыта КЗ со стороны входных полюсов (обратная передача, рис. 12.3в).

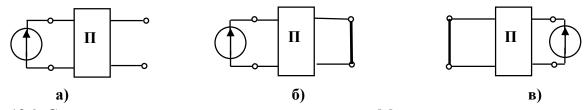
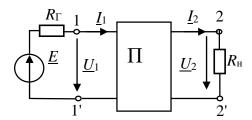


Рис. 12.3. Схемы экспериментального определения коэффициентов четырехполюсников


Передаточной функцией четырехполюсника называется отношение комплексного параметра на выходе (тока \underline{I}_2 или напряжения \underline{U}_2) к комплексной величине параметра на входе (\underline{E} или \underline{U}_2 , рис. 12.4):

$$\underline{\underline{K}}_{1}(j\omega) = \underline{\underline{\underline{I}}_{2}} = \underline{\underline{\underline{A}}R_{_{\mathrm{H}}} + \underline{\underline{B}} + \underline{\underline{C}}R_{_{\mathrm{H}}}R_{_{\Gamma}} + \underline{\underline{D}}R_{_{\Gamma}}}; \qquad \underline{\underline{K}}_{2}(j\omega) = \underline{\underline{\underline{U}}_{2}} = \underline{\underline{\underline{A}}R_{_{\mathrm{H}}} + \underline{\underline{B}} + \underline{\underline{C}}R_{_{\mathrm{H}}}R_{_{\Gamma}} + \underline{\underline{D}}R_{_{\Gamma}}}.$$

Исходя из условия, что максимально

возможная мощность, отдаваемая генератором

$$P_{{\mbox{\tiny MAKC}}.\Gamma} = \frac{E^2}{4R_{\Gamma}}$$
, а максимальная мощность в

нагрузке всегда $P_{\scriptscriptstyle \rm H} < P_{\scriptscriptstyle \rm MAKC,\Gamma}$,

Рис. 12.4. **К определению передаточной** функции четырехполюсника

т.е. $\frac{U_{\rm 2_{MAKC}}^2}{R_{_{\rm H}}} < \frac{E^2}{4R_{_{\Gamma}}}$, максимально возможное напряжение на нагрузке будет равно

$$U_{\rm 2MAKC} = \frac{R_2}{2} \sqrt{\frac{R_{\rm H}}{R_{\rm \Gamma}}}.$$

Максимум модуля передаточной функции $\left|K_2(j\omega)\right|_{\text{макс}} = \frac{U_{2\text{макс}}}{E} = \frac{1}{2}\sqrt{\frac{R_{\text{H}}}{R_{\Gamma}}}.$

Нормированной передаточной функцией является отношение

$$K_{2\mathrm{H}}(j\omega) = \frac{K_{2}(j\omega)}{\left|K_{2}(j\omega)\right|_{\mathrm{MAKC}}} = \frac{2\sqrt{R_{\mathrm{H}}R_{\Gamma}}}{\underline{A}R_{\mathrm{H}} + \underline{B} + \underline{C}R_{\mathrm{H}}R_{\Gamma} + \underline{D}R_{\Gamma}} = \frac{2\underline{U}_{2}}{\underline{E}} \cdot \sqrt{\frac{R_{\Gamma}}{R_{\mathrm{H}}}}.$$

Полученное выражение используется при определении нормированных значений АЧХ и ФЧХ.

На основании системы уравнений четырехполюсника любая схема соединения его элементов может быть заменена эквивалентной схемой (схемой замещения) из трех комплексных сопротивлений — Т-образной или П-образной.

Для Т-образной схемы замещения (рис. 12.5) уравнения, связывающие ее параметры с коэффициентами \underline{A} , \underline{B} , \underline{C} и \underline{D} , имеют вид:

$$\underline{A} = 1 + \underline{Z}_1/\underline{Z}_0; \underline{B} = \underline{Z}_1 + \underline{Z}_2 + \underline{Z}_1\underline{Z}_2/\underline{Z}_0; \underline{C}_0 = 1/\underline{Z}_0; \underline{D} = 1 + \underline{Z}_2\underline{Z}_0.$$

Если коэффициенты \underline{A} , \underline{C} и \underline{D} известны, то можно найти:

$$\underline{Z}_0 = \frac{1}{C}; \ \underline{Z}_1 = \underline{Z}_0(\underline{A} - 1) = \frac{\underline{A} - 1}{C}; \ \underline{Z}_2 = \underline{Z}_0(\underline{D} - 1) = \frac{\underline{D} - 1}{C}.$$

Для симметричного четырехполюсника $\underline{A} = \underline{D}$ и, следовательно, $\underline{Z}_1 = \underline{Z}_2$.

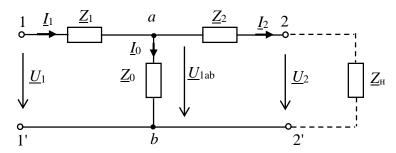


Рис. 12.5. Т-образная схема замещения четырехполюсника

Формулы для параметров П-образной схемы четырехполюсника получим с помощью формулы преобразования трехлучевой звезды в эквивалентный треугольник (рис. 12.6):

$$\underline{Z}_{12} = \underline{Z}_1 + \underline{Z}_2 + \frac{\underline{Z}_1\underline{Z}_2}{\underline{Z}_0}; \underline{Z}_{20} = \underline{Z}_2 + \underline{Z}_0 + \frac{\underline{Z}_2\underline{Z}_0}{\underline{Z}_1}; \underline{Z}_{10} = \underline{Z}_0 + \underline{Z}_1 + \frac{\underline{Z}_0\underline{Z}_2}{\underline{Z}_2}.$$

Рис. 12.6. П-образная схема замещения четырехполюсника

Выразив значения \underline{Z}_1 , \underline{Z}_2 и \underline{Z}_0 через коэффициенты четырехполюсника, получим: $\underline{Z}_{12} = \underline{B}$; $\underline{Z}_{20} = \underline{B}/(\underline{A}-1)$; $\underline{Z}_{10} = \underline{B}/(\underline{D}-1)$.

В симметричном четырехполюснике $\underline{Z}_{20} = \underline{Z}_{10}$.

12.2. Задание

- 12.2.1. Экспериментально определить комплексные коэффициенты четырехполюсника уравнения в форме ||A||.
- 12.2.2. Определить параметры эквивалентных схем замещения четырехполюсника. Составить и зарисовать эквивалентные схемы замещения четырехполюсника и определить значения параметров элементов схем (значения R, L, C).
- 12.2.3. Определить характеристические сопротивления \underline{Z}_{c1} и \underline{Z}_{c2} и передаточные функции.
 - 12.2.4. Сделать выводы по результатам исследования четырехполюсника.

12.3. Подготовка к работе

- 12.3.1. Зарисовать в отчет схемы проведения опытов холостого хода и короткого замыкания при питании со стороны входных полюсов и опыт короткого замыкания при питании со стороны выходных полюсов.
- 12.3.2. Привести в отчете расчетные формулы для определения коэффициентов и параметров четырехполюсников по результатам испытаний, формулы расчета сопротивлений схем замещения, формулу характеристического сопротивления.
- 12.3.3. Выбрать тип исследуемого четырехполюсника 4PLN и частоту F в соответсвии с номером N варианта (табл. 12.1). Эти данные записать в табл. 12.2 отчета.

Указание. Исследуемый четырехполюсник (табл. 12.1) и частоту F при выполнении НИР заменить схемой замещения из элементов RLC, VD, VT объекта исследования.

Исходные данные

<i>N</i> вар.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
<i>F</i> , Гц	50	100	150	200	250	300	50	100	150	200	250	300	50	100	150
4PLN	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3
N вар.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
<i>f</i> , кГц	50	100	150	200	250	300	50	100	150	200	250	300	50	100	150
4PLN	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6

12.4. Выполнение работы

- 12.4.1. Показать преподавателю результаты подготовки к работе.
- 12.4.2. «Собрать» схему исследования четырехполюсника (рис. 12.7). Выбрать тип четырехполюсника в соответствии с вашим вариантом. Для этого двойным нажатием клавиши «мыши» на изображении клавиши «Sub» открыть окно его элементов. В окне выбрать тип двухполюсника 4PLN, где N номер вашего варианта.
- 12.4.3. Установить заданную частоту источника F (табл. 12.1). Действующее значение ЭДС источника установить $50-100~\mathrm{B}$.

Осциллограф установить в режим AC и «Авто».

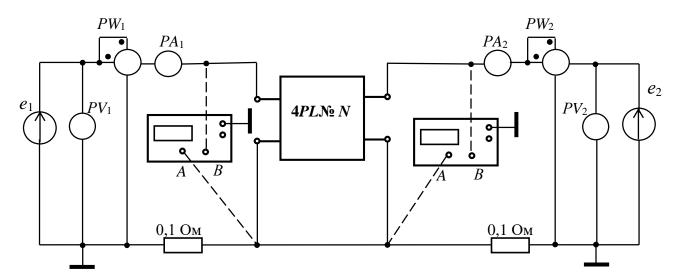


Рис. 12.7. Схема стенда для экспериментального исследования четырехполюсников

- 12.4.4. Провести опыт холостого хода при питании со стороны входных полюсов (1хх) и измерить напряжение $U_{1,xx}$, ток $I_{1,xx}$ и активную мощность $P_{1,xx}$ на заданной частоте F. Результаты измерений записать в табл. 12.2 отчета.
- 12.4.5. Сопротивление амперметра (типа «AC») выбрать равным 1 мОм. Сопротивление вольтметра (типа «AC») выбрать равным 1 МОм. Сопротивление индикатора ваттметра PW (типа «DC») выбрать равным 1 МОм.

Осциллограф установить в режим AC и «Авто».

12.4.6. Получить на экране осциллографа изображение синусоидального тока и напряжения и измерить угол **сдвига фаз** φ_{Ixx} .

Угол ϕ вычислить по формуле $\phi = 360^{\circ} \Delta t f$, где Δt - временной интервал между началами синусоид напряжения и тока (см. указание в предыдущей работе).

- 12.4.7. По показаниям приборов определить комплексное входное сопротивление четырехполюсника $\underline{Z}_{1.xx} = Z_{1.xx} e^{j\phi_{1xx}}$. Результаты измерений и расчетов записать в табл. 12.2 отчета.
- 12.4.8. Провести опыт короткого замыкания при питании со стороны входных полюсов (1кз) и измерить напряжение U_{1,κ_3} , ток I_{1,κ_3} и активную мощность P_{1,κ_3} четырехполюсника на заданной частоте F.

Измерить угол $\phi_{1\kappa_3}$ (п. 12.4.6) и определить комплексное входное сопротивление четырехполюсника $Z_{1.\kappa_3} = Z_{1.\kappa_3} e^{j\phi_{1\kappa_3}}$.

Результаты измерений и расчетов записать в табл. 12.2 отчета.

