УДК 663.415.8: 63(669.054)

ОЧИСТКА СТОЧНЫХ ВОД С ИСПОЛЬЗОВАНИЕМ СОРБЕНТОВ НА ОСНОВЕ ДЕТОКСИКАЦИИ ПОЧВЫ СОДЕРЖАЩИЕ ТЯЖЕЛЫЕ МЕТАЛЛЫ

Заичкина М.А., преподаватель, ФГБОУ ВО «Волгоградский государственный аграрный университет» г. Волгоград, Россия

Денисова М.А., к.т.н., доцент, ФГБОУ ВО «Волгоградский государственный аграрный университет» г. Волгоград, Россия

Научный руководитель: **Бочарников В.С.,** д.т.н., профессор, ФГБОУ ВО «Волгоградский государственный аграрный университет» г. Волгоград, Россия

Аннотация: В статье рассматривается отрицательное влияние тяжелых металлов, концентрация в которых поступают в почву и в водные стоки. В предлагаемом материале изложены результаты исследования направлены на утилизацию растения, применяемые для очистки почвы загрязненными тяжелыми металлами методом фиторемедиации. В качестве гипераккумуляционных растений использовалась горчица.

Ключевые слова: EDTA (этилендиаминтетрауксусной кислоты, тяжелые металлы, загрязнение почвы, фиторекультивация

На данный момент, актуальной проблемой является сохранение водных ресурсов, почвы и их рационального использование. В объём пресной воды попадает сточные. Основными источниками загрязнения почвы является фильтрат, среди которых необходимо выделить фракции тяжелых металлов. При отсутствии защитных устройств тяжёлые металлы попадают в почву.

Почва является основа сельскохозяйственного производства. С течением времени, при постоянном воздействии человека, плодородные свойства почвы ухудшаются, в результате чего почва теряет свою продуктивность [1]. Большую опасность представляет загрязнение ее тяжелыми металлами.

Тяжелые металлы, это элементы, которые могут попасть в почву в любом агрегатном состоянии [2]. При этом, загрязнение окружающей среды тяжелыми металлами, связанно с повсеместным использованием несовершенных систем и методов фильтрации, выбрасываемых в окружающую среду отходов, а также несвоевременностью проводимых работ по очистке. Большинство тяжелых металлов, которые поступают с фильтром в окружающую среду способны аккумулироваться в организме человека.

Почва и сточные воды которая загрязнена тяжелыми металлами, служит источником вторичного загрязнения подземных вод и воздуха. Для изучения очитки сточных вод и почвы от тяжелых металлов был применен метод метод фитоэкстракция и фиторекультивация.

Существует сорбционный метод с использованием в качестве сорбентов природные неорганические вещества для отчистки природных и сточных од от

тяжелых металлов. Для данного изучения некоторыми ученными был проведен о исследование на основе которых были сделаны выводы, что анализ использование сорбционной способности известняка и доломита на модельных растворах показал, что сорбционная емкость известняка существенно превышает аналогичную характеристику доломита: для Cu2+ в 1,5 раза, для Zn2+ в 1,4 раза и для Mn2+ в 5,9 раз [6].

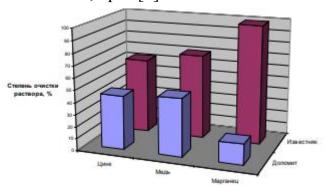


Рисунок 1. Сравнение сорбционной способности исследуемых природных сорбентов

При анализе исследований, проводимых на территории Волгограда и Волгоградской области, были систематизированы результаты по содержанию тяжелых металлов в почве, которые представлены на рисунке 2 и 3. Для понятия общей картины на диаграмме представлены предельно допустимые концентрации (ПДК) [5].



Рисунок 2. Валовое содержание тяжелых металлов в почвах, мг/кг

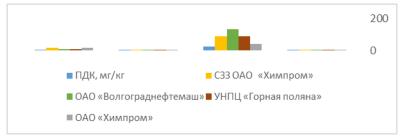


Рисунок 3. Содержание тяжелых металлов в подвижной форме в почвах исследуемых объектов, мг/кг

В качестве очистки почвы, был применен метод фитоэкстракция и фиторекультивация горчицы с добавлением динатриевой соли этилендиаминтетрауксусной кислоты. Данное кислота представляет собой белое твердое вещество которое хорошо растворяется в воде. Ниже представлено описание данного химического вещества. [4]

Химическая формула: $C_{10}H_{12}N_2Na_4O_82H_2O$

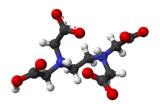


Рисунок 4. Модель комплекса, образованного EDTA с ионом Cu²⁺

исследовании проведена, фитомелиорация использованием гипераккумуляционных горчицы по удалению тяжелых металлов из почвы с использованием методом фиторекультивация. Данное исследование заключается в посеве и выращивании горчицы, при орошении которой, в почву вносятся различные концентрации EDTA. Технология состоит в следующем. Производится высадка семян горчицы на загрязненном участке, почва заражена тяжёлыми металлами цинком, медью, свинцом, ртутью, затем осуществляется орошение почвы с добавлением EDTA по однофакторной схеме в пяти проворностях. На первой делянке внос в почву EDTA не производился. На всех остальных участках EDTA вносится соответственно: 2.5; 5; 7.5; 10.0 кг·га⁻¹. [3]

Для проведения эксперимента на выбранных участках, после проведения опыта были взяты пробы почв черноземовидной (темноцветная) супесчаной почвы Купоросной балки и светло-каштановая солонцеватая суглинистая почва УНПЦ «Горная поляна».

