- 12. Опыт создания высокопродуктивных молочных стад / Г.А. Симонов, В.А. Сабурин, Ю.А. Коваль [и др.] // Зоотехния. 2005. № 1. С. 11.-15.
- 13. Симонов Г.А. Использование комплексной минеральной смеси в кормлении коров / Г.А. Симонов // Вестник Российской академии сельскохозяйственных наук. 1988. № 3. С.60-61.
- 14. Разведение кроссбредных овец аксарайского типа / Г.А. Симонов, Г.К. Тюлебаев, Г.Н. Нугманов // Зоотехния. -2008. № 6. С. 9-12.
- 15. Тритикале в рационе лактирующих свиноматок / Г.А. Симонов, В.И. Гуревич // Эффективное животноводство. -2012.- № 8(82). -C. 48-49.
- 16. Потребность суягных овцематок в меди в условиях аридной зоны России / Е.А. Тяпугин [и др.] // Российская сельскохозяйственная наука. -2018. № 2.-C.50-54.
- 17. Пастбища и их роль в кормлении молочного скота в условиях Европейского Севера РФ / Е. Тяпугин [и др.] // Молочное и мясное скотоводство. 2011. N 5. C. 23-24.
- 18. Красная степная порода скота состояние и перспективы / Р.М. Чавтараев // Проблемы развития АПК Региона. 2014. Т.20. №4(20). С. 68-70.

УДК 636. 22.28 /082

ПРОДУКТИВНЫЕ КАЧЕСТВА ЧИСТОПОРОДНОГО И ПОМЕСНОГО ЗЕБУВИДНОГО МОЛОДНЯКА В РАВНИННОЙ ЗОНЕ ДАГЕСТАНА

Хасболатова Халижат Темирболотовна, доцент кафедры технологии производства продукции животноводства

Садыков Мугудин Магомедгадиевич, доцент кафедры технологии производства продукции животноводства

Кебедова Патимат Абдулкаримовна, доцент кафедры технологии производства продукции животноводства

ФГБОУ ВО Дагестанский государственный аграрный университет, г. Махачкала, Россия

Аннотация: В статье приведены результаты гибридизации красно степной породы с новозеландской зебу в равнинной провинции Республики Дагестан. Установлено, что полученные гибриды обладают высокой энергией роста. В годовалом возрасте живая масса гибридов составила 212,3 кг, сверстников— 196,2 кг, что было больше у гибридов на 16,1 кг или на 8,2 % ($P \le 0,01$). В 18— месячном возрасте с откорма сняли гибридных животных с массой тела 313,4 кг, а красно степных сверстников с массой - 290,1 кг соответственно. Помеси превосходили чистопородных сверстников на 23,3 кг или на 8,0 % при достоверной разнице ($P \le 0,001$). Среднесуточные приросты у гибридов были выше на 42 г или на 8,6 % по сравнению с красно-степной породой.

Ключевые слова: порода, красно степная, новозеландская зебу, бычки гибриды, живая масса, среднесуточные приросты.

Молочное скотоводство в равнинной зоне Дагестана развивается более интенсивно. Действуют крупные молочные комплексы АО» Дарада – Мурада Гергебельского района, СПК Агрофирма имени Улубий Буйнакского, Кизилюртовского района, ПК плем.завод Батлайч Хунзахского района, Агрофирма СХК «Согратль» Гунибского района

Районированная и распространенная порода крупного рогатого скота в равнинной зоне является красная степная, численность которой превышает 250 тыс. голов, где производится примерно 70% молока. Животные красной степной породы, обладают хорошей приспособленностью к условиям жаркого климата, выносливы и сравнительно неприхотливы, в условиях улучшенного кормления отзывчивы [8].

Однако равнинная зона является не неблагополучной кровопаразитарным заболеваниям, разводимые молочные и комбинированные породы: красная степная, кавказская бурая и симментальская имеют слабую устойчивость к инфекционным заболеваниям, что приносит значительный ущерб хозяйствам. Ежегодный падеж крупного рогатого скота в хозяйствах составляет от 3-х до 5 % и более от общего поголовья. Ущерб складывается не только от непосредственной гибели животных, но и от их вынужденного убоя, снижения продуктивности и воспроизводительной способности, от задержки в росте молодняка, больших затрат средств и времени на проведение лечебнопрофилактических и ветеринарно-санитарных мероприятий. Так, для животных республике низменных районов В весьма острой является пироплазмозов.

Пироплазмоз - это распространенное заболевание домашних животных, возбудителем которого являются пироплазмы, простейшие микроорганизмы. Начиная с весны и до конца пастбищного сезона встречается пироплазмоз. Это опасное заболевание переносится иксодовыми клещами. Пироплазмоз опасен тем, что после него иммунитет животного резко падает. Не своевременное выявление больных животных и позднее лечение могут приводить к гибели скота. Поскольку основной переносчик заболевания— это иксодовый клещ, то имеет смысл защитить животных от нападения этих насекомых с помощью инсектицидных средств.