12.4.9. Провести опыт короткого замыкания при питании со стороны выходных полюсов (2кз) и измерить напряжение U_{2,κ_3} , ток I_{2,κ_3} и активную мощность P_{2,κ_3} . Измерить угол $\phi_{2\kappa_3}$ (п. 12.4.6) и определить комплексное входное сопротивление четырехполюсника $Z_{2,\kappa_3} = Z_{2,\kappa_3} \mathrm{e}^{\mathrm{j}\phi_{2\kappa_3}}$. Результаты измерений и расчетов записать в табл. 12.2 отчета.

12.5. Отчет по лабораторной работе №12

ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТОВ ИССЛЕДОВАНИЯ КАК ЧЕТЫРЕХПОЛЮСНИКОВ (на примере электропреобразователей, воздушных и кабельных линий)

12.5.1. Содержание отчета

- 12.5.1. Зарисовать в отчет схемы опытов холостого хода и короткого замыкания (рис. 12.8, 12.9, 12.10 отчета).
- 12.5.2. По результатам измерений на заданной частоте F (табл. 12.2 отчета) определить коэффициенты четырехполюсника, комплексные сопротивления схем замещения и характеристические сопротивления. Результаты расчета записать в табл. 12.3 отчета.
- 12.5.3. Зарисовать эквивалентные схемы замещения четырехполюсника (рис. 12.11,12.12 отчета). Определить и указать на схемах замещения двухполюсника значения параметров элементов схемы (R, L, C).
- 12.5.4. Рассчитать по эквивалентным схемам замещения комплексное входное сопротивление четырехполюсника, активную и полную мощность в режиме холостого хода при питании со стороны входных полюсов. Результаты записать в табл. 12.3 отчета. Сравнить результаты расчета с результатами измерения этих параметров.
 - 12.5.5. Записать выводы по результатам исследования.

12.5.2. Результаты определения параметров схем замещения пассивных четырехполюсников в цепи синусоидального тока

Рис. 12.8. Оп	ыт холостого х	ода при питани	ии со стороны	входных полю	сов (1хх
			1		
12.9. Опыт	 короткого замь	ыкания при пит	гании со сторо	ны входных п	олюсов (

Рис. 12.10. Опыт короткого замыкания при питании со стороны выходных полюсов (2кз)

Формулы для расчета коэффициентов четырехполюсника, комплексных сопротивлений схем замещения и характеристических сопротивлений.

$$\underline{A} = \pm \sqrt{\frac{\underline{Z}_{1\kappa_3}}{\underline{Z}_{2\kappa_3}}(\underline{Z}_{1\kappa_3} - \underline{Z}_{1\kappa_3})}; \ \underline{B} = \underline{A} \ \underline{Z}_{2\kappa_3}; \ \underline{C} = \underline{A}/\underline{Z}_{1\kappa_3}; \ \underline{D} = \underline{A}(\underline{Z}_{2\kappa_3}/\underline{Z}_{1\kappa_3}).$$

$$\underline{Z}_0 = \frac{1}{\underline{C}}; \ \underline{Z}_1 = \underline{Z}_0 \left(\underline{A} - 1\right) = \frac{\underline{A} - 1}{\underline{C}}; \ \underline{Z}_2 = \underline{Z}_0 \left(\underline{D} - 1\right) = \frac{\underline{D} - 1}{\underline{C}}.$$

$$\underline{Z}_{12} = \frac{\underline{A}\underline{D} - 1}{\underline{C}}; \ \underline{Z}_{20} = \frac{\underline{B}}{A - 1}; \ \underline{Z}_{10} = \frac{\underline{B}}{D - 1}.$$

Результаты измерений и расчетов

	q_{ϵ}	етырехпол	посник типа 4 <i>Р</i>	$PL N_{2}, F = \kappa \Gamma \Pi, E$	= B						
		_	Опыт холоо	стого хода 1хх							
P_{1xx} , BT	$U_{1\mathrm{xx}},\mathrm{B}$	I_{1xx} , A	$Z_{1xx} = \frac{U_{1xx}}{I_{1xx}}$	φ _{1xx}	$\underline{Z}_{1.xx} = Z_{1.xx} e^{j\varphi_{1}xx}$						
Опыт короткого замыкания 1кз											
<i>P</i> _{1кз} , Вт	U_{1 кз, В	<i>I</i> _{1кз} , А	$Z_{1\kappa_3} = \frac{U_{1\kappa_3}}{I_{1\kappa_3}}$	$ \varphi_{1_{K3}} = \operatorname{arc} \cos \frac{P_{1_{K3}}}{U_{1_{K3}}I_{1_{K3}}}$	Ф1кз	$\underline{Z}_{1.\kappa_3} = Z_{1.xx} e^{j\varphi_1 \kappa_3}$					
			Опыт коротко	го замыкания 2кз							
$P_{2\kappa_3}$, BT	$U_{2\kappa_3}$, B	<i>I</i> _{2к3} , A	$Z_{2\kappa3} = \frac{U_{2\kappa3}}{I_{2\kappa3}}$	$ \varphi_{2\kappa 3} = \arccos \frac{P_{2\kappa 3}}{U_{2\kappa 3}I_{2\kappa 3}}$	Ф2к3	$\underline{Z}_{2.\kappa_3} = Z_{2.\kappa_3} e^{j\varphi 2\kappa_3}$					

Таблица 12.3

Параметры четырехполюсника

	Коэффі	ициенты			Проверка условия <u>А D</u> – <u>В C</u> = 1						
<u>A</u>	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								<u>Z</u> 20	$\frac{\underline{Z}_{c1}}{\underline{Z}_{c2}}$	
		Z	$Z_{1xx} =$	$; P_{1xx} =$; S	$u_{1xx} = U_{1xx}$	$I_{1xx} =$				

Расчет коэффициентов четырехполюсника, сопротивлений схем замещения, входного сопротивления Z_{1xx} , активной и полной мощности (выполняется на отдельных листах и прикладывается к отчету).

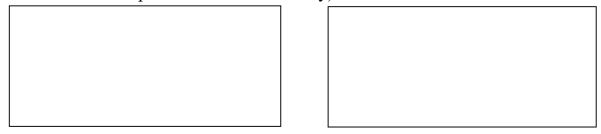
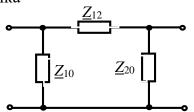


Рис. 12.11. Т-образная схема замещения четырехполюсника

]	

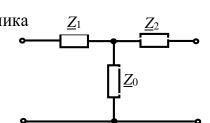
Рис. 12.12. П-образная схема замещения четырехполюсника


Выводы:

Выполнил

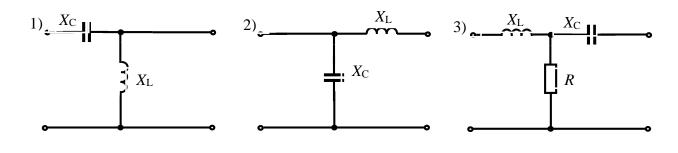
Проверил (научный руководитель)

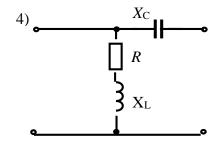
Контрольные вопросы

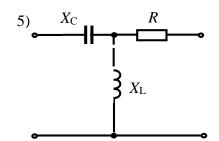

- 1. Определить коэффициенты \underline{A} и \underline{B} четырёхполюсника
- при $\underline{Z}_{10} = j10$ Ом, $\underline{Z}_{20} = -j20$ Ом, $\underline{Z}_{12} = 10$ Ом.

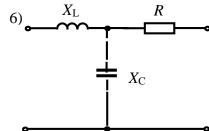
2. По известным значениям коэффициентов четырехполюсника определить параметры эквивалентной П-образной схемы замещения:

$$\underline{A} = 1,58 \angle 18^{\circ}; \underline{B} = 7,07 \angle 45^{\circ} \text{ Om}; \underline{C} = 0,21 \angle -45^{\circ} \text{ Cm}; \underline{D} = 1,58 \angle -18^{\circ}.$$


3. Определить коэффициенты \underline{A} и \underline{B} четырёхполюсника при $\underline{Z}_1=10$ Ом, $\underline{Z}_2=-j20$ Ом, $\underline{Z}_0=j10$ Ом.




4. По известным значениям коэффициентов четырехполюсника определить параметры эквивалентной Т-образной схемы замещения:


$$\underline{A} = 5,66 \angle 45^{\circ}; \underline{B} = 12 \angle 25^{\circ} \text{ Om}; \underline{C} = 0,05 \text{ Cm}; \underline{D} = 5,66 \angle 45^{\circ}.$$

5. Определить коэффициенты \underline{A} и \underline{B} четырёхполюсника при R=10 Ом, $X_{\rm C}=20$ Ом, $X_{\rm L}=40$ Ом.

ТРАНСФОРМАТОРЫ И ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

Лабораторная работа №13

ИССЛЕДОВАНИЕ ОДНОФАЗНОГО ТРАНСФОРМАТОРА

13.1. Задание

- 13.1.1. Изучить устройство, принцип действия и режимы работы однофазного трансформатора.
 - 13.1.2. Определить характеристики однофазного трансформатора.
- 13.1.3. Построить характеристики и векторные диаграммы однофазного трансформатора.
 - 13.1.4. Записать выводы по результатам работы.

13.2. Выполнение работы

- 13.2.1. Для определения основных параметров трансформатора: коэффициента трансформации, потерь мощности, КПД и др. проводят опыты холостого хода и короткого замыкания трансформатора (рис. 13.1 и рис. 13.2), а для получения его характеристик исследуют трансформатор в рабочем режиме (рис. 13.3), подключив к нему резистор.
- 13.2.2. При опыте холостого хода (рис. 13.1) установить на первичной обмотке трансформатора $U_{1\rm H}=220~{\rm B}.$ Результаты опыта записать в табл. 13.1.
- 13.2.3. При опыте короткого замыкания (рис. 13.2) установить на первичной обмотке трансформатора $U_{1K} = 220$ В. Результаты опыта записать в табл. 13.2.
- 13.2.4. При исследовании трансформатора в рабочем режиме (рис. 13.3) установить на его первичной обмотке U_1 =220 В. Результаты исследований и расчетов при изменении нагрузки трансформатора R=25...200 Ом записать в табл. 13.3.
- 13.2.5. Используя данные опытов холостого хода, короткого замыкания и зависимость $P_I = f(I_2)$ определить, как изменяются потребляемая трансформатором из сети мощность P_I , отдаваемая (полезная) мощность P_2 , потери в магнитопроводе $\Delta P_{\rm M}$, потери в обмотках ΔP_0 , а также коэффициент полезного действия η . По результатам табл. 13.3 построить (рис. 13.4) в одной системе координат внешнюю характеристику трансформатора $U_2 = f(I_2)$, зависимости $P_I = f(I_2)$, коэффициента мощности $\cos \varphi$ и КПД $\eta = P_2 \cdot 100\%/P_I$ трансформатора от тока нагрузки I_2 . Потери в магнитопроводе трансформатора $\Delta P_M = P_{IX}$, Вт; потери в обмотках (проводах) трансформатора $\Delta P_0 = \Delta P_{IP} = P_{IK}$, Вт; $n = w_I/w_2$.

