Environmental Science 548 (2020) 082011 IOP Publishing /To cite this article: O V Gorelik et al -2020 - IOP Conf. Ser.: Earth Environ. Sci. 548 082009 doi:10.1088/1755-1315/548/8/082009.

- 2. Gorelik O V The use of inbreeding in dairy cattle breeding / O V Gorelik, O E Lihodeevskaya, N N Zezin, M Ya Sevostyanov and O I Leshonok // AGRITECH-III-2020 IOP Conf. Series: Earth and Environmental Science 548 (2020) 082011 IOP Publishing https://iopscience.iop.org/article/To cite this article: O V Gorelik et al 2020 IOP Conf. Ser.: Earth Environ. Sci. /10.1088/1755-1315/548/8/082013.
- 3. Гридин В.Ф. Анализ породного и классного состава крупного рогатого скота Уральского региона /В.Ф. Гридин, С.Л. Гридина //Российская сельскохозяйственная наука. 2019. № 1. С. 50-51.
- 4. Колесникова А.В., Степень использования генетического потенциала голштинских быков-производителей различной селекции / А.В. Колесникова// Зоотехния. 2017. №1. С 10-12.
- 5. Молчанова Н.В. Влияние методов разведения на продуктивное долголетие и пожизненную продуктивность коров / Н.В. Молчанова, В.И. Сельцов // Зоотехния. 2016. №9. С.2-4.
- 6. Донник И.М. Роль генетических факторов в повышении продуктивности крупного рогатого скота /И.М. Донник, С.В. Мымрин // Главный зоотехник. -2016. № 8. С. 20-32.
- 7. Донник И.М. Повышение биоресурсного потенциала быковпроизводителей /И.М. Донник, С.В. Мымрин //Главный зоотехник. 2016. N 4. C. 7-14.
- 8. Gridina S. Characterization of high-producing cows by their immunogenetic status / S S Gridina, V Gridin and O Leshonok //Advances in Engineering Research. 2018. 253-256

УДК 636.4.082

ГЕНОТИПИРОВАНИЕ И ВОСПРОИЗВОДИТЕЛЬНЫЕ КАЧЕСТВА СВИНОМАТОК КРУПНОЙ БЕЛОЙ ПОРОДЫ В УСЛОВИЯХ ФЕРМЕРСКОГО ХОЗЯЙСТВА

Максимов Александр Геннадьевич, кандидат с.-х. наук, доцент кафедры разведения с.-х. животных, частной зоотехнии и зоогигиены имени академика П.Е. Ладана, ФГБОУ ВО «Донской государственный аграрный университет» Максимов Никита Александрович, студент Донского ГАУ

Аннотация: Приводятся результаты определения частоты аллелей и генотипов по генам MC4R, PRLR, ESR, FSHb, PIT1/RSAI и PIT1/MSPI связанным с репродуктивными показателями маток в условиях фермерского хозяйства. Определены желательные генотипы свиней по вышеперечисленным генам.

Ключевые слова: свиноматки, репродуктивные показатели, ДНК-генотипирование, гены MC4R, PRLR, ESR, FSHb.

Актуальность исследований. Достижения в области молекулярной генетики дают возможность применять в селекции с.-х. животных не только классические методы, но и ДНК-технологии.

Применение при отборе и подборе ДНК-типирования дает возможность проводить селекцию непосредственно по генотипу оцениваемых животных. Но, необходимо отметить то, что вопросы поиска (новых) и использования в селекции (уже известных) генетических маркеров пока еще не до конца изучены.

исследований. Цель работы проанализировать Цель методика репродуктивные показатели свиноматок (фермерского хозяйства) в связи с их генотипами по генам MC4R, PRLR, ESR, FSHb, PIT1/RSAI и PIT1/MSPI. В условиях фермерского хозяйства, расположенного в Ростовской области, у 10 свиноматок (аналогов, породы КБ) отбирались пробы крови. Далее определялась частота аллелей и генотипов генов MC4R, PRLR, ESR, FSHb, PIT1/RSAI и PIT1/MSPI и их связь с репродуктивные показатели животных. У животных участвовавших в эксперименте определяли многоплодие (гол.), массу гнезда поросят при рождении (кг), крупноплодность (кг), молочность (в 21 день, кг), массу 1 поросенка в 21 день и количество поросят (гол, %) в 2 мес. От маток брали кровь из ушной вены и проводили ДНК-генотипирование в лаборатории молекулярной диагностики и биотехнологии с.-х. животных Донского ГАУ. ДНК-типирование проводили по методике К. Мюллиса (1985), усовершенствованной К. Boom et al. и модифицированной Н.В. Ковалюк [2, 5]. Все полученные числовые материалы обрабатывали биометрически по Г.Ф. Лакину [3].