Основная задача при ликвидации предупреждении развития пироплазмоза заключается проведении комплекса профилактических мероприятий, включающих химиопрофилактику И борьбу клещамиобрабатывают переносчиками. животных периодически Для ЭТОГО репеллентами и вводят беренил (азидин) через каждые 10 дней.

Однако применение дорогостоящих препаратов на больших животноводческих объектах очень затратно. Используемые препараты для купания скота против клещей-переносчиков пироплазмозов, действие раствора слабеет через 7-10 дней.

Поэтому животных приходиться купать раз в неделю, начиная с ранней весны и до поздней осени. При соблюдении инструкции, животных приходиться купать 18 - 20 раз.

Для решения этой проблемы наиболее приемлемый, разведение приспособленных к жаркому климату пород крупного рогатого скота или метод скрещивания (гибридизация), для получения гибридных животных с высокой резистентностью, которая может обеспечит высокую продуктивность с минимальными затратами.

Следует отметить, что наиболее приемлемый путь в условиях жаркого климата по мнению многих авторов является использование зебувидного скотазебу.

Зебу – это азиатская корова, отлично приспособленная к жаркому и влажному климату. Высокая устойчивость к жарким климатическим условиям, способствует ряд природных защитных механизмов животного. Она имеет несколько характерных черт, отличающих её от других представителей рода.

Достоинства породы неприхотливость к условиям содержания, высокие приросты живой массы, хорошая молочная продуктивность, стойкий иммунитет к многим болезням, легкий отёл.

Гибридизация с молочными и комбинированными породами, проводимая в нашей стране и за рубежом, оказывает положительное влияние на молочную продуктивность, содержание жира и белка в молоке отмечают многие авторы [1]. Некоторые авторы указывают на превосходство зебувидных гибридов по живой массе в сравнении с чистопородными животными [5]. Кроме того авторы отмечают высокую интенсивность роста гибридов, повышенную мясную и молочную продуктивность при низких затратах кормов во все периоды содержания [2.].

Например, в хозяйстве «Снегири» Московской области гибридизацией зебу с черно-пестрым скотом создано стадо коров с удоем более 4500 кг молока при содержании в нем жира 4,4%.

В условиях Азербайджана увенчалась успехом гибридизация коров зебу с швицкими быками, получены жирномолочные группы помесного скота, приспособленные к условиям жаркого климата. К характерным отличиям зебу относится присутствие на загривке животных значительного горба и объемные складки из кожи между передними конечностями. [1].

Известно, что на основе зебу в нашей стране создана порода санта-гертруда, которая обладает отличной выносливостью и мясной продуктивностью.

Следует отметить, что за рубежом ведется большая работа по гибридизации крупного рогатого скота и созданы мясные породы, бифмастер, брафорд, шабрей, брангус.

Литературные данные показывают о высоких продуктивных качествах гибридных животных.

Цель исследований — определить эффективность выращивания гибридов полученного от скрещивания зебу новозеландской селекции с красной степной породой в равнинной зоне Дагестана.

В задачи исследований входило:

- изучить рост и развитие гибридов;
- определить показатели среднесуточных приростов;
- изучить гематологические показатели.

На основании полученных результатов в опыте дать рекомендации по использованию зебу в равнинной зоне республике.

Материалы и методы. Научно производственный опыт был проведен на молочнотоварной ферме в ООО «Племсервис» Кизилюртовского района, Республики Дагестан. Объектом исследований были чистопородные бычки красно степной породы и гибриды, полученные от скрещивания маток красно степной породы с быками новозеландской зебу. Из полученного молодняка были сформированы две группы бычков по принципу аналогов по 10 голов в каждой. В I контрольную группу входили чистопородные бычки красно степной породы, во II опытную гибриды. Условия содержания и кормления молодняка в обеих группах в период опыта были идентичные. Питание скота на протяжении эксперимента было организовано согласно существующих норм РАСХН.

Следует отметить, что рационы животных, сбалансированные по детализированным нормам, благоприятно влияют на рост и развитие, продуктивность, качество получаемой продукции, воспроизводительную способность, конверсию корма [3, 4, 6, 7, 9-18], что необходимо учитывать при составлении рационов скота.

Результаты исследований и их обсуждение. Динамика живой массы подопытного молодняка в целом за опыт приведена (табл. 1).