13.3. Отчет по лабораторной работе №13 ИССЛЕДОВАНИЕ ОДНОФАЗНОГО ТРАНСФОРМАТОРА 13.3.1. Содержание отчета

- 13.3.1. Схемы включения трансформатора и приборов для опытов холостого хода, короткого замыкания и рабочего режима.
- 13.3.2. Таблицы параметров трансформатора, опытов холостого хода, короткого замыкания и рабочего режима.
- 13.3.3. Графики $U_2 = f(I_2)$, $P_1 = f(I_2)$, коэффициента мощности $\cos \varphi$ и КПД $\eta = P_2 \cdot 100\%/P_1$ трансформатора от тока нагрузки I_2 (в одной системе координат).
 - 13.3.4. Выводы по результатам работы.

13.4. Результаты исследования однофазного трансформатора Отчет по лабораторной работе

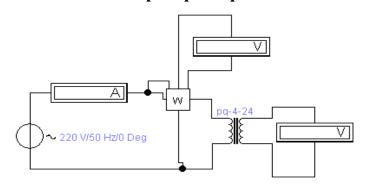


Рис. 13.1. Опыт холостого хода трансформатора

Таблица 13.1

Результаты измерений и расчетов режима холостого хода трансформатора

1 03	yndiaidii	ismepenini	n pac ici	ob penti	Ma Ablocioi	о хода транс	форматој	Ju
	Изме	ерить		Вычислить				
$U_{1 m H}$, B	$U_{2\mathrm{H}}$, B	I_{1X} , A	P_{X} , BT	n ω_{I} , витков ω_{2} , витков $\frac{\Delta P_{\mathrm{M}}}{\mathrm{BT}}$				

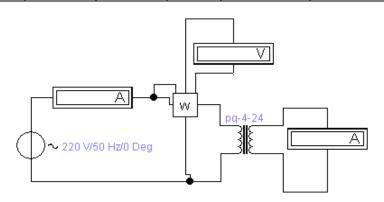


Рис. 13.2. Опыт короткого замыкания трансформатора

Таблица 13.2

Результаты измерений и расчетов режима короткого замыкания трансформатора

	Изме	ерить		Вычислить					
$U_{1\mathrm{K}}$, B	I_{1K} , A	I_{2K} , A	P_{K} , B_{T}	Z_{K} , Om R_{K} , Om X_{K} , Om ΔP_{0} , BT α					

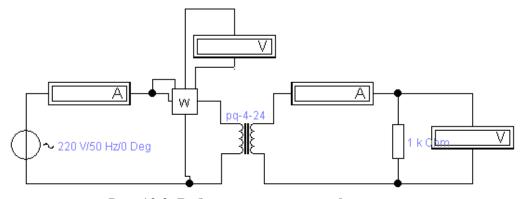


Рис. 13.3. Рабочий режим трансформатора

Результаты исследований и расчетов рабочего режима трансформатора

D. Osa			Измерить	_	Вычислить			
R, Om	U_1 , B	I_1 , A	P_1 , BT	U_2 , B	<i>I</i> ₂ , A	P_2 , BT	$cos \varphi$	η , %
25								
50								
75								
100								
150								
200								

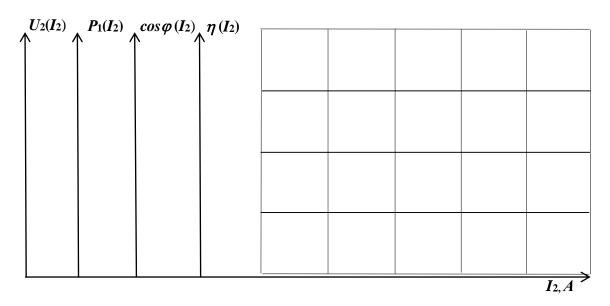


Рис. 13.4. Графики $U_2 = f(I_2)$, $P_1 = f(I_2)$, коэффициента мощности $\cos \varphi$ и КПД $\eta = P_2 \cdot 100\%/P_1$ трансформатора от тока нагрузки I_2

Выводы:

Выполнил Проверил

Контрольные вопросы

- 1. Как устроен и действует однофазный трансформатор?
- 2. Как определить коэффициент трансформации?
- 3. Каковы особенности устройства магнитопровода трансформатора?
- 4. Какие потери мощности в трансформаторе имеют место?
- 5. Почему трансформаторы используют только в электроустановках переменного тока?

Лабораторная работа №14 ИССЛЕДОВАНИЕ ТРЕХФАЗНОГО ТРАНСФОРМАТОРА [14]

14.1. Теоретические сведения

Под многофазной системой понимается совокупность нескольких электрических цепей, в которых действуют электродвижущие силы E переменного тока одной и той же частоты, но сдвинутые друг относительно друга по фазе. Число цепей, входящих в многофазную систему, называют числом её фаз. Наибольшее распространение на практике получили трехфазные связанные системы, между фазами которых имеется электрическая (гальваническая) связь. При таком соединении фазные E_{ϕ} сдвинуты на угол 120^{0} .

Трехфазная система может быть образована двумя способами: соединением фаз звездой, когда концы фаз соединены между собой, а начала фаз свободны и соединением фаз треугольником, когда конец одной фазы соединяется с началом другой, образуя замкнутый треугольный контур. При соединении звездой линейные $I_{\mathcal{I}}$ и фазные токи $I\phi$ одинаковы, потому что для тока, проходящего через фазную обмотку, нет иного пути, кроме линейного провода. Линейные напряжения $U_{\mathcal{I}}$ больше фазных $U\phi$ в $\sqrt{3}$ = 1,73 раз (рис. 14.1).

Рис. 14.1. Соединение обмоток звездой. Векторная диаграмма

При соединении треугольником $U_{\varPi} = U \phi$ потому, что каждые два линейных провода присоединены к началу и концу одной из фазных обмоток (рис. 14.2), а все фазные обмотки одинаковы. Линейные токи $I_{\varPi} = \sqrt{3} \, I \phi$. Мощности в трехфазной цепи не зависят от схемы соединения и определяются выражениями: $S = 3S_{\phi} = 3U_{\phi}I_{\phi} = \sqrt{3}U_{\varPi}I_{\varPi}$ - полная; $P = \sqrt{3}U_{\varPi}I_{\varPi}\cos\varphi$ - активная; $Q = \sqrt{3}U_{\varPi}I_{\varPi}\sin\varphi$ - реактивная, где φ - угол сдвига фаз между напряжением и током.

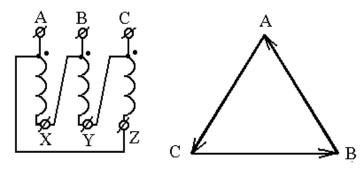


Рис. 14.2. Соединение обмоток треугольником. Векторная диаграмма

Соединение зигзагом (рис. 14.3) применяют, чтобы неравномерную нагрузку вторичных обмоток распределить более равномерно между фазами первичной сети, а также для расщепления фаз при создании многопульсных выпрямителей и других специальных схем. В этом случае вторичная обмотка каждой фазы составляется из двух половин: первая половина расположена на стержне одной фазы, вторая – на стержне другой фазы. Конец полуобмотки, например х₁ соединен с концом у2 и т.д. Начала полуобмоток а2, в2 и с2 соединены и образуют нейтраль. К началам а₁, в₁, с₁ присоединяют линейные провода вторичной сети (нагрузку). Сдвиг фаз между E первичной и вторичной цепей принято выражать группой соединения трехфазного трансформатора. При определении группы соединения обмоток трансформатора пользуются циферблатом часов. Линейный вектор обмотки высшего напряжения (ВН) соответствует минутной стрелке циферблата часов и устанавливается на цифру 12, часовая стрелка соответствует линейному вектору E обмотки низшего напряжения (HH) и ее поворот по отношению к обмотке BH определяет номер группы и угол поворота $\alpha = n*30^{\circ}$, где n– номер группы.

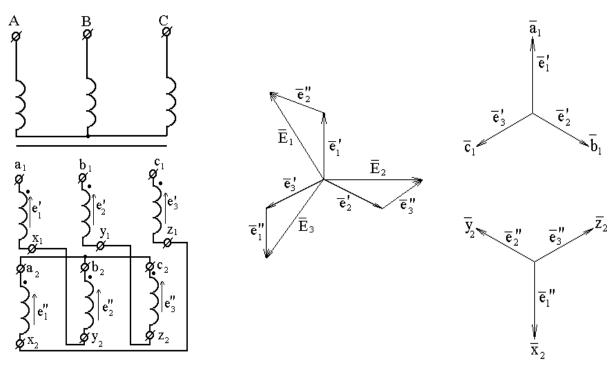


Рис. 14.3. Соединение обмоток зигзагом. Векторная диаграмма

Определим группу соединения обмоток трансформатора для соединения «звезда-звезда» (рис. 14.4а). Для построения диаграммы условно объединяем одноименные выводы обмоток первичной (С) и вторичной (с) цепей трансформатора. Из построения видно, что номер группы соединения равен п =180°/30°=6. Определим группу соединения обмоток трансформатора для соединения «звезда-треугольник» (рис. 14.4б). Для построения диаграммы условно объединяем одноименные выводы обмоток первичной (А) и вторичной (а) цепей трансформатора. Из построения видно, что номер группы соединения равен $n = \varphi/30^\circ = 30^\circ/30^\circ = 1$.

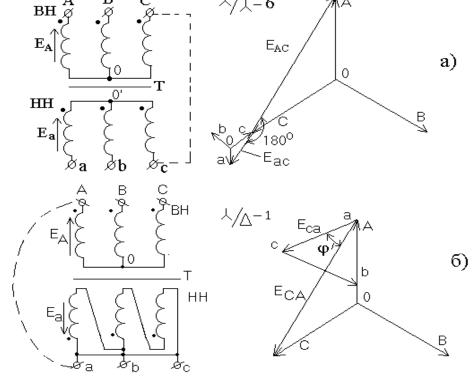


Рис. 14.4. Группы соединения трехфазного трансформатора

14.2. Задание

- 14.2.1. Изучить устройство, принцип действия, режимы работы трехфазного трансформатора.
- 14.2.2. Изучить особенности трехфазного трансформатора при соединении обмоток звездой, треугольником и зигзагом.
- 14.2.3. Построить характеристики и векторные диаграммы трехфазного трансформатора.
 - 14.2.4. Записать выводы по результатам работы.

