бедра у помесных бычков. Существенных различий в значениях индекса костистости между тремя группами исследуемых животных не было выявлено.

Заключение. 1. Живая масса бычков при достижении возраста убоя в 15 месяцев составляет для айрширской породы $390,8\pm5,5$ кг; $471,2\pm4,0$ кг для симментальской породы и $498,4\pm5,1$ кг для помесей, что говорит о хорошем росте и развитии исследуемых животных. Расчеты показали, что полученные разницы в 80,4 кг и 107,6 кг между айрширами и симменталами, а также айрширами и помесными животными достоверны (P<0,001). Превосходство группы помесных животных над симменталами на 5,8% также является достоверным (P<0,05).

2. Животные симментальской породы и их помеси с шароле превосходят своих айрширских сверстников по промерам полуобхват зада, ширина груди и косая длина туловища, в то же время, помесные бычки закономерно превосходят и бычков симментальской породы.

Библиографический список

- 1. Лукьянов, В.Н. Экстерьерные особенности чистопородных и помесных бычков / В.Н. Лукьянов // Евразийский Союз Ученых (ЕСУ) 2015. С. 6-8.
- 2. Сангаджиев Р.Д. Линейные промеры и особенности экстерьера бычков разных генотипов / Р.Д. Сангаджиев, Ф.Г. Каюмов, Р.Ф. Третьякова // Известия ОГАУ. -2020. -№2. С. 218-221.
- 3.Прохоров И.П. Динамика роста мускулатуры чистопородного и помесного молодняка крупного рогатого скота / И.П. Прохоров, В.Н. Лукьянов, О.А. Калмыкова // Достижения науки и техники АПК. 2015. №2. С. 40-42.
- 4.Прохоров И.П. Эффективность производства говядины при использовании промышленного скрещивания / И.П. Прохоров, О.А. Калмыкова, А.Н. Пикуль, А.В. Александров // Российская сельскохозяйственная наука. -2020. № 6. С. 42-45.

УДК 636.2.034:577.29

ВЛИЯНИЕ ГЕНЕТИЧЕСКИХ ФАКТОРОВ НА СОДЕРЖАНИЕ БЕЛКА В МОЛОКЕ КОРОВ

Родионов Геннадий Владимирович, д.с.-х.н., профессор, $\Phi \Gamma EOV BO$ РГАУ-МСХА им. К.А. Тимирязева

Олесюк Анна Петровна, к.б.н., старший преподаватель, ФГБОУ ВО РГАУ-МСХА им. К.А. Тимирязева

Орехова Анастасия Сергеевна, к. с.-х.н., научный сотрудник Тульский НИИСХ - филиал ФИЦ "Немчиновка"

Аннотация. Белок молока - важный экономический и технологический показатель. От его количества и качества зависит оплата молока переработчиками и ценность получаемой молочной продукции. Для повышения белка в молоке коров необходимо уделять внимание качественным показателям белковомолочности и их генетической обусловленности.

Ключевые слова: генетические факторы, белок, качество молока, линии, удой, изменчивость.

Белок молока — важный селекционный, экономический и технологический показатель, который обуславливает качество молочной продукции. Белковый состав молока максимально приближен к эталонному белку за счёт наличия всех незаменимых аминокислот и отсутствия аминокислот, лимитирующих биологическую ценность. При производстве кисломолочной продукции, такой как сыр, творог, количество и состав молочного белка определяют как выход конечного продукта, так и его качество. Оплата молока переработчиками осуществляется в зависимости от содержания белка. Таким образом одной из актуальных задач для молочной отрасли Российской Федерации в настоящее время является повышение содержания белка в молоке коров [1, 6].

В регионах нашей страны можно наблюдать снижение белковомолочности, это вызвано односторонней селекционно-племенной работой с молочным скотом на увеличение продуктивности и жирности молока. Однако в ведущих зарубежных странах большое внимание уделяют увеличению содержания белка в молоке коров как перспективному направлению отрасли [3, 7]. В биохимических исследованиях, проводимых Айзатовым М.Р., Игнатьевой Н.Л., доказана высокая положительная связь между активностью ферментов аламинаминотрансфераза и аспартатаминотрансфераза и содержанием белка в молоке коровдочерей быков канадской, датской, голландской селекции (достоверная корреляция 0,78-0,99). На наш взгляд, это может свидетельствовать о том, что в ведущих зарубежных странах направленная селекция по белковомолочности ведётся в том числе и с применением альтернативных способов увеличения белка в молоке, в частности, с учётом активности ферментов переаминирования (АлАТ и АсАТ) в сыворотке крови [2].