Живая масса подопытного молодняка, кг

Таблица 1

minute in a contract in the co			
Возраст, мес.	Группа		
	I -контрольная	II - опытная	
Новорожденные	27,0±0,18	27,8±0,51	
6	108,6±3,15	119,5±3,42**	
12	196,2±3,30	212,3±3,68**	
15	241,2±3,0	260,4±3,19***	
18	290,1±3,3	313,4±4,50***	
0 -18	263,1	285,6	

Примечание: *Р<0,05; **Р<0,01; ***Р<0,001

Из таблицы 1 видно, что живая масса гибридов при рождении была больше на 2,9%, чем у сверстников красно степной породы. Хотя различия по живой массе между группами были не существенны, но наиболее интенсивным ростом обладали гибридные животные (табл.1). В 6 - месячном возрасте молодняк опытной группы превосходил чистопородных сверстников по живой массе на 10,9 кг или на 10%. В годовалом возрасте гибриды имели высокую интенсивность роста и достигли живой массы 212,3 кг, а сверстники красно степной породы 196,2 кг соответственно, что было больше у гибридов на 16,1 кг или на 8,2 % (Р≤0,01). Высокую интенсивность роста они сохраняли и в 15 — месячном возрасте с преимуществом по массе тела на 19,2 кг или на 7,9 %. В 18

— месячном возрасте гибриды имели живую массу 313,4 кг, красно степные - 290,1 кг соответственно. Гибриды превосходили чистопородных сверстников на 23,3 кг или на 8,0% при достоверной разнице ($P \le 0,001$).

Следует отметить, что между группами были установлены и породные различия, у животных опытной группы наблюдался выраженный горб и большие висячие уши, свойственные для зебу.

Показатели среднесуточный прирост, г

Таблица 2

Hokusuresin epegheey to inbin iipiipoet, i			
Возраст, мес.	Группа		
	I -контрольная	II - опытная	
6	453±12	509±18**	
12	487±6	517±8**	
15	500±8	535±10**	
18	543±8	589±10***	
0 - 18	487	529	

Примечание: **Р≤0,01; ***Р≤0,001

Об интенсивности роста бычков можно судить по показателям среднесуточных приростов. Показатели среднесуточных приростов животных в целом за опыт показаны в (табл. 2).

Данные таблицы 2 показывают, что среднесуточные приросты животных опытной группы имели высокие показатели. В 6 месячном возрасте среднесуточный прирост гибридов составил 509 г и превосходил сверстников на 56 г или на 12,4%. В 15 месячном возрасте среднесуточные приросты бычков опытной группы равнялись 535 г, а контрольной 500 г соответственно, разница в пользу гибридов составляла 35 г или 7%. В 18 месячном возрасте гибриды отличались высокими показателями среднесуточных приростов, которые равнялись 529 г, а у чистопородных - 487г, преимущество по этому показателю были в пользу гибридов 42, г или 8,6 % по сравнению с чистопородным молодняком.

В ходе опыта изучали некоторые показатели крови животных. Установлено, что количество эритроцитов и содержание гемоглобина в крови у гибридов на 3-6% выше, чем у красно степных чистопородных сверстников.

Заключение. Скрещивание красно степной породы зебу новозеландской селекции позволяет получить гибридных животных с высокой интенсивностью роста. В 18 месячном возрасте они чистопородных животных красно степной породы по живой массе на 23,3 кг или на 8%. Гибриды за период выращивания имели среднесуточные приросты 529 г, а чистопородные 487 г, преимущество гибридов было 42, г или 8,6 %. Полученные данные свидетельствует о возможности использования коров красно степной породы и быков зебу новозеландской селекции для получения гибридов со значительно лучшими качествами по сравнению с красно степной породой.