Результаты. Установлено (таблица), частота ЧТО генотипа AA/MC4R=20%, AG=80%; $P_{A}=0,6$; G=0.4.a Матки генотипа-АА характеризовались большим многоплодием (12 гол.) и массой 1 поросенка в 21дневном возрасте (5,8 кг), но аналоги генотипа-АG- преимущественно отличались от них крупноплодностью, молочностью и числом поросят в 2-х мес. Возрасте, а также их сохранностью.

По PRLR-гену частота генотипов AA, AB и BB составила соответственно 20; 30 и 50%; а P_A =0,35, P_B =0,65 Свиньи BB-генотипа имели лучшее многоплодие (12 гол.), массу гнезда при рождении (15,2 кг), молочность в 21 день (54,8 кг), массу 1 поросенка в 21-дневном возрасте (5,46 кг) и количество поросят в 2 мес. (10 гол.). Лучшей сохранностью поросят отличались матки AA-генотипа.

По гену ESR все 100% маток имели генотип AB.

В опыте А.М. Саенко, В.Н. Балацкого (2009) у свиней КБ (особенно УКБ-1) частота аллеля В, связанного с высоким многоплодием свиноматок была наибольшей [4].

По гену FSHb было выявлено 2 генотипа— AB (10%) и BB (90%). P_A =0,05; P_B =0,95. По большинству репродуктивных качеств (кроме выхода деловых поросят) лидировали матки генотипа-BB.

По сообщению Н. Зиновьевой (2008) у маток зарубежных пород, несущих аллель В-гена FSHb многоплодие выше, чем у аналогов АА-генотипа на 0,4-1,2 поросенка [1].

Таблица Воспроизводительные качества свиноматок разных генотипов

		Macca				Кол-во	
	Много-	гнезда	Крупно-	Молоч-	Macca 1	пор. в 2 мес.	
Генотип по	плодие,	при	плод-ть,	ность(21	пор. в 21	•	%
гену	гол.	рожд., кг	КГ	дн.), кг	дн., кг	гол.	
MC4R	12±0,67	14,4±0,8	1,2±0	49,3±0,97	5,8±0	8,5±0,17	70,83
M±m	0,67	0,8	0	0,97	0	0,17	-
AA n=2							-
δ							
Cv,%	5,58	5,56	0	1,97	0	2	
AG	11,5±0,25	$14,4\pm0,3$	1,3±0,025	54,9±1,8	5,35±0,113	10,25±0,19	89,13
M±m	0,67	0,8	0,067	4,78	0,3	0,5	-
n=8							-
δ							
Cv,%	5,83	5,56	5,15	8,7	5,61	4,88	00.00
PRLR	11±0,33	13,2±0,37	1,2±0	53,2±2,27	5,4±0,13	10±0,67	90,90
M±m	0,33	0,37	0	2,27	0,13	0,67	-
AA							-
δ							
n=2	2	2.0	0	4.27	2.41	6.7	
Cv,%	3 11,3±0,48	2,8	0	4,27 52,5±1,23	2,41 5,43±0,106	6,7 9,67±0,12	05.57
AB	, ,	13,8±0,4	1,33±0,023	, ,	, ,	, ,	85,57
M±m n=3	0,67	0,57	0,033	1,73	0,15	0,17	-
δ							-
Cv,%	5,93	4,13	2,48	3,3	2,76	1,76	
BB	12±0,34	15,2±0,3	1,28±0,034	54,8±2,39	5,46±0,15	10±0,17	83,33
M±m	0,67	0,6	0,067	4,78	0,3	0,33	-
n=5	0,07	0,0	0,007	1,70	0,5	0,55	_
δ							
Cv,%	5,58	3,95	5,23	8,72	5,49	3,3	
ESR	11,6±0,22	14,4±0,27	1,28±0,022	53,8±1,59	5,44±0,1	9,9±0,22	85,34
M±m	0,67	0,8	0,067	4,78	0,3	0,67	-
AB	, , , , , , , , , , , , , , , , , , ,	,	ŕ	,	,	,	-
δ							
n=10							
Cv,%	5,78	5,56	5,23	8,88	5,51	6,76	
FSHb							90,90
AB n=1							
M	11	13,2	1,2	49,2	4,9	10	
BB	$11,7\pm0,24$	14,5±0,28	1,29±0,023	54,3±1,69	5,5±0,106	9,9±0,24	84,61
M±m	0,67	0,8	0,067	4,78	0,3	0,67	-
n=9	5,73	5,52	5,19	8,8	5,45	6,77	<u> </u>
δ				_			
Cv,%							

	Продолжение таблицы									
PIT1/RSAI	11,7±0,35	$13,5\pm0,4$	1,27±0,023	54,3±1,06	$5,27\pm0,121$	$10,3\pm0,12$	88,03			
M±m	0,5	0,57	0,033	1,5	0,17	0,17	-			
EE							-			
δ										
n=3										
Cv,%	4,27	4,22	2,6	2,76	3,23	1,65				
EF	11,6±0,27	14,7±0,33	$1,29\pm0,027$	53,6±1,96	5,51±0,123	9,71±0,27	83,70			
M±m	0,67	0,8	0,067	4,78	0,3	0,67	-			
n=7							-			
δ										
Cv,%	5,78	5,44	5,19	8,92	5,44	6,9				
PIT1/MSPI	11,6±0,22	14,4±0,27	$1,28\pm0,022$	53,8±1,59	5,44±0,1	$9,9\pm0,22$	85,34			
M±m	0,67	0,8	0,067	4,78	0,3	0,67	-			
DD	1	1	1	i	i	i				
δ										
n=10										
Cv,%	5,78	5,56	5,23	8,88	5,51	6,77				

В нашем опыте генотип-EE по гену PIT1/RSAI имели 30% свиноматок, EF – 70%; P_E =0,65; P_F =0,35.