Генетические факторы оказывают сильное влияние на содержание белка в молоке [4, 5]. К ним относится порода, породность, генотип, линейная принадлежность, отбор лучших быков-производителей, подбор пар животных, изменчивость. Сила их влияния на уровень молочной продуктивности составляет 25-30%. На долю паратипических факторов (кормление, сезоны отёла, живая масса и возраст первого осеменения, сервис-период, индекс плодовитости, межотельный период) приходится до 70%.

Зачастую содержание белка и жира в молоке отрицательно коррелируют с с основным селекционируемым признаком молочного скота - удоем. Однако в каждом стаде встречаются особи (до 20%) с положительной связью. Актуально их интенсивное использование для селекционных целей, что приведёт к увеличению содержания белка у коров как отдельного стада, так популяции и породы в целом.

Что касается связи белково- и жирномолочности, то она всегда положительная и находится в пределах от 0,1 до 0,7. С большой вероятностью селекция по жиру будет положительно отражаться и на повышении белка в молока.

Коэффициент наследуемости белковомолочности составляет от 0,4 до 0,7, что относит содержание белка в молоке к высоконаследуемым признакам. Он передается понаследству как по линии отца, так и по материнской линии.

Качественные показатели молочного сырья, главным образом казеин, генетически детерминированы полиморфными генами белков молока. Существует группа мажорных генов, выделенных учёными сравнительно недавно. К таким генам относят ген каппа-казеина (CSN3). Изучено около 15 его аллелей, наибольший интерес из которых представляют аллели А (обеспечивает термоустойчивость молока и молочных продуктов) и В (отвечает за сыропригодность молока) [1, 3]. В данный момент решается проблема поиска генетической устойчивости к инфекционным заболеваниям у крупного рогатого скота. Современные достижения генетики доказали перспективность проведения селекции по аллельным вариантам гена BoLA-DRB3, ассоциирующимся с устойчивостью к вирусу лейкоза крупного рогатого скота. Отмечено, что присутствие в геноме животных аллелей 7, 11, 23, 28 связано с устойчивостью к лейкозу, в то время как аллельные варианты 8, 16, 22, 24 являются чувствительными [3, 7].

В ходе нашего исследования, направленного на увеличение белковомолочности, был проведён эксперимент в Пушкинском районе Московской области в племенном заводе ООО «Лесные поляны» и в лаборатории селекционного контроля качества молока РГАУ МСХА имени К.А. Тимирязева. Хозяйство разводит голштинскую породу скота. Порода по удою и выходу молочного жира, по высочайшей оплате корма молоком, типу телосложения, морфологическим и функциональным качествам молочной железы, сохранению долголетия и воспроизводительной способности значительно превосходит все существующие породы молочного скота и является мировой рекордсменкой. В исследуемом хозяйстве поголовье коров составляет 700 голов и представлено тремя линиями: Вис Бэк Айдиал 1013415, Рефлекшн Соверинг 198998 и Монтвик Чифтейн 95679. Молочная продуктивность коров голштинской породы различных линий за 305 дней первой лактации приведена в таблице 1.

Tаблица 1 Молочная продуктивность коров-первотелок разных линий

	1 3 m J	<u> </u>			
	Линии				
Показатели	Вис Бэк Айдиал	Рефлекшн Соверинг	Монтвик Чифтейн		
	1013415 (n=15)	198998 (n=15)	95679 (n=15)		
	$\overline{X} \pm S_{\bar{x}}$	$\overline{X} \pm S_{\bar{x}}$	$\overline{X} \pm S_{\bar{x}}$		
Число дней лактации	347±14,84	386±30,60	405±33,11		
Удой за лактацию, кг	8847±590	8973±691	9699±1092		
Удой за 305 дней, кг	7848 ± 408	7469±432	7438±370		
МДЖ, %	$4,16\pm0,05$	4,27±0,09	$4,08\pm0,06$		
ВМЖ, кг	$326\pm17,94$	321±22,08	303±15,98		
МДБ, %	$3,20\pm0,02$	3,25±0,03	$3,26\pm0,03$		
ВМБ, кг	252±13,31	242±13,69	242±11,84		