Библиографический список

- 1. Вердиев 3. К. Зебу и зубовидный скот в Азербайджане // Международный с. х. журнал. 1982.- № 4. С.76-78.
- 2. Молочная продуктивность черно-пестрых и зубовидных коровпервотелок / Г.В. Дорофей [и др.]. - Ученые записки Гродненского СХИ. Вып. IV. - Гродно, 1994. - С. 118.
- 3. Рыжиковый жмых в комбикормах для лактирующих коров / В.С. Зотеев, Г.А. Симонов, С.В. Зотеев // Молочное и мясное скотоводство. 2016. N 3. С. 29-32.
- 4. Калашников А.П. Воспроизводительная способность и состояние рубцового метаболизма коров при разной структуре рационов / А.П. Калашников [и др.] // Российская сельскохозяйственная наука. 1984. № 11. С.29.
- 5. Караев С.Г. Совершенствование коров красной степной породы с зубовидным скотом / С.Г. Караев, Г.С. Караев // Достижения науки и техники АПК. 2009.- №8. С. 56-57.
- 6. Кормление КРС полнорационной смесью эффективнее / М.Ш. Магомедов, П.А. Алигазиева // Комбикорма. 2013. № 10. С.63-64.
- 7. Экономическая эффективность разных типов кормления бычков в аридной зоне России / М.Ш. Магомедов [и др.] // Проблемы развития АПК региона. 2017. Т. 29. № 1 (29). С. 68-71.
- 8. Садыков М.М. Пути совершенствования красного степного скота в Дагестане / М.М. Садыков, Р.М. Чавтараев [и др.] // Проблемы развития АПК Региона. 2012. № 4. С. 119-120.
- 9.Как эффективнее выращивать мясной скот на субальпийских пастбищах в условиях Дагестана / М.М. Садыков [и др.] // Проблемы развития АПК региона. 2017. Т. 31. №3(31). С. 63-67.
- 10. Энергосберегающая технология улучшения старосеяных пастбищ / И.В. Сереброва [и др.] // Достижения науки и техники АПК. 2011. № 1. С. 48-50.
- 11. Использование комплексной минеральной смеси в кормлении коров / Г.А. Симонов // Вестник Российской академии сельскохозяйственных наук. 1998. № 3. С. 60-61.
- 12. Разведение кроссбредных овец аксарайского типа / Г.А. Симонов, Г.К. Тюлебаев, Г.Н. Нугманов // Зоотехния. -2008. № 6. С. 9-12.
- 13. Тритикале в рационе лактирующих свиноматок / Г.А. Симонов, В.И. Гуревич // Эффективное животноводство. -2012. № 8 (82). С. 48-49.
- 14. Симонов Г.А. Организация полноценного кормления молочных коров Сахалинской области / Г.А. Симонов, В.М. Кузнецов, В.С. Зотеев, А.Г. Симонов // Научно-практические пути повышения экологической устойчивости и социально-экономическое обеспечение сельскохозяйственного производства: материалы Междунар. науч.-практ. конф. с. Соленое Займище: ФГБНУ «Прикаспийский НИИ аридного земледелия», 2017. С. 1369-1371.
- 15. Пастбища и их роль в кормлении молочного скота в условиях Европейского Севера РФ / Е. Тяпугин [и др.]. 2011. № 5. С. 23-24.

- 16. Потребность суягных овцематок в меди в условиях аридной зоны России / Е.А. Тяпугин [и др.] // Российская сельскохозяйственная наука. -2018. № 2.-C.50-54.
- 17. Переваримость питательных веществ рациона холостыми овцематками в летний период /A.C. Ушаков [и др.] // Эффективное животноводство. -2017. № 6(136). -C. 46-47.
- 18. Varakin, A.T. Hematologgical parameters of boars-producers at use of a natural mineral additive in a die / A.T. Varakin, D.K. Kulik, V.V. Salomatin, V.S. Zoteev, G.A. Simonov // International Journal of Innovative Technology and Exploring Engineering. 2019. T. 9. № 1.- P. 3837-3841.

УДК 636.32/.38.084

ДИНАМИКА ЖИВОЙ МАССЫ БАРАНЧИКОВ РАЗНОГО ПРОИСХОЖДЕНИЯ

Пахомова Елена Владимировна, к.с.-х.н., доцент кафедры частной зоотехнии, ФГБОУ ВО РАГА-МСХА имени К.А. Тимирязева

Аннотация: проведены исследования по сравнительному изучению динамики живой массы и убойных показателей основных пород овец Калмыкии: калмыцкая курдючная и грозненская тонкорунная и их помесей первого поколения, разводимых в условиях ОАО ПЗ «Кировский».

Ключевые слова: овцеводство, мясо, порода, скрещивание, рост и развитие, убойные показатели.

Овцеводство является важной отраслью животноводства России. До 90-х годов XX века экономика овцеводства в нашей стране базировалась на производстве шерсти, доля которой в общей стоимости продукции составляла более 70-80%, тогда как в настоящее время эффективность овцеводства, на 95% определяется уровнем производства баранины. Поэтому интенсификация овцеводства, направленная на повышение мясной продуктивности овец, приобретает в настоящее время особую актуальность.

Во многих регионах России с целью повышения мясной продуктивности тонкорунных пород овец используют их скрещивание с производителями мясосальных пород. Исследованиями А.И. Ерохина, В.П. Лушникова, Ю.А. Колосова, Т.А. Магомадова, И.Н.Шайдулина и многих других подтверждена эффективность скрещивания тонкорунных маток с производителями наиболее широко распространенной мясосальной породой - эдильбаевской.

Овцеводство Республики Калмыкия, занимает заметное место в сельском хозяйстве России, здесь насчитывается более 2,3 миллиона голов овец. В 2012 году, в результате многолетней работы овцеводов Калмыкии, апробирована и утверждена новая мясосальная порода овец - калмыцкая курдючная. С общим поголовьем в хозяйствах всех категорий— 37,2 тыс. овец, в том числе: маток — 24536 голов.

Вопросы повышения рентабельности овцеводства Калмыкии, путём увеличения мясной продуктивности овец при скрещивании маток грозненской