7. Савич В.И., Седых В.А., Балабко П.Н., Замана С.П., Гукалов В.В. Инновационные технологии в агропромышленном комплексе. М.: РГАУ-МСХА им. К. А. Тимирязева ООО "Плодородие", 2020. 352 с.

УДК 633.13:577.151.45 631.811.1

ВЛИЯНИЕ РЕЖИМА ПИТАНИЯ НА ФОРМИРОВАНИЕ КАЧЕСТВА ЗЕРНА ОВСА

Научный руководитель: **Новиков Николай Николаевич,** д.б.н., профессор кафедры агрономической, биологической химии и радиологии, ФГБОУ ВО «РГАУ-МСХА имени К.А. Тимирязева, tshanovikov@gmail.com

Аннотация: В лабораторных опытах установлено, что при увеличении доз азота, увеличиваются содержание белка, концентрация спирторастворимых и щелочерастворимых белков, понижается концентрация солерастворимых, водорастворимых и неэкстрагируемых белков. Повышается активность кислых, нейтральных и щелочных амилаз и каталаз.

Ключевые слова: зерно овса, режим питания, активность амилаз, каталаз, формирование качества, содержание белка, состав белков.

Режим минерального питания является основным регулируемым фактором, который используется для развития растений и формирования высокого качества зерна. С помощью применения удобрений, учитывая биологические особенности сорта, природно-климатических условий, доз и форм удобрений, можно значительно повысить качество зерна овса. [1,7].

На формирование технологических и семенных качеств зерна овса значительное влияние оказывают ферменты гидролитического действия, среди которых наиболее важное место занимают амилазы. В полностью созревшем зерне общая активность амилаз в большей степени представлена свободными формами β-амилаз. В прорастающих зерновках повышается активность амилолитических ферментов, которые переходят в свободную форму из связанного состояния. [2, 7].

Каталаза, входящая в состав антиоксидантной системы растений, катализирует в прорастающих зерновках злаковых культур защитные реакции от окисления пероксидом водорода жизненно важных метаболитов и липидных группировок в составе клеточных мембран и поддерживает нормальное осуществление биохимических реакций в ходе развития проростков и таким образом обеспечивает стабильность происходящих в них биохимических процессов [2, 6].

Целью наших исследований было выяснение влияния режима питания на формирование состава белков, активность кислых, нейтральных и щелочных амилаз и каталаз в зерне овса.

Для проведения исследований использовали зерно овса сорта Яков селекции Московского НИИСХ, выращенное на дерново-подзолистой среднесуглинистой почве в 2020 г. на экспериментальной базе указанного института. Зерновки овса проращивали на дистиллированной воде в течение 5 суток при температуре 25°C. В анализ включали проросшие зерновки после удаления ростков и корешков.

В образцах зерна определяли различные формы азота (общий, белковый, небелковый азот, азот белковых фракций) [5]. Амилазы определяли методом йод-крахмальной пробы, каталазы — по Баху и Опарину [3, 4]. Зерновки овса проращивали на дистиллированной воде в течение 5 суток при температуре 25°С. Для проведения ферментных реакций при рН 5,5, 7,0, 8,0 использовали 1/15 М фосфатный буфер. Полученный экспериментальный материал статистически оценивали дисперсионным методом с применением компьютерной программы «Straz» (Версия 2.1, 1989–1991).

При внесении на указанном фоне дозы азота 60 кг/га существенно увеличилась белковистость зерна (до 9,81%), понизились концентрация водорастворимых белков, глобулинов, неэкстрагируемых белков, а также повысилось содержание глютелинов. Причем указанные изменения в составе белков наблюдались при возрастании дозы азота до 120 кг/га, выявлено повышение содержания белков (до 10,26%). При внесении дозы азота 150 кг/га наблюдается увеличение концентрации глютелинов, установлено существенное снижение склеропротеинов.

Таблица 1 Содержание белка и белковых фракций в зерне овса (азот фракций в % от белкового азота)

Доза удобрен ий	альбумины и л-р глобулины (H2O)	глобулин ы (10% KCl)	Проламин ы (70% этанол)	Глютелины (0,2% NaOH)	Склеро- протеины	Содержани е белков, % сухой массы
P60K60	17,62	26,43	12,11	35,24	8,59	9,04
N60P60 K60	17,80	24,42	12,21	37,64	7,93	9,81
N90P60 K60	16,26	23,37	13,21	39,63	7,52	9,78
N120P60 K60	16,00	22,31	13,58	40,74	7,37	10,26
N150P60 K60	16,27	22,34	12,63	41,77	6,99	10,30
HCP ₀₅	0,17	0,26	0,13	0,40	0,09	0,10

Было установлено, что при внесении дозы азота до 60 кг/га активность кислых, нейтральных и щелочных амилаз существенно увеличилась по отношению к предыдущему варианту, также повысилась активность каталаз

при заданных значениях рН. При увеличении дозы азота до 120 кг/га наблюдается существенное увеличение уровня амилазной активности и активности каталаз по всем значениям рН. Выявлено, что при увеличении дозы еще на 30 кг/га возрастает активность нейтральных и щелочных амилаз, существенно повышается активность кислых каталаз.