Так, за 1-ю лактацию от коров линии М.Чифтейн надоено на 852 кг молока больше, чем от коров линии В.Б.Айдиал и на 726 кг меньше, чем от коров линии Р.Соверинг. Кроме того наблюдаем высокие различия в продолжительности лактации. У коров линии М.Чифтейн она составила 405 дней, у животных В.Б.Айдиал лактация была короче на 58 дней, а у коров линии Р.Соверинг на 39 дней.

Выявленные различия по продолжительности лактации были связаны с разной продолжительностью сервис - периода (таблица 2). У коров-первотелок линии М.Чифтейн она была самой высокой и составила 180 дней. У животных В.Б.Айдиал лактация длилась 148 дней, а у коров линии Р.Соверинг – 163 дня.

Сервис - периол и сухостойный периол у коров

Таблица 2

Линия	Сухостойный период после 1 лакт. (дн.)		Сервис период в 1лакт. (дн.)		
	$\overline{X} \pm S_{\bar{x}}$	Cv,%	$\overline{X} \pm S_{\bar{x}}$	Cv, %	
ВисБэк Айдиал 1013415(n=15)	57,3±3,06	20,73	148,3±28,68	74,89	
Монтвик Чифтейн 95679 (n=15)	52,9±2,09	15,32	180,3±33,21	71,35	
Рефлекшн Соверинг 198998(n=15)	55,1±2,11	14,87	163,3±30,27	71,78	

Удой за 305 дней лактации сглаживает фактор влияния продолжительности лактации и характеризует генетический потенциал молочной продуктивности коров наиболее точно. Данный показатель был иаивысшим у коров линии В.Б.Айдиал — 7848 кг, у животных линии М.Чифтейн он оказался минимальным и составил 7438 кг.

Молоко коров линии Р.Соверинг имело жирность 4,27%. У животных линий В.Б.Айдиал и М.Чифтейн МДЖ в молоке была ниже на 0,11% и 0,19% соответственно. Содержание белка оказалось максимальным (3,26%) в молоке коров М.Чифтейн.

Тенденция различия по удою подтверждается и при оценке показателей продуктивности коров разных линий по 2-й лактации. Животные линии Р.Соверинг показали молочную продуктивность на 4,9% больше, чем коровы линии В.Б.Айдиал. Различия в удое за лактацию слабо коррелируют с величиной продолжительности лактации. Наивысшая продолжительность лактации в 373 дня была у коров линии Р.Соверинг, наименьшим с разницей в 14 дней этот показатель был у коров линии В.Б.Айдиал.

От коров В.Б.Айдиал за 3-ю лактацию надоено на 270 кг больше молока, чем от коров Р.Соверинг. Животных линии М.Чифтейн в 3-ей лактации не было, что свидетельствует о непродолжительном продуктивном долголетии коров данной линии. У коров линии В.Б.Айдиал третья лактации была наиболее продолжительной и длилась 397 дней. По другим оцениваемым параметрам животные рассматриваемых линий отличались незначительно.

Чередование удачных отборов и грамотный подбор пар животных при проведении селекционной работы является движущей силой развития животноводства. Высокоточная качественная оценка особи, оставление её для продолжения рода, способность подобрать к ней продуктивного партнера, также оценённого специалистами грамотно, выступает залогом прогресса породных типов, пород и целых племенных стад.

Одной из задач хозяйства - это своевременное выявление в ходе проверки по качеству потомства достойных быков-производителей, продолжателей линии, имеющих потенциал для повышения показателей белковомолочности и продления срока хозяйственного использования линий до 6 – 8 поколений. В племенном хояйстве необходимо наличие нескольких линий, отличающихся типом телесложения, уровнем и характером продуктивности, это даёт возможность использовать кроссы линий, явление гетерозиса, а следовательно, является неотъемлемым фактором повышения белковомолочности коров. Кроме того, необходимо вести направленную селекционную работу с использованием достижений смежных наук, например, биохимии: анализировать активность ферментов – аламинаминотрансферазы и аспартатаминотрансферазы – участвующих в процессах переаминирования, а следовательно, активность которых может также напрямую коррелировать с белковомолочностью коров. Расширение селекционной работы, безусловно, должно стремиться и в область повышения качества и безопасности белкового состава молока, требуется дополнительная генетическая оценка коров рассматриваемых линий по генам, ассоциированным с технологическими свойствами молока (CSN3) и иммуномоделирующим генам, ответственным за невосприимчивость к лейкозу крупного рогатого скота (BoLA DRB3).