14.3. Выполнение работы

- 14.3.1. Собрать цепь в соответствии с моделью трехфазного трансформатора для включения обмоток звездой или треугольником (рис. 14.5), содержащей;
- первичный источник переменного трехфазного напряжения U_A, U_B, U_C (UA, UB, UC);
- исследуемый трехфазный трансформатор, состоящий из трех однофазных Т1, Т2, Т3, вторичные обмотки которого могут соединяться звездой или треугольником переключателями S1, S2, S3;
- нагрузочные резисторы R_H (RH), коммутируемые переключателями S4, S5, S6 в звезду или треугольник (в каждой фазе резисторы R_H одинаковые);
- вольтметры PV2 и PVbc (U2 и Ubc) служат для измерения фазного и линейного напряжений на вторичной стороне трансформатора;
- амперметры PA1, PA2 и PAL (I1, I2 и IL), соответственно, измеряют фазный ток первичной обмотки, вторичной и линейный ток;
- осциллограф предназначен для измерения угла сдвига фаз между напряжением и током.

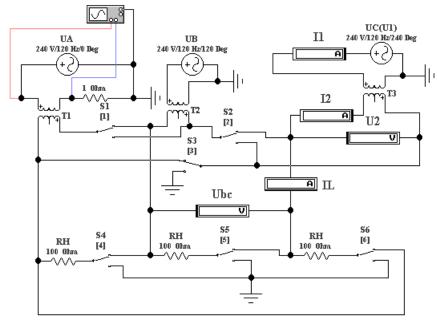
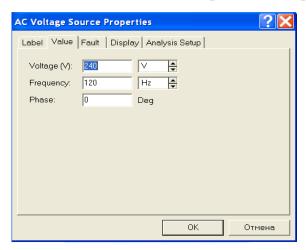


Рис. 14.5. Модель трехфазного трансформатора для включения обмоток звездой или треугольником


14.3.2. В соответствии со своим вариантом выбрать исходные данные из табл. 14.1 и запустить файл Trans 3.1.

Исходные данные для трехфазного трансформатора

Таблица 14.1

Поромотри	Номер варианта									
Параметры	1	2	3	4	5	6	7	8	9	10
$U_{1}\left(\mathrm{U1}\right) ,\mathrm{B}$	127	220	160	210	150	200	240	180	190	230
<i>f</i> , Гц	60	50	100	200	80	90	120	70	90	50
N	2	2,5	2	3	2	2,5	1,5	3	2	1,5
R_1 (R1), Om	10	20	10	12	15	20	30	15	20	30
R_2 (R2), Ом	4	2	3	3	5	4	5	5	4	5
R_H (RH), OM	100	40	120	35	150	60	160	150	80	100

14.3.3. Задать напряжения генераторов UA=UB=UC=U1 и частоту, открыв окна этих источников напряжения переменного тока (рис. 14.6).

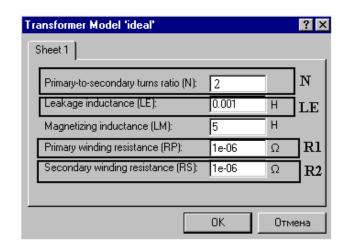


Рис. 14.6. Окно источника переменного тока

Рис. 14.7. Панель Sheet1 модели трансформатора

- 14.3.4. Задать параметры модели трансформатора, для этого двойным щелчком по иконке трансформатора откройте панель Transformer Properties. Нажмите EDIT, открывается панель Sheet1 (рис. 14.7) с основными характеристиками трансформатора (N коэффициент трансформации, задается в соответствии с вариантом; R1, R2 сопротивления обмоток; LE индуктивность рассеяния, LE=0,1 Гн; LM индуктивность намагничивания, LM=5 Гн: после установки параметров выход через клавишу ОК).
- 14. 3.5. Выполнить соединение вторичных обмоток трансформатора звездой с помощью переключателей S1, S2 и S3, используя клавиши 1,2 и 3. Способ соединения нагрузки (звезда или треугольник) должен соответствовать способу соединения вторичных обмоток. Коммутация нагрузки выполняется посредством переключателей S4, S5 и S6.
- 14.3.6. Включить схему клавишей в правом верхнем углу экрана. Подождите, пока установятся показания приборов и запишите их. Проверьте соотношения между фазными и линейными токами и напряжениями.
- 14.3.7. Построить в масштабе векторную диаграмму, используя схему исследуемой модели и показания приборов. Определить группу соединения трехфазного трансформатора. С помощью осциллографа измерить угол сдвига φ_l между напряжением и током, потребляемым от сети в одной фазе А. Для этого увеличьте чувствительность по каналу В, установите визирные линии как показано на рис. 14.8 и запишите интервал времени T2–T1. Для нахождения фазового сдвига в градусах, необходимо измерить период напряжения или тока Т. Тогда угол в градусах равен

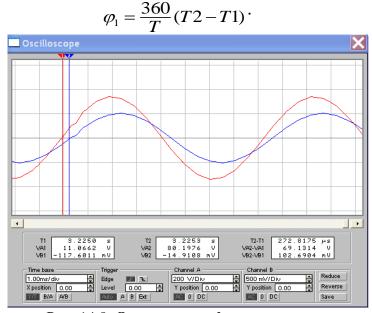


Рис. 14.8. Определение фазового сдвига

14.3.8. Определить полную, активную потребляемые мощности и КПД трехфазного трансформатора:

$$P_1 = S_1 \cdot cos\phi_1 = 3U_1I_1cos\phi_1, \quad P_2 = S_2 = 3U_2I_2, \quad \eta = \frac{P_2}{P_1},$$
 (нагрузка активная).

14.3.9. Результаты измерений и расчетов записать в табл. 14.2 отчета.

- 14.3.10. Выполнить соединение вторичных обмоток трансформатора треугольником с помощью переключателей S1, S2 и S3, используя клавиши 1,2 и 3. Способ соединения нагрузки «треугольник» должен соответствовать способу соединения вторичных обмоток. Коммутация нагрузки выполняется посредством переключателей S4, S5 и S6.
- 14.3.11. Повторить пункты 14.3.6 ... 9 при соединении вторичных обмоток трансформатора треугольником. Все результаты занести в табл. 14.3 отчёта.
- 14.3.12. Собрать цепь в соответствии с моделью трехфазного трансформатора для включения обмоток зигзагом (рис. 14.9), содержащей:
- генераторы напряжения переменного тока (первичный источник переменного трехфазного напряжения) U_A , U_B , U_C (UA, UB, UC);
 - две части обмотки вторичной цепи трансформатора в каждой фазе (фаза а T11, T12; фаза b T21, T22; фаза c T31, T32);
 - измерительные приборы U21, U22, UPE3 для определения напряжения на первой, второй частях вторичной цепи и результирующего напряжения;
 - осциллограф для измерения фазового сдвига между напряжением генератора и UPE3.

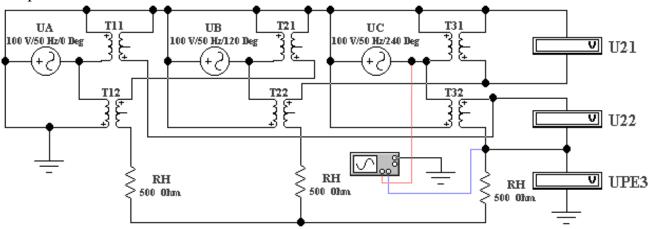


Рис. 14.9. Модель трехфазного трансформатора для включения обмоток зигзагом

- 14.3.13. Запустить файл Trans 3.2. Установить параметры генераторов (U1, f) и трансформаторов (R1, R2, N) согласно табл. 14.1, RH=500 Ом для всех вариантов. Включить схему.
- 14.3.14. Записать показания вольтметров U21, U22 и UPE3 в табл. 14.4 отчета. Фазовый сдвиг φ между вектором напряжения первичной обмотки и результирующим вектором напряжения на вторичной обмотке измерить при помощи осциллографа.
- 14.3.15. Построить в масштабе векторные диаграммы трехфазного трансформатора при соединении обмоток звездой, треугольником и зигзагом. Пример построения векторной диаграммы трансформатора при соединении обмоток зигзагом приведён на рис. 14.10 (измеренный фазовый сдвиг φ между вектором напряжения первичной обмотки и результирующим вектором напряжения должен совпадать с углом, полученным в результате построения по измеренным напряжениям U21, U22 и UPE3).

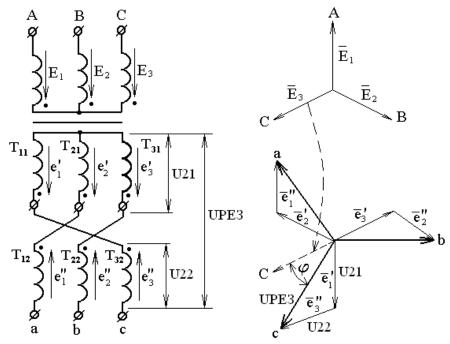


Рис. 14.10. Пример построение векторной диаграммы

14.4. Отчет по лабораторной работе №14 ИССЛЕДОВАНИЕ ТРЕХФАЗНОГО ТРАНСФОРМАТОРА

14.4.1. Содержание отчета

- 14.4.1. Схемы включения трехфазного трансформатора, нагрузки и приборов при соединении обмоток звездой, треугольником и зигзагом.
- 14.4.2. Таблицы параметров трехфазного трансформатора при соединении обмоток звездой, треугольником и зигзагом.
- 14.4.3. Векторные диаграммы трехфазного трансформатора при соединении обмоток звездой, треугольником и зигзагом.
 - 14.4.4. Выводы по результатам работы.

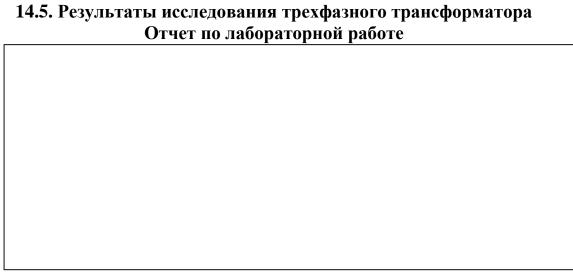


Рис. 14.11. Схема включения трехфазного трансформатора, нагрузки и приборов при соединении обмоток звездой

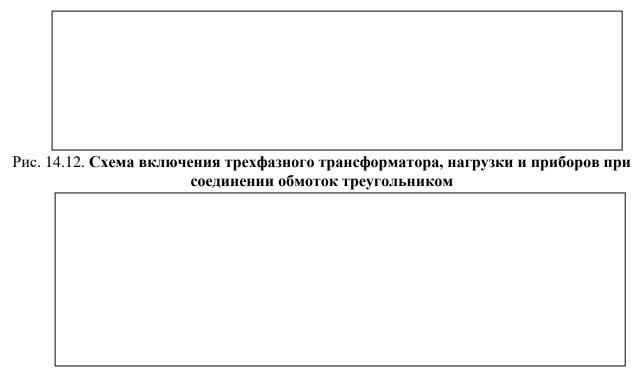


Рис. 14.13. Схема включения трехфазного трансформатора, нагрузки и приборов при соединении обмоток зигзагом

Таблица 14.2

Результаты определения параметров трансформатора при соединении обмоток звездой

	Измере	енные пар	аметры		Расчетные параметры		
U_I , B	I_1 , A	$cos \varphi_1$	U_2 , B	I_2 , A	P_1 , BT	η , %	

Таблица 14.3

Результаты определения параметров трансформатора при соединении обмоток треугольником

т сзульта	ты опреде	colonia ma	pamerpob	трансфор	maropa npn	сосдинении	domotok ipcyrosibiinkom	
	Измере	енные пар	аметры		Расчетные параметры			
U_l , B	I_1 , A	$cos \varphi_1$	U_2 , B	<i>I</i> ₂ , A	P_1 , BT	S_2 , BA	$\eta,\%$	

Таблица 14.4

Результаты определения параметров трансформатора при соединении обмоток зигзагом

	Из	вмеренны	Расч	етные пара	метры			
U_1 , B U_2 , B φ , \circ U_{21} , B U_{22} , B U_{pes} , B						P_{l} , BT	S_2 , BA	η , %

Рис. 14.4. Векторные диаграммы трехфазного трансформатора при соединении обмоток звездой, треугольником и зигзагом

\mathbf{R}	ы	R	O	TL	τ.
ப	ы	n	.,	10	ы.