По большинству репродуктивных признаков (многоплодию, молочности и числу деловых поросят) лучшими были матки генотипа-ЕЕ. У животных ЕГ-генотипа лучше были — масса гнезда при рождении и масса 1 поросенка в 21-дневном возрасте.

По гену PIT1/RSPI все животные имели генотип-DD.

Выводы. Определены желательные по продуктивности свиноматок генотипы, по генам MC4R, PRLR, FSHb и PIT1/RSAI: AG, BB, BB и EE соответственно. Среди подопытных животных наибольшую частоту имели генотипы AG/MC4R-80%, BB/PRLR-50%, AB/ESR-100%, BB/FSHb-90%, EE/PIT1/RSAI-70% и DD/PIT1/MSPI-100%. Лучшую продуктивность имели свиноматки генотипа AG, BB, BB, EE по аллелям MC4R, PRLR, FSHb, PIT1/RSAI соответственно. Для повышения эффективности отбора и подбора необходимо применять ДНК-генотипирование по исследованным генам.

Библиографический список

- 1. Зиновьева Н. Молекулярно-генетические маркеры в свиноводстве//Свиноводство.-2008.-№12.-С.9-10.
- 2. Ковалюк Н.В. Использование в селекции свиней генетических маркеров стрессустойчивости и многоплодия: автореф. дис... канд. биол. н./Н.В. Ковалюк.-Боровск.-2002.-26с.
- 3. Лакин Г.Ф. Биометрия:Учеб. пособие для биологич. спец. вузов.-3-е изд., перераб. и доп.-М.:Высшая школа, 1980.-293с., ил.
- 4. Саенко А.М., Балацкий В.Н. Полиморфизм генов RYR1, ESR, PRLR и GH в популяциях свиней разных пород//Матер. 18-го заседания межвузовского координационного совета по свиноводству «Международной научно-производственной конференции «Актуальные проблемы производства

свинины в Российской Федерации».-пос. Лазаревский (Сочи) 2-4 июня 2009 г. пос. Персиановский, ДГАУ,2009.-С.74-77.

5. Boom R. et al. Rapid and simple method for purification of nucleic acids//J. Clin. Microbiol.-1990.-№28.-P. 495-503.

УДК 616.32/38.092.101

ИСПОЛЬЗОВАНИЕ ПОЛИМОРФИЗМА ГРУПП КРОВИ В СЕЛЕКЦИИ ОВЕЦ КАЗАХСКОЙ МЯСО-ШЕРСТНОЙ ПОЛУТОНКОРУННОЙ ПОРОДЫ

Исламов Есенбай Исраилович, профессор кафедры технологии производства продукции животноводства 1

Кулманова Гульжан Абжанановна, профессор кафедры технологии производства продукции животноводства 1

Кулатаев Бейбит Турганбекович, профессор кафедры технологии производства продукции животноводства I

Бекбаева Динара Нусиповна, ст.преподаватель кафедры технологии производства продукции животноводства I

Казахский национальный аграрный исследовательский университет, г. Алматы, Республика Казахстан

Аннотация. Установлены степени генетических различий между баранами-производителями и матками на основе индекса генетического сходства и особенности формирования продуктивности, морфобиохимического статуса, резистентности потомства, полученного от родителей с разной генетической сочетаемостью.

Ключевые слова: селекция, генетические структуры, генофонд, биохимические исследования, антигены, число аллелей, эритроциты, лейкоциты, гемоглобин, резистентность, эритроцитарные факторы, шерстная и мясная продуктивность

Введение. Одной из самых важных проблем селекционного совершенствования сельскохозяйственных животных, в т.ч. овец, является выявление наиболее ценных генотипов, максимально соответствующих по уровню продуктивности и качеству получаемой продукции требованиям перерабатывающей промышленности, которая в свою очередь ориентирована на потребительский рынок [1,2].

Цель исследований — использованием иммуногенетических, морфобиохимических методов изучить генофонд и внутрипородную дифференциацию овец казахской мясо-шерстной полутонкорунной породы, определить генотипы высокой продуктивности.

Материалы и методы исследований. Исследования проводились в условиях ТОО «Батай-Шу» Шуского района Жамбылской области. В эксперименте использовались овцы казахской мясо-шерстной полутонкорунной породы. Объектом исследований были взрослые бараны-производители, матки