Рисунок 5. Обработка гиперакумуляторные растения на загрязненной почве с применением EDTA

До начала проведения эксперимента почву подкисляли внесением компоста, и производили полив растений с применением EDTA . Затем, в фазу зацветания, растения горчицы утилизируют.

Выбранное растение физически и химически иммобилизируют загрязнители через свои корни. Гиперакумуляторные растения, используемые в

области исследования, которое производит большое количество биомассы при условии высоких концентраций тяжелых металлов

По завершении фазы роста и процессов транспортировки токсических веществ в надземные органы растений, они удаляются и подлежат утилизации.

Установлено, что способ очистки почв от тяжелых металлов путем растений-фитомелиорантов выращивания гиперааумуляторные загрязненных почвах является экологически безопасным и экономически целесообразным. Анализ почв после проведенных исследований, показал положительную динамику в отношении тяжелых металлов, находящихся в почве. Таким образом заявленный способ характеризуется эффективностью и относительной простотой исполнения, при этом обеспечивает повышения эффективности очистки ПОЧВЫ OT тяжелых металлов. В эксперимента установлено, что наилучшим поглощением тяжёлых металлов наблюдалось при концентрации 7,5 кг на гектар почвы, дальнейшее увеличение дозировки не вызывает улучшения показателей качества очистки почвы, в частности по содержанию цинка. Данные приведены на рисунке 5

Рисунок 6. Содержание тяжелых металлов при разных дозировках ЭДТА в водном растворе

Библиографический список

- 1. Очистка промышленно-бытовых сточных вод от тяжелых металлов методомферритизации Бочарников В.С., Козинская О.В., Денисова М.А., Юнусов С.А. В сборнике: оптимизация сельскохозяйственного землепользования и усиление экспортного потенциала апк рф на основе конвергентных технологий. материалы международной научно-практической конференции, проведенной в рамках международного научно-практического форума, посвященного 75-летию победы в великой отечественной войне 1941-1945 гг.. волгоград, 2020. С. 27-32.
- 2. Simultaneous cu-edta oxidation decomplexation and cr(vi) reduction in water by persulfate/formate system: reaction process and mechanismswang, q., zhang, y., li, y, wang, t., jia, h.chemical engineering journal 427,131584, 2022.
- 3. Влияние edta на комплекс тяжёлых металлов в почвенной среде Бочарников В.С., Заичкина М.А., Денисова М.А., в сборнике: научное обоснование стратегии развития апк и сельских территорий в ххі веке.

материалы национальной научно-практической конференции. волгоград, 2021. с. 129-133

- 4. Performance and microbial community analysis of an electrobiofilm reactor enhanced by ferrous-edtaliu, n., li, y.-y., ouyang, d.-j., (...), wang, w.-j., hu, j.-j. 2021 acs omega6(28), C. 17766-17775
- 5.Тяжелые металлы в почвах волгоградской агломерации. Околелова А.А., Егорова Г.С., Касьянова А.С.известия нижневолжского Агро университетского комплекса: наука и высшее профессиональное образование. 2013. № 1 (29). с. 45-49.
- 6.Очистка сточных вод природными сорбентами Н.Д. Левкин, Н.Н. Афанасьева, А.А. Маликов, В.Л. Рыбак, с. 37-42

УДК 632.981.31

ВЛИЯНИЕ КОНДИЦИОНИРУЮЩИХ ПРЕПАРАТОВ НА СОСТОЯНИЕ ВОДНЫХ ПАРАМЕТРОВ ИСТОЧНИКОВ УЛЬЯНОВСКОЙ ОБЛАСТИ

Силантьев А.С., Ширков М.П., студенты 2 курса факультета агротехнологий, земельных ресурсов и пищевых производств **Тойгильдин А.Л.,** Научный руководитель, доктор биологических наук, доцент ФГБОУ ВО Ульяновский ГАУ

Аннотация: Работа изучению посвящена влияния препаратов кондиционирующего свойства под торговыми названиями Лакмус (производитель Щелково Агрохим), Радужный (производитель БашИнком) на воды родниковых источников Ульяновска, в условиях хозяйства «КФХ Ширков», чтобы проверить эффективность улучшения водных показателей для совместного использования с различными средствами защиты растений.

Ключевые слова: кондиционирование воды, химическая обработка, пестициды, эффективность, свойства воды.

В условиях интенсификации сельского хозяйства учеными были придуманы вещества, улучшающие эффективность химических средств защиты растений путем совершенствования показателей водного раствора, используемого в приготовлении рабочих смесей пестицидов. Все упирается в качество воды, ведь для опрыскивания, как правило, берут ее из естественных и искусственных водоемов или из скважин. И если от грязи воду можно очистить с помощью фильтрации, то такие важные параметры качества воды, как жесткость и кислотность при этом останутся без изменений. В большинстве аграрных регионов страны вода, применяемая для опрыскивания, имеет высокую жесткость, которая обусловлена высоким содержанием в ней солей кальция и магния, и обладает щелочной реакцией.

Жесткая вода негативно влияет на эффективность средств защиты растений (особенно пиретроидов и гербицидов на основе 2,4-Д, МЦПА,