Выполнил Проверил

Контрольные вопросы

- 1. Какие существуют способы соединения обмоток трехфазного трансформатора?
 - 2. Какие мощности различают в сетях переменного тока?
- 3. Какое соотношение витков первой и второй части вторичной обмотки трансформатора, соединенного в зигзаг, необходимо выполнить, чтобы получить фазовый сдвиг между векторами U_{21} и U_{pes} , равным 30^{0} ?
 - 4. Укажите способы охлаждения трансформаторов.
- 5. Как изменятся потери в магнитопроводе трансформатора при переключении первичной обмотки со звезды на треугольник?
- 6. Объясните, почему ток холостого хода несинусоидален при синусоидальном приложенном напряжении?
- 7. Почему в режиме холостого хода трехстержневого трансформатора токи в фазах A и C отличаются от тока в фазе B (предполагается, что фаза B размещена на среднем стрежне)?
- 8. Как снимать внешние характеристики трансформатора? От чего зависит наклон внешних характеристик?
- 9. Почему по обмотке, соединенной треугольником, протекает ток не только основной, но и тройной частоты, не зависящий от нагрузки?
- 10. Каков принцип определения токов в первичной цепи трансформатора при разных схемах соединения обмоток, если известны токи нагрузки?
- 11. По какой схеме соединяют первичную обмотку группового трансформатора, если вторичные обмотки соединены в Y_0 ? Почему?
- 12, Как изменится ток холостого хода при увеличении зазора в местах стыка магнитопровода?

Лабораторная работа №15 ИССЛЕДОВАНИЕ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА 15.1. Задание

- 15.1.1. Изучить устройство, принцип действия, схемы возбуждения и режимы работы двигателя постоянного тока (ПТ).
- 15.1.2. Выбрать параметры двигателя постоянного тока параллельного возбуждения и снять его характеристики.
 - 15.1.3. Записать выводы по результатам работы.

15.2. Выполнение работы

Двигатель постоянного тока — электрическая машина, предназначенная для преобразования электрической энергии в механическую энергию. Устройство, принцип действия, схемы возбуждения и режимы работы двигателя постоянного тока приведены в учебниках и учебных пособиях, которые следует *изучить* при подготовке к лабораторной работе. В работе используется двигатель постоянного тока параллельного возбуждения.

15.2.1. Для выбора двигателя нажатием клавиши «мыши» на изображении машины открыть окно и поместить изображение двигателя на рабочий стол. Дважды нажав на нем левую клавишу «мыши», открыть окно. В окне *Model* нажать и открыть окно параметров двигателя (рис. 15.1). Выбрать сопротивление цепи возбуждения (Fild resistance) R_s (RF) = $50+2\cdot N$, Ом, а цепи якоря R_s оставить по умолчанию. Установить номинальное напряжение двигателя (Rated armature voltage) $VAN=70+2\cdot N$, В (N-номер студента в журнале).

$\stackrel{\smile}{}$		1	
Į	OC Motor Model 'ideal'		
ı	Sheet1 Sheet2		
ı	•		
	Armature resistance (RA):	1	Ω
	Armature inductance (LA):	0.001	н
	Field resistance (RF):	50+2•	Ω
	Field inductance (LF):	0.001	н
	Shaft friction (BF):	0.01	N#m*s/rad
	Machine rotational inertia (J):	0.01	N*m*s²/rad
	Rated rotational speed (NN):	1800	RPM
	Rated armature voltage (VAN):	70+2•	V
	Rated armature current (IAN):	8.8	A
	Rated field voltage (VFN):	115	V

Рис. 15.1. Панель окна параметров двигателя постоянного тока

15.2.2 «Собрать» схему (рис. 15.2). Установить напряжение источника $U=70+2\cdot N$, В. Сопротивления амперметра (типа «DC») и вольтметра (типа «DC») не изменять. Чтобы увеличить лицевую панель осциллографа следует два раза нажать левую клавишу «мыши» на его изображении. В открывшемся окне осциллографа — нажать «Expand».

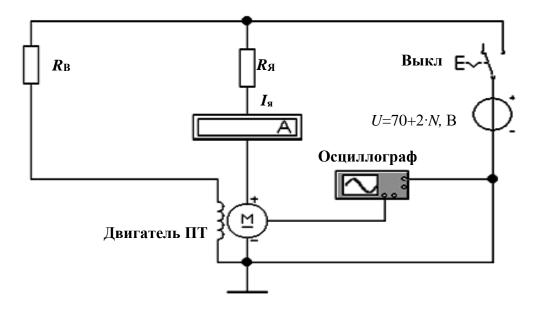


Рис. 15.2. Схема для снятия пусковых и регулировочных характеристик двигателя

15.2.3. Снять семейство пусковых и регулировочных характеристик двигателя. Для этого изменением сопротивления $R_{\rm g}$ от 0 (0.0000001) через 2 Ом до 10 Ом получить на экране осциллографа изображение зависимости числа оборотов якоря $n_{\rm g}$ во времени (вольтметр на рис. 15.3 показывает число оборотов якоря в минуту).

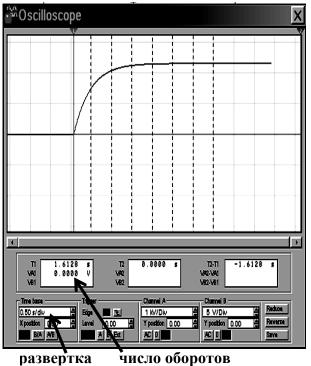


Рис. 15.3. Пусковая характеристика двигателя

Последовательность проведения экспериментов, следующая:

- пробелом на клавиатуре отключить «Выкл» в схеме;
- включить цепь клавишей

- —после перемещения развертки (прямой линии) по экрану на 2...3 интервала времени включить клавиатурой «Выкл». При достижении кривой максимального (установившегося) значения (в правой части экрана) нажать клавишу
- по установившемуся изображению кривой перемещая «мышью» визирную вертикальную линию (на рис. 15.3 показано пунктиром), измерить через 0,5 с (каждая клетка горизонтальной развертки) 7 значений оборотов двигателя (не считая 0). При этом нулевой отсчет может быть в интервале от 0 до 0,5 с.
 - 15.2.4. Записать в табл. 15.1 показания всех приборов.
 - 15.2.5. Построить семейство пусковых характеристик двигателя $n_{\rm s}(t)$.
- 15.2.6. Рассчитать момент на валу двигателя по формуле $M <=>k \cdot I^2_{\mathcal{A}}(k-$ конструктивный коэффициент, равный 1). Результаты записать в табл. 15.1.
 - 15.2.7. Построить семейство регулировочных характеристик двигателя $n_s(M)$.
 - 15.2.8. Записать выводы по результатам работы.

15.3. Отчет по лабораторной работе №15 ИССЛЕДОВАНИЕ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

15.3.1. Содержание отчета

- 15.3.1. Таблица параметров двигателя.
- 15.3.2. Семейство характеристик двигателя (7 в каждой системе координат).
- 15.3.3. Выводы по результатам работы.

15.4. Результаты исследования двигателя постоянного тока Отчет по лабораторной работе

студента

гр. №

Таблица 15.1

resy	езультаты измерений и расчетов пусковых и регулировочных характеристик двигателя																												
$R_{\scriptscriptstyle m B},O_{\scriptscriptstyle m M}$	t, c	пя, об/м	$I_{\mathtt{A}},A$	M , μ - M	$R_{\scriptscriptstyle \mathrm{B}},O_{\scriptscriptstyle \mathrm{M}}$	t, c	$n_{\rm s},o6/m$	$I_{\mathtt{A}},A$	M , μ - M	$R_{\scriptscriptstyle\mathrm{S}},O_{\scriptscriptstyle\mathrm{M}}$	t, c	$n_{\mathtt{R}},o6/\mathcal{M}$	$I_{\mathtt{A}},A$	M, H - M	$R_{\scriptscriptstyle\mathrm{R}},O_{\scriptscriptstyle\mathrm{M}}$	t, c	и₃, об∕м	$I_{\mathtt{A}},A$	M, H - M	$R_{\scriptscriptstyle \mathrm{B}},O_{\mathcal{M}}$	t, c	$n_{\rm s}, o6/M$	$I_{\mathtt{A}},A$	M , μ - M	$R_{\scriptscriptstyle\mathrm{R}},O_{\mathcal{M}}$	t, c	$n_{\mathtt{A}},o6/\mathcal{M}$	$I_{\mathtt{A}},A$	M , μ - M
	0					0					0					0					0					0			
0					2					4					6					8					10				

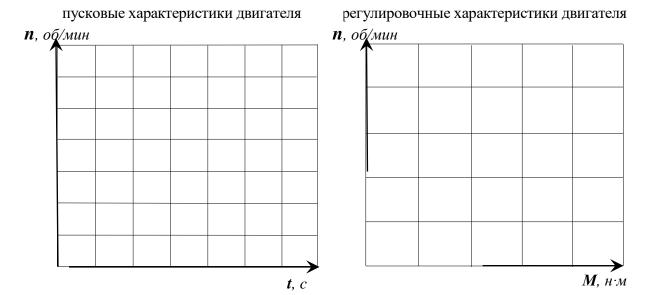


Рис. 15.4. Графики пусковых и регулировочных характеристик двигателя

Выводы:

Выполнил Проверил

Контрольные вопросы

- 1. Расскажите устройство и назначение основных элементов конструкции машины постоянного тока.
 - 2. Поясните физическую сущность явления реакции якоря.
- 3. Изобразите схемы двигателей параллельного, последовательного и смешанного возбуждения.
- 4. На примере двигателя параллельного возбуждения поясните процессы и особенности пуска двигателя.
- 5. Объясните семейство пусковых характеристик двигателя параллельного возбуждения.