Таблица 2 Активность кислых, нейтральных и щелочных амилаз и каталаз в зерне овса

Доза удоб рени й (A)	рН (Б)	Активность амилаз, мг гидролизованного крахмала за 1 мин	Среднее по фактору (A)	Среднее по фактору (Б)	Активнос ть каталаз, нкат	Среднее по фактору (A)	Сре днее по факт ору (Б)
P60 K60	5,5 7 8	387,68 275,03 120,24	260,98	420,23	253,04 986,04 1014,74	751,27 839,63	441, 69
N60 P60 K60	5,5 7 8	411,77 302,65 173,25	295,89		358,02 1059,99 1100,87		
N90 P60 K60	5,5 7 8	418,04 294,79 187,15	299,99	309,26	379,59 1075,39 1113,19	856,06	1074 ,62
N12 0P6 0K6	5,5 7	445,9 328,58	338,32	196,50	575,81 1121,59	962,49	1125 ,47
0 N15	8 5,5	240,49 437,78			1190,06	993,53	
0P6 0K6 0	8	345,25 261,38	348,14		1130,09 1208,51		
HCP ₀₅		16,47	9,51	7,36	22,2	12,81	9,93

Таким образом, при повышении уровня азотного питания увеличивались общее содержание белков, глютелинов и проламинов, наблюдалось снижение концентрации глобулинов, водорастворимых и неэкстрагируемых белков, повышалась активность кислых нейтральных и щелочных амилаз и каталаз.

Библиографический список

- 1. Алметов, Н. С. Урожайность и качество зерна яровой пшеницы в зависимости от предшественников, удобрений и биопрепарата / Н.С. Алметов, Н.В. Горячкин // Вестник Марийского государственного университета − 2013. − №11. С. 7–9.
- 2. Новиков Н.Н. Биохимические основы формирования качества продукции растениеводства / Н.Н. Новиков. М.: Издательство РГАУ–МСХА имени К.А. Тимирязева. 2014. 194 с.

- 3. Новиков, Н.Н. Лабораторный практикум по биохимии растений / Н.Н. Новиков, Т.В. Таразанова. М.: Изд. РГАУ МСХА им. К.А. Тимирязева, 2012.-97 с.
- 4. Новиков, Н.Н. Новый метод определения активности пероксидаз в растениях / Н.Н. Новиков // Известия ТСХА 2016. №3. С.36-46.
- 5. Плешков, Б. П. Практикум по биохимии растений / Б.П. Плешков. М.: Колос, 1985, с. 255.
- 6. Mahmoudi, T. Antioxidant activity of Iranian barley grain cultivars and their malts // T. Mahmoudi, M.R. Oveisi, B. Jannat et al. // African Journal of Food Science. 2015. Vol. 9 (11). P. 534–539.
- 7. Novikov, N.N. Protein composition and grain quality of spring soft wheat (Triticum aestivum L.) depending on the level of nitrogen nutrition and phytoregulators use in case of cultivation on sod-podzol medium loamy soil / N.N. Novikov, A.A. Zharikhina // Izvestiya TSKhA. 2013. special issue. P. 142–152.

УДК 631.4

СТРУКТУРНОЕ СОСТОЯНИЕ ЗОНАЛЬНЫХ И ГОРОДСКИХ ПОЧВ НА ПРИМЕРЕ ПОДЗОЛИСТОЙ И АГРОДЕРНОВО-ПОДЗОЛИСТОЙ ПОЧВ СЫКТЫВКАРА

Тосхопоран Анастасия Константиновна, выпускница кафедры физики и мелиорации почв факультета Почвоведения МГУ им. М.В. Ломоносова, stasy.toskhoporan@gmail.com

Сусленкова М.М научный сотрудник, МГУ имени М.В.Ломоносова **Холопов Ю.В.** к.б.н., Институт биологии Коми научного центра Уральского отделения РАН

Аннотация: Исследованы поровое пространство и структурные характеристики городской почвы г. Сыктывкара в сопоставлении с зональной почвой.

Ключевые слова: микростроение, почвенные агрегаты, порозность агрегатов, сканирующая электронная микроскопия.

Трансформация почв в городских условиях, как правило, приводит к ухудшению качества жизни живых организмов. Растения являются одной из важнейших частей любой экосистемы, а для территорий города выполняют функцию поддержания экологического равновесия окружающей среды. Почва служит средой обитания растений, обеспечивает их водой и питательными веществами. Структура имеет одно из важнейших значений в поддержании оптимальности почвенных условий для успешного роста и развития растений, что во многом обусловливается оптимальностью соотношения твердой, жидкой и газообразной фазами почв, обеспечиваемое почвенной структурой. Это, в свою очередь, определяет водный, воздушный и температурный режимы почвы. Все эти факторы в совокупности определяют почвенное плодородие, как основу качества растительного покрова городской среды.