Выводы.

- 1. По белковомолочности коров линий М.Чифтейн, В.Б. Айдиал, Р.Соверинг не было установлено существенных различий. По показателю удоя животные В.Б. Айдиал превосходили на 410 кг коров линии М.Чифтейн и нра 379 кг коров линии Р.Соверинг.
- 2. Оценка коэффициента наследуемости по массовой доле жира и белка в молоке коров показывает, что в линии М. Чифтейн эти показатели являются превалирующими (0,28 и 0,39 соответственно). По выходу молочного жира коэффициент наследуемости составил 0,57, по удою за 305 дней 0,81. Это говорит о высокой генетической обусловленности исследуемых признаков и позволяет вести селекцию по ним в направлении повышения.
- 3. В проведённых исследованиях наблюдаются высокие показатели коэффициента корреляции между удоем за лактацию и выходом молочного белка и молочного жира. Это позволяет предположить, что селекция по удою не снизит содержания белка в молоке коров изучаемых линий.

Библиографический список

1. Polimorphism prolaktin loci in russian cattle Alipanah M., Kalashnikova L., Rodionov G.V. Journal of Animal and Veterinary Advances. – 2007. – № 6. – P. 813-815.

- 3. Михайлова И.Ю., Лазарева Е.Г., Бигаева А.В., Гильманов Х.Х., Тюлькин С.В. Влияние генетических факторов на продуктивность коров и качество молока // Пищевая промышленность. 2021. №1. С.36-40. URL: https://cyberleninka.ru/article/n/vliyanie-geneticheskih-faktorov-na-produktivnost-korov-i-kachestvo-moloka (дата обращения: 28.10.2022).
- 4. Титова С. В. Влияние генотипических факторов на пожизненную продуктивность черно-пестрых коров // Вестник Марийского государственного университета. Серия «Сельскохозяйственные науки. Экономические науки». 2019. N2 (19). C.329-334.
- 5. Иванов В.А., Марзанов Н.С., Елисеева Л.И., Таджиев К.П., Марзанова С.Н. Генотипы пород крупного рогатого скота и качество молока // Проблемы биологии продуктивных животных. 2017. №3. С.48-65
- 6. Родионов Г.В. Оценка быков-производителей с различными генотипами каппа-казеина по продуктивности их дочерей / Г.В. Родионов, А.П. Олесюк, В.В. Бошлякова // Зоотехния. -2021. № 11. С. 2-4.
- 7. Родионов Г.В. Молочная продуктивность дочерей быков с разными аллелями гена BOLA-DRB3 / Г.В. Родионов, А.С. Орехова, А.П. Олесюк, Л.П. Табакова // Известия Тимирязевской сельскохозяйственной академии. -2021. − № 3. − C. 129-136.

УДК 636.082.

ПОКАЗАТЕЛИ УБОЯ ЧИСТОПОРОДНЫХ И ПОМЕСНЫХ БАРАНЧИКОВ МЕРИНО ФЛЕЙШШАФ Х КАЗАХСКАЯ ТОНКОРУННАЯ

Жумадиллаев Нуржан Кудайбергенович, к. с.-х. н., заведующий отделом тонкорунного и полутонкорунного овцеводства ТОО «Казахский НИИ животноводства и кормопроизводства» филиал «НИИ овцеводства им. К.У. Медеубекова»,

Карынбаев Аманбай Камбарбекович, д.с.-х.н., главный научный сотрудник ТОО «Юго-Западный научно-исследовательский институт животноводства и растениеводства»³

В условиях мирового кризиса, где продовольственное обеспечение населения стоит на первом месте, производство баранины является одним из приоритетных направлений в увеличении производства мяса и мясопродуктов. Результаты научных исследований и опыт передовой практики показывает, что