Библиографический список

- 1. Арсеньев, Г.Н. Основы теории цепей: Учебное пособие/Г.Н. Арсеньев, В.Н. Бондаренко, И.А. Чепурнов. М.: Издательский Дом "ФОРУМ", 2023. 448 с.
- 2. Бакалов, В.П. Основы анализа цепей: учеб. пособие для студ. высш. учеб. заведений, обучающихся по напр. подготовки 210700 "Инфокоммуникационные техн. и системы связи"/В.П. Бакалов, О.Б. Журавлева, Б.И. Крук. 2-е изд., стер. М.: Горячая линия-Телеком, 2014. 592 с.
- 3. Белов, М.П. Моделирование в электротехнике/М.П. Белов; С.-Петерб. гос. электротехн. ун-т "ЛЭТИ" им. В.И. Ульянова (Ленина). СПб.: СПбГЭТУ, 2021. 163 с.
- 4. Бессонов, Л.А. Теоретические основы электротехники. В 2 т. Т. 1. Электрические цепи: учебник для академического бакалавриата/Л.А. Бессонов. 12-е изд., испр. и доп.— М.: Юрайт, 2023. 831с. Текст: электронный//ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/517560 (дата обращения: 09.04.2024).
- 5. Бутырин, П.А. Основы электротехники: учебник для студентов средних и высших учебных заведений профессионального образования по направлениям электротехники и электроэнергетики/П.А. Бутырин, О.В. Толчеев, Ф.Н. Шакирзянов; под ред. П.А. Бутырина. М.: Издательский дом МЭИ, 2014. 358 с.
- 6. Григораш, О.В. Электротехника и электроника: учебник для вузов/О.В. Григораш, А.А. Шевченко, С.Н. Бегдай; М-во сел. хоз-ва Рос. Федерации, Кубан. гос. аграр. ун-т. -2-е изд., перераб. и доп. -Краснодар: КубГАУ, 2014. -543с.
- 7. Ляпин, В.Г. Электропитание устройств и систем. Учебное пособие в 3-х ч. Ч.1. Лекции по теории цепей и электронных преобразователей/В.Г. Ляпин, Г.С. Зиновьев, А.В. Соболев. Химки: ФГБВОУ ВО АГЗ МЧС России, 2016. 220с.
- 8. Ляпин, В.Г. Электротехника и электроника. Элементы, схемы, системы: учебное пособие/В.Г. Ляпин, Г.С. Зиновьев, А.В. Соболев. М.: ООО «Реарт», 2018. 183 с. Режим доступа: http://elib.timacad.ru/dl/local/d9391.pdf (дата обращения 09.04.2024).
- 19. Новожилов, О.П. Электротехника (теория электрических цепей) в 2 ч. Ч.1 /О.П. Новожилов. М.: Юрайт, 2024. 403 с. Текст: электронный//ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/542344 (дата обращения: 09.04.2024).
- 10. Соболев, А.В. Основы теории электрических цепей (учебное пособие)/ А.В. Соболев, Е.Д. Григорьева, В.Г. Ляпин. Химки: ФГБВОУ ВО АГЗ МЧС России, 2016.-176 с.
- 11. Соболев, А.В. Теория электрических цепей. Учебно-методические указания по практическим и лабораторным работам/А.В. Соболев, Ю.А. Беляева, В.Г. Ляпин. Химки: АГЗ МЧС России, 2016. 167 с.
- 12. Бонд, А.М. Электроаналитические методы. Теория и практика/А.М. Бонд, Д. Инцельт, Х. Калерт и др. Под ред. Ф. Шольца; Пер. с англ. Под ред. В.Н. Майстренко. М.: БИНОМ. Лаборатория знаний, 2006. 326 с.
- 13. Арсеньев, Г.Н. Основы теории цепей. Практикум: учебное пособие/Г.Н. Арсеньев, И.И. Градов. М.: Издательский Дом "ФОРУМ", 2022. 336 с.
- 14. Сажнев, А.М. Электропитание устройств и систем связи: учеб. пособие/А.М. Сажнев, Л.Г. Рогулина, С.С. Абрамов. Новосибирск: Изд-во СибГУТИ, 2008. 112 с.

Приложение А

ОБЩИЕ ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ОТЧЁТОВ И ПОРЯДОК ЗАЩИТЫ ЛАБОРАТОРНЫХ РАБОТ

Отчёт по предстоящей лабораторной работе каждый студент готовит самостоятельно. До занятия должна быть проведена подготовка к работе, которая состоит в следующем:

- изучение задания на работу и разделов рекомендуемой литературы;
- составление и зарисовка в отчет требуемых схем и таблиц;
- расчет указанных в задании параметров, заполнение таблиц и построение векторных диаграмм и графиков.

При подготовке и выполнении лабораторных работ следует записывать результаты расчетов и показания приборов с точностью не более *тех значащих цифр* после запятой с соответствующим округлением результатов.

Студент допускается к защите лабораторной работы при наличии оформленного отчёта и отметок преподавателя о выполнении работы. Защита проводится **индивидуально**. При защите отчёта студент должен знать:

- порядок выполнения измерений (исследований параметров или характеристик);
 - методику расчета результатов;
 - выводы по каждому пункту и по всему отчёту в целом.

Для подготовки к защите *следует* изучить рекомендуемую литературу и методические рекомендации по работе, ориентируясь на контрольные вопросы.

Приложение Б

ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЮ ПРОГРАММОЙ ELEKTRONICS WORKBENCH

Общие свойства программы. Программа Elektronics Workbench предназначена для моделирования и анализа электрических и электронных схем. После загрузки компьютера Windows и программы на экране монитора появится её рабочее окно (рис. ПБ.1).

Выбор элементов схем. Требуемая группа элементов выбирается из линейки (рис. ПБ.2) нажатием левой клавиши «мыши». Элемент из выбранной группы выбирается «мышью» и переносится при нажатой клавише в рабочее окно. Для выбора параметров элементов схем следует:

- «мышью» установить курсор на соответствующем элементе схемы;
- дважды нажать левую клавишу (при этом на экране появится окно элемента);
 - с помощью клавиатуры или «мыши» выбрать параметр в нужном окне;
 - после выбора параметров необходимо нажать на клавиши *Ок* или *Enter*.

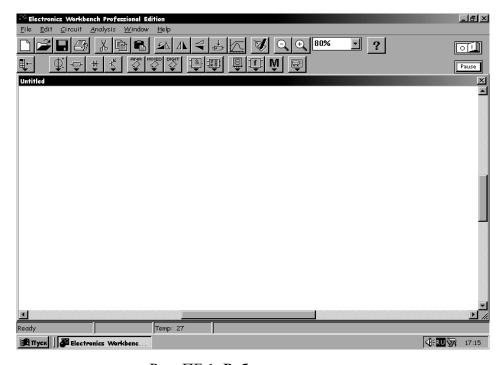


Рис. ПБ.1. Рабочее окно

Рис. ПБ.2. Линейка элементов

«Сборка» и «включение» схемы. После размещения элементов в рабочем окне их следует «соединить» между собой в соответствии с конфигурацией схемы. «Соединение» элементов схемы «проводами» выполняется «мышью». Каждый вывод элемента имеет три направления присоединения:

- вверх, вниз и влево (вправо), если выводы расположены горизонтально;
- •влево, вправо и вверх (вниз) при вертикальном расположении выводов.

«Узел схемы» имеет четыре направления присоединения: вверх, вниз, влево и вправо. Для «соединения» элементов курсор устанавливается на соответствующий вывод элемента и нажимается левая клавиша до появления *чёрной* точки. При нажатой клавише «мыши» курсор перемещается к выводу другого элемента, который требуется «присоединить», до появления на этом выводе чёрной точки. После отпускания клавиши элементы соединяются сплошной чёрной линией.

Для *поворота* элемента следует «отсоединить» его от цепи и выделить однократным нажатием на левую клавишу «мыши». При этом изображение элемента окрасится *красным* цветом. Если необходимо повернуть элемент или обозначение его параметров, а также присвоить имя элементу или изменить масштаб изображения, используется группа команд, показанных на рис. ПБ.3.

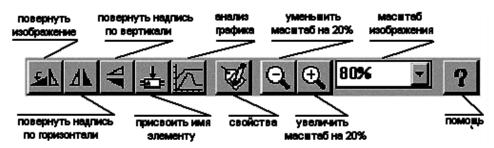


Рис. ПБ.3. Группа команд

Для точной установки элемента на место в целях «выпрямления» отдельных участков собранной схемы следует выделить его однократным нажатием на левую клавишу «мыши» и, используя клавиши перемещения курсора, переместить элемент на требуемое место. Для «включения» собранной схемы установить «мышью» курсор на «выключатель», расположенный в правом верхнем углу над рабочим окном (рис. ПБ.1), и один раз нажать левую клавишу.

Приложение В

ОЗНАКОМЛЕНИЕ С ПРОГРАММОЙ ELECTRONICS WORKBENCH (лабораторно-практическая работа)

Цель работы. Получение практических навыков работы с моделирующей программой EWB. Изучение измерительных приборов, их схем включения и приёмов использования.

Пояснения к работе. В процессе выполнения лабораторных работ используется не весь набор измерительных приборов программы EWB, а только некоторая часть. К ним относятся: цифровой мультиметр, двухканальный осциллограф, измеритель АЧХ и ФЧХ, функциональный генератор. Все необходимые приборы подключены к исследуемым схемам и следует только научиться правильно пользоваться ими.

Мультиметр (**Multimeter**). Мультиметр представляет собой универсальный цифровой прибор для измерения постоянного и переменного напряжения и тока, сопротивления и ослабления. Условное изображение (иконка) мультиметра имеет вид на рис. ПВ.1.

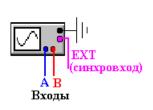
Рис. ПВ.1. Иконка мультиметра

Рис. ПВ.2. Передняя панель мультиметра

Двойным щелчком по иконке мультиметра раскрывается передняя панель (рис. ПВ.2) и появляется доступ к настройке прибора. На панели расположен дисплей для цифрового отображения результатов, две клеммы подключения к схеме и кнопки управления. Назначение основных кнопок понятно из рисунка. Setting — режим установки параметров. После нажатия этой кнопки открывается диалоговое окно (здесь не приведено), в котором обозначено:

Ammeter resistance - внутреннее сопротивление амперметра;

Voltmeter resistance - входное сопротивление вольтметра;


Ohmmeter current - ток через контролируемый объект;

Decibel standard - установка эталонного напряжения V1 для измерения усиления

(ослабления) в dB, по умолчанию V1=1B. $K=20 \log (U/V1)$ [dB].

Мультиметр измеряет эффективное (действующее) значение переменного тока.

Осциллограф (Oscilloscope). Осциллограф имеет два канала (рис. ПВ.3): А и В с раздельной регулировкой чувствительности в диапазоне от 10 мкВ/дел (μ V/DIV) до 5 кВ/дел (κ V/DIV) и регулировкой смещения по вертикали (YPOS). Входы каналов могут быть закрытыми (AC – сигналы переменного тока), открытыми DC – сигналы с постоянной составляющей) или замкнуты на землю (0).

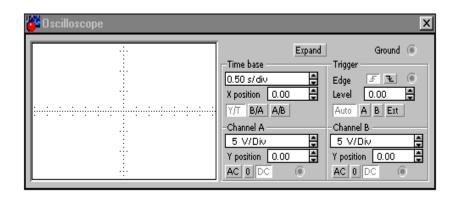


Рис. ПВ.3. **Иконка осцил**лографа

Рис. ПВ.4. **Передняя панель осциллографа**

Двойным щелчком по иконке осциллографа раскрывается передняя панель, которая имеет вид на рис. ПВ.4. Здесь открыт доступ к регулировкам осциллографа. В блоке развёртки устанавливается режим развёртки кнопками (рис ПВ.5).

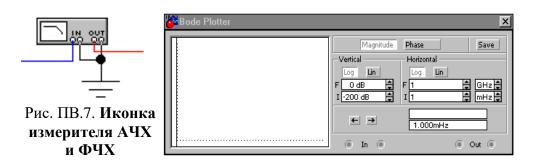


Рис. ПВ.5. **Кнопки установки развертки** Рис. ПВ.6. **Кнопки установки запуска жду**щего режима

В режиме Y/T (обычный режим, включен по умолчанию) по вертикали — напряжение, по горизонтали — время; в режиме B/A - по вертикали — сигнал канала B, по горизонтали — сигнал канала A; в режиме A/B — наоборот. В режиме Y/T длительность развёртки может быть задана в диапазоне от 0,1 нс/дел (ns/div) до 1с/дел (s/div) с возможностью установки смещения по оси X (X POS). Предусмотрен также ждущий режим (TRIGGER) с запуском по переднему или заднему фронту (рис. ПВ.6): регулируемый уровень (LEVEL) запуска и режим AUTO, от канала A или B или внешнего источника (EXT).

При нажатии кнопки EXPAND лицевая панель меняется — увеличивается размер экрана, появляется возможность прокрутки изображения по горизонтали и его сканирования с помощью вертикальных визирных линий, которые за треугольные ушки можно установить в любое место экрана. При этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений между визирными линиями. Изображение можно инвертировать нажатием кнопки REVERSE и записать данные в файл нажатием кнопки SAVE. Возврат к исходному состоянию — нажатием кнопки REDUCE в правом нижнем углу лицевой панели осциллографа.

Измеритель АЧХ и ФЧХ (Bode Plotter). Условное изображение (иконка) измерителя имеет вид на рис. ПВ.7. Подключение к исследуемой схеме осуществляется с помощью зажимов IN (вход) и ОUТ (выход). Левые клеммы зажимов подключают, соответственно, ко входу и выходу устройства, а правые - к общей шине. Двойным щелчком по иконке раскрывается передняя панель измерителя и открывается доступ к настройке прибора (рис ПВ.8).

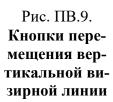


Рис. ПВ.8. Передняя панель измерителя АЧХ и ФЧХ

Измеритель предназначен для анализа AЧX (нажата кнопка MAGNITUDE) и ФЧХ (нажата кнопка PHASE) при логарифмической (кнопка LOG, включена по умолчанию) или линейной (кнопка LIN) шкале по осям Y (VERTICAL) и X (HORIZONTAL). Настройка измерителя заключается в выборе пределов измерения коэффициента передачи и вариации частоты с помощью кнопок в окошках F — максимальное и I — минимальное значение.

Частота и соответствующее значение коэффициента передачи или фазы индицируются в окошках в правом нижнем углу измерителя. Значения этих величин в отдельных точках АЧХ и ФЧХ можно получить с помощью вертикальной визирной линии, находящейся в исходном состоянии в начале координат и перемещаемой по графику мышью или кнопками (рис. ПВ.9). Результаты измерения можно записать в текстовый файл. Для этого необходимо нажать кнопку SAVE и в диалоговом окне указать имя файла (по умолчанию предполагается имя схемного файла). В полученном таким образом текстовом файле (с расширением .bod) АЧХ и ФЧХ представляются в табличном виде.

Функциональный генератор (Function Generator). Условное изображение (иконка) генератора имеет вид на рис. ПВ.10. При заземлении клеммы СОМ (общий) на выходах "-" и "+" получаем парафазный сигнал. Двойным щелчком по иконке генератора раскрывается передняя панель (рис. ПВ.11).

Рис. ПВ.10. **Иконка функ- ционального генератора**

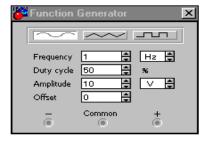


Рис. ПВ.11. Передняя панель функционального генератора

Назначение клавиш: выбор формы выходного сигнала: синусоидальный (по умолчанию), треугольный или прямоугольный; установка частоты выходного сигнала в герцах; установка коэффициента заполнения в %, для импульсных сигналов это отношение длительности импульса к периоду; для треугольных сигналов — соотношение между длительностями переднего и заднего фронтов; установка амплитуды выходного сигнала в вольтах; установка смещения (постоянной составляющей выходного сигнала). Все измерительные приборы включаются автоматически при включении исследуемой схемы выключателем в правом верхнем углу экрана.

Выполнение работы проводится по методике, приведенной в табл. ПВ.1, с внесением результатов измерений в табл. ПВ.2.

Таблица ПВ.1

Порядок выполнения работы

№п.п	Последовательность проведения исследования
	На рабочем столе оболочки Windows находим ярлык Wewb 32 и двойным щелчком за-
1	пускаем программу EWB
2	«Собираем» схему параллельного колебательного контура с подключенными кон-
	трольно-измерительными приборами (рис. ПВ.12)
3	Проверьте настройку измерительных приборов. Для этого двойным щелчком по иконке нужного прибора откройте переднюю панель и убедитесь в том, что: * генератор - прямоугольный сигнал, $100~\Gamma$ ц, $10~B$, 50% ; * осциллограф - открытые входы, развёртка $0,5~ms/div$, режим развёртки ждущий с синхронизацией по заднему фронту канала A; чувствительность по каналу A - $10~V/div$, по каналу B - $500~mV/div$; начальные смещения равны нулю; * измеритель AЧХ и ФЧХ — режим AЧХ, масштабы логарифмические, диапазоны по вертикали $F = 00~dB$, $I = -100~dB$, по горизонтали $F = 1~M\Gamma$ ц, $I = 1~\Gamma$ ц. Закройте измеритель АЧХ и ФЧХ
4	Двойным щелчком откройте осциллограф и включите схему клавишей в правом верхнем углу экрана. После заполнения экрана осциллографа выключите схему. Установите развёртку 0,1 ms/div, нажатием клавиши EXPAND раскройте экран осциллографа и измерьте период колебательного процесса. Нажатием на клавишу Reduce вернитесь в малый масштаб осциллографа. Установите развёртку 1 ms/div и зарисуйте вид переходного процесса
5	Двойным щелчком откройте измеритель АЧХ. С помощью мыши захватите сплошную вертикальную линию в левой стороне экрана измерителя и подведите её к точке резонанса. Запишите значение этой частоты (и затухание) из окошка измерителя. Сравните её с частотой, полученной в предыдущем пункте
6	В измерителе АЧХ установите линейные масштабы и пределы: по вертикали $F=1$, $I=0$; по горизонтали $F=10$ к Γ ц, $I=1$ к Γ ц. Включите и выключите схему. Зарисуйте форму АЧХ. С помощью вертикальной линии измерьте резонансную частоту. Запишите результаты
7	Измеритель АЧХ переведите в режим измерения фазы для чего нажмите кнопку Phase. Масштабы логарифмические: по вертикали $F = 135$, $I = -135$; по горизонтали $F = 10$ к Γ ц, $I = 3$ к Γ ц. Включите и выключите схему. Зарисуйте форму ФЧХ. С помощью вертикальной линии определите частоту, соответствующую минимальному фазовому сдвигу
8	В измерителе ФЧХ установите линейные масштабы: по вертикали $F=135, I=-135;$ по горизонтали $F=6$ к Γ ц, $I=4$ к Γ ц. Включите и выключите схему. Зарисуйте ФЧХ и определите частоту, соответствующую минимальному фазовому сдвигу

Примечания: Программа EWB выполняет анализ электротехнических и электронных схем расчётным путём, используя математические модели электрокомпонентов и разнообразные численные методы для решения систем линейных и нелинейных уравнений. Результаты расчётов запоминаются, поэтому при длительном времени непрерывного анализа все ресурсы памяти ЭВМ достаточно быстро исчернываются и машина «зависает», что недопустимо. Во избежание «зависания» ЭВМ рекомендуется: включать схему только на время выполнения измерений и после установления показаний, либо выключать схему, либо пользоваться опцией «раиѕе»; - ввести принудительный останов анализа (автоматический переход в режим «раиѕе») при заполнении экрана осциллографа.

Для определения (или изменения) параметра элемента его следует выделить однократным нажатием левой клавиши в момент символа «рука» на данном элементе. Элемент активизируется, меняет цвет на красный. Далее двойным щелчком открываем окно Properties, в котором опциями Models, Edit, ..., Value можно изменить параметры элемента. Завершить изменения следует нажатием клавиши ОК.

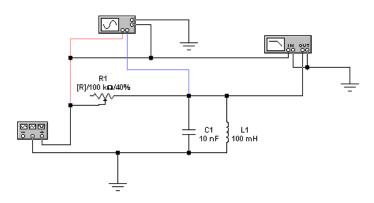


Рис. ПВ.12. Схема параллельного колебательного контура

Таблица ПВ.2

Результаты расчета и измерения частоты контура

Способ измерения	Аналити-	По осцил-	По АЧХ	По АЧХ	По ФЧХ	По ФЧХ					
Спосоо измерения	ческий	лографу	LOG	LIN	LOG	LIN					
Частота, (кГц)											
Погрешность абс., Гц	0										
Погрешность отн., %	0										

Теоретическое значение частоты определяется через параметры колебательного контура L1C1:

$$f_{meop} = 1/2\pi\sqrt{(L_1C_1)}.$$

Абсолютная и относительная погрешности, соответственно, рассчитываются по формулам:

$$\Delta = f_{meop}$$
 - f_{usm} , $\delta = \Delta / f_{meop}$.

Выводы (сравните результаты расчёта и измерения частоты контура по временным характеристикам, АЧХ и ФЧХ логарифмического и линейного масштабов. Объясните результаты).

Приложение Г

ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЮ ПРОГРАММОЙ «МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ СХЕМ»

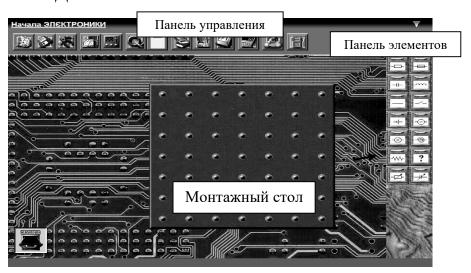


Рис. ПГ. Изображение на экране монитора

Общие свойства программы. Программа **«Моделирование электрических схем»** предназначена для моделирования и анализа электрических цепей постоянного и синусоидального тока. После загрузки компьютера системой Windows и программой на экранах монитора выводятся (рис. ПГ):

- монтажный стол с контактными площадками;
- панель элементов, содержащая набор электрических элементов;
- «мусорная корзина», куда выбрасываются перегоревшие и ненужные детали;
- панель управления программой с кнопками для вызова инструментов.

Выбор элементов схем. Требуемая группа элементов выбирается из линейки (рис. ПГ) нажатием на левую клавишу «мыши». В работах будут использованы следующие элементы:

- реальный проводник, характеризуется материалом, длиной и площадью сечения;
- резистор, характеризуется сопротивлением в омах и мощностью в ваттах, «сгорает» при ее превышении;
- конденсатор, характеризуется ёмкостью в Фарадах и рабочим напряжением, выходит из строя при его превышении;
- катушка индуктивности, характеризуется индуктивностью, имеет очень малое активное сопротивление;
- монтажный провод, имеет очень малое сопротивление;
- элемент питания, характеризуется полярностью, ЭДС в вольтах и внутренним сопротивлением в омах
- генератор синусоидального напряжения, характеризуется амплитудой и частотой переменного напряжения.

Элемент из выбранной группы выбирается «мышью» и переносится при нажатой левой клавиши на монтажный стол. После освобождения левой кнопки «мыши», деталь будет установлена в указанном месте. Ненужные и «испорченные» детали можно удалить со стола в «мусорную корзину» таким же способом. После размещения элементов в рабочем окне их следует «соединить» между собой в соответствии с конфигурацией схемы. «Соединение» элементов схемы «проводами» выполняется «мышью».

ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ ПРОГРАММОЙ «РАСЧЕТ КОЭФФИЦИЕНТОВ ФУРЬЕ»

Программа составлена в стандартной электронной таблице для Windows «Microsoft Excel» и позволяет определить коэффициенты Фурье $B_{\rm km}$ и $C_{\rm km}$, а также начальную фазу Ψ_k для различных гармоник несинусоидальной периодической функции $e(\omega t)$ произвольной формы, заданной n значениями через равные промежутки времени.

Число значений функции не должно превышать $20 \ (n \le 20)$.

Для проведения расчетов необходимо заполнить значениями заданной несинусоидальной функции $e_n(\omega t)$ (строка 4 электронной табл. ПД). Значения, которые надо заменить выделены красным цветом.

- 1. Записать частоту несинусоидальной функции $e(\omega t) f(\Gamma \mu)$ в клетку B^*2 .
- 2. Указать в клетке B*3 количество значений n заданной функции $e_n(\omega t)$.
- 3. В строке B*4 указать номер очередной гармоники k, начиная с k=0.
- 4. Заполнить исходными данными $e_n(\omega t)$ строку В*6.

Внимание: Число, указанное в строке B*3, должно совпадать с порядковым номером последнего значения $e_n(\omega t)$.

После выполнения всех пунктов в клетке B^*14 появится рассчитанное значение коэффициента B_{km} , в клетке B^*15 — значение коэффициента C_{km} , а в клетке B^*17 значение начальной фазы Ψ_k для указанной в клетке B^*4 гармоники. После чего в клетку B^*4 следует записать номер следующей k+1 гармоники. В клетке B^*14 появится значение коэффициента $B_{(k+1)m}$ этой гармоники, в клетке B^*15 — значение коэффициента $C_{(k+1)m}$, а в клетке B^*17 значение начальной фазы угла $\Psi_{(k+1)}$ и т.д. После завершения расчетов закрыть программу «Microsoft Excel» не сохраняя изменения.

Таблица вычисления коэффициентов Фурье

В*2 (№ строки)	Параметры								
	Частота, f		Гц	f_{k}		Гц			
B*3	Количество контрольных точек, п		шт.	$T_{\rm k}$		сек			
B*4	Номер гармоники, k								
B*5	n	0	1	2	3	4	•••	:	 20
B*6	$e_{\rm n}(\omega t)$, B								
B*7	Период, $T(c)$								
B*8	Угловая частота kω (рад/с)								
B*9	Момент измерения t , с								
B*10	sink ωt								
B*11	$e_{\rm n} \times \sin k\omega t$								
B*12	$\cos \omega t$								
B*13	$e_{\rm n} \times \cos k\omega t$								
B*14	Коэффициент $B_{ m km}$								
B*15	Коэффициент $C_{ m km}$								
B*17	Начальная фаза Ψ_k								

Приложение Е

ФРАГМЕНТЫ ОТЧЕТОВ ПО ЛАБОРАТОРНЫМ РАБОТАМ

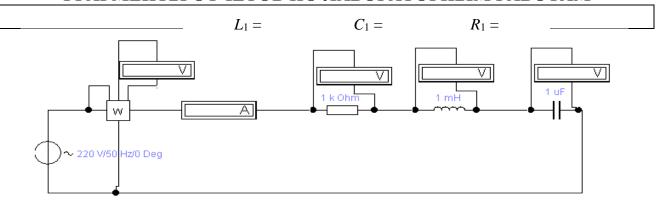


Рис. 4.2. Схема для исследования последовательного колебательного контура

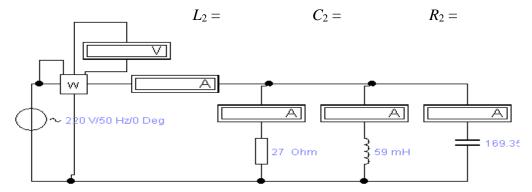


Рис. 4.3. Схема для исследования параллельного колебательного контура

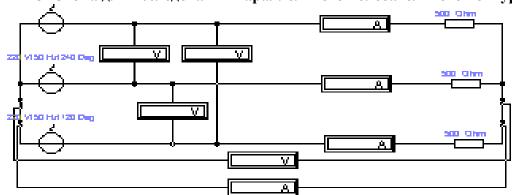


Рис. 5.1. Схема цепи при соединении нагрузки «звездой»

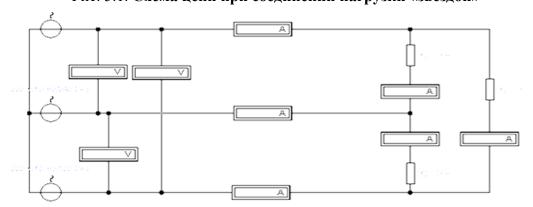


Рис. 5.2. Схема цепи при соединении нагрузки «треугольником» Рис. ПЕ. Фрагменты оформления схем в отчетах

Содержание

Предисловие
Линейные электрические цепи5
Лабораторная работа №1. Измерение параметров линейной электрической
цепи постоянного тока5
Часть 1. Изучение зависимости сопротивления проводников от их параметров 5
Часть 2. Исследование сопротивления резисторов при их последовательном
и параллельном соединении
Отчет по лабораторной работе №1. Измерение параметров линейной
электрической цепи постоянного тока
Контрольные вопросы9
Лабораторная работа №2. Исследование разветвленной линейной
электрической цепи постоянного тока10
Отчет по лабораторной работе №2. Исследование разветвленной линейной
электрической цепи постоянного тока11
Контрольные вопросы13
Лабораторная работа №3. Исследование характеристик активно-реактивных
цепей синусоидального тока14
Отчет по лабораторной работе №3. Исследование характеристик активно-
реактивных цепей синусоидального тока
Контрольные вопросы19
Лабораторная работа №4. Исследование резонансов в электрических цепях 20
Отчет по лабораторной работе №4. Исследование резонансов в
электрических цепях
Контрольные вопросы
Лабораторная работа №5. Исследование трехфазных цепей27
Отчет по лабораторной работе №5. Исследование трехфазных цепей28
Контрольные вопросы
Несинусоидальные и нелинейные цепи, переходные процессы
Лабораторная работа №6. Исследование цепи несинусоидального тока32
Отчет по работе №6. Исследование цепи несинусоидального тока34
Контрольные вопросы
Лабораторная работа №7. Исследование переходных процессов в
неразветвленной линейной цепи первого порядка37
Отчет по лабораторной работе №7. Исследование переходных процессов в
неразветвленной линейной цепи первого порядка
Контрольные вопросы
Лабораторная работа №8. Исследование переходных процессов в
неразветвленной линейной цепи второго порядка
Отчет по лабораторной работе №8. Исследование переходных процессов
в неразветвленной линейной цепи второго порядка
Контрольные вопросы
Лабораторная работа №9. Исследование нелинейной электрической цепи
постоянного тока

Отчет по лабораторной работе №9. Исследование нелинейной	
электрической цепи постоянного тока	50
Контрольные вопросы	52
Лабораторная работа №10. Исследование нелинейной электрической цепи	1
переменного тока (цепь заряда аккумулятора)	53
Отчет по лабораторной работе №10. Исследование нелинейной	
электрической цепи переменного тока	54
Контрольные вопросы	
Двухполюсники и четырехполюсники	56
Лабораторная работа №11. Определение электрических параметров	
объектов исследования как двухполюсников (на примере конструктивов,	
электродных систем, почвенных и биологических объектов)	56
Контрольные вопросы	66
Лабораторная работа №12. Определение электрических параметров объек	тов
исследования как четырехполюсников (на примере электропреобразователей	í,
воздушных и кабельных линий)	67
Отчет по лабораторной работе №12. Определение электрических	
параметров объектов исследования как четырехполюсников (на примере	
электропреобразователей, воздушных и кабельных линий)	72
Контрольные вопросы	75
Трансформаторы и электрические машины	76
Лабораторная работа №13. Исследование однофазного трансформатора	76
Отчет по лабораторной работе №13. Исследование однофазного	
трансформатора	76
Контрольные вопросы	78
Лабораторная работа №14. Исследование трехфазного трансформатора	79
Отчет по лабораторной работе №14. Исследование трехфазного	
трансформатора	85
Контрольные вопросы	88
Лабораторная работа №15. Исследование двигателя постоянного тока	88
Отчет по работе №15. Исследование двигателя постоянного тока	90
Контрольные вопросы	91
Библиографический список	92
Приложение А. Общие требования к оформлению отчетов и порядок	
защиты лабораторных работ	93
Приложение Б. Инструкция пользователю программой Elektronics	
Workbench	94
Приложение В. Ознакомление с программой Elektronics Workbench	
(лабораторно-практическая работа)	96
Приложение Г. Инструкция пользователю программой «Моделирование	
электрических схем»	101
Приложение Д. Инструкция пользователю программой «Расчет	
коэффициентов Фурье»	.102
Приложение Е. Фрагменты отчетов по лабораторным работам	.103

Учебное издание

Ляпин Виктор Григорьевич Загинайлов Владимир Ильич Нормов Дмитрий Александрович Карлаков Дмитрий Сергеевич

ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Рабочая тетрадь Часть 1 Электротехника