увеличения производства высококачественной продукции сельского хозяйства: материалы XI Международной научно-практической конференции (г. Уфа, 3-6 июня 2021 г.) / Башкирск. гос. аграр. ун-т, Томск. с.-х. ин-т [и др.]. – Новосибирск: ИЦ НГАУ «Золотой колос», -2021. - С.31-35.

- 6. Косилов В.И., Иргашев Т.А., Шабунова Б.К., Ахмедов Д. Клинические и гематологические показатели черно-пестрого скота разных генотипов и яков в горных условиях Таджикистана// Известия Оренбургского государственного аграрного университета. -2015. -№ 1(51). -C.112-115.
- 7. Иргашев Т.А., Шабунова Б.К., Косилов В.И. Результаты разведения яков в Таджикистане// Вестник мясного скотоводство Теоретический и научнопрактический журнал// ФГБНУ «Всероссийский научно-исследовательский институт мясного скотоводства» 2016. № 4 (96) С. 109-117.
- 8. Биохимический и минеральный состав крови бычков разных генотипов при гипоксии / Т.А. Иргашев, В.И. Косилов, Х. Халимов [и др.] // Известия Оренбургского государственного аграрного университета. − 2021. − № 4(90). − С. 258 -262. doi: 10.37670/2073-0853-2021-90-4-258-262.

УДК 636.085.33

КАЧЕСТВО КОРМОВ ИЗ КЛЕВЕРА И КОЗЛЯТНИКА ВОСТОЧНОГО

Сычёва Лариса Валентиновна, профессор кафедры животноводства **Юнусова Ольга Юрьевна,** доцент кафедры животноводства **Дулепинских Людмила Николаевна,** доцент кафедры животноводства

ФГБОУ ВО «Пермский государственный аграрно-технологический университет имени академика Д.Н. Прянишникова»

Анномация. В результате исследований установлено, что в сенаже из козлятника восточного больше содержалось обменной энергии 4,37 МДж, сухого вещества – 467 г, сырого протеина – 73,5 г, что на 26,3 %, 1,7 и 20,1 % было выше по сравнению с сенажом клеверным, соответственно.

Ключевые слова: питательность, клевер, козлятник восточный, силос, сенаж.

Ежегодно в нашей стране у потребителя возрастает спрос на натуральные молоко и молочные продукты. В результате длительной селекции созданы стада с высоко генетическим потенциалом по молочной продуктивности. Для поддержания продуктивности на высоком уровне необходимо предусмотреть полноценное и сбалансированное кормление коров на протяжении всей лактации независимо от сезонов года [1]. При этом необходимо проводить контроль за качеством потребляемых кормов, повысить требования к производимым в хозяйствах объёмистым кормам [2,6].

В развитии отрасли скотоводства огромную роль играет кормопроизводство, которое обеспечивает животных в полном объёме высококачественными объёмистыми и концентрированными кормами. Выбирая кормовые культуры для кормления крупного рогатого скота учитывают физиологическую потребность животных и соотношение кормов [3,4].

Клевер луговой (*Trifolium pratense*) – кормовая культура, которую скармливают в виде зеленого корма, а так используют для заготовки сена, сенажа, силоса.

Козлятник восточный (Galega orientalis) имеет отличные кормовые качества, культура устойчива к низким температурам. Козлятник в фазе бутонизации отличается высоким содержанием протеина. Из него готовят высокопитательные объёмистые корма: сено, сенаж, силос, а также является отличным сырьём для производства витаминно—травяной муки, резки.

Цель исследования – изучить качество силосов и сенажей из клевера и козлятника восточного.

Для изучения питательности объёмистых кормов в одном из животноводческих хозяйств Пермского края были заложены производственные партии силосов и сенажей из клевера (сорт Пермский местный) и козлятника восточного (сорт Гале).

Питательную ценность зелёной травы, силосов и сенажа определяли в лаборатории освоения агрозоотехнологий ФГБОУ ВО Пермский ГАТУ по общепринятым методикам [5].

Перед заготовкой объёмистых кормов определили химический состав свежескошенной зелёной массы изучаемых кормовых культур в фазе бутонизации. Так, в 1 кг зелёной массы козлятника восточного больше содержалось энергии и основных питательных веществ в сравнении с клевером (табл. 1).

Tаблица 1 Продуктивность и питательная ценность кормовых культур

		1	<u> </u>	<i>V</i> 1	
	Содержится в 1 кг зелёной массы		Выход с 1 га посевов		
Показатель	кормовая культура				
	клевер	козлятник восточный	клевер	козлятник восточный	
Зелёная масса, ц	_	-	291	411	
Сухое вещество, г; (кг/ц)	197,4	250,7	57,4	103,0	
ОЭ, МДж	1,8	2,9	523,8	1191,9	
ЭКЕ	0,18	0,29	52,4	119,2	
Сырой протеин, г; (кг/ц)	34,2	43,2	9,95	17,8	
Сырой жир, г; (кг/ц)	6,6	6,7	1,9	2,8	
Сырая клетчатка, г; (кг/ц)	42,7	75,1	12,4	30,9	
БЭВ, г; (кг/ц)	92,3	102,7	26,8	42,2	
Кальций, г; (кг/ц)	3,4	1,3	0,9	0,4	
Фосфор, г; (кг/ц)	0,4	0,6	0,1	0,2	
Каротин, мг; (г/ц)	37,6	55,7	10,9	22,9	

В зелёной массе козлятника содержалось 2,9 МДж обменной энергии и 43,2 г – сырого протеина, что на 1,1 МДж и 9,0 г больше, чем в клевере, соответственно.

Зелёная масса клевера отличалась высоким содержанием кальция. Так, различие по макроэлементу составило на 2,1 г по сравнению с козлятником восточным.

С 1 га получили 411 ц козлятника восточного и 291 ц — клевера. Содержание сухого вещества, сырого протеина, сырой клетчатки, БЭВ и каротина в 1 га посевов козлятника на 45,6 кг, 7,85, 18,5, 15,4 и 12,0 г было больше в сравнении с клевером, соответственно.

Технология приготовления объёмистых кормов один из факторов, влияющих на питательность заготовленных кормов. Из исследуемых бобовых культур провели закладку силоса и сенажа в траншеи. Перед закладкой на силос зелёную массу клевера и козлятника скашивали, подвяливали, подбирали с одновременным измельчением (величина резки 5 см) и транспортировали к траншеям, тщательно трамбовали, укрывали полимерной пленкой. Сенаж из козлятника и клевера готовили по традиционной технологии. Через два месяца хранения изучили химический состав силосов и сенажей.

Содержание обменной энергии в объёмистых кормах, полученных из исследуемых кормовых культур, варьировало в силосах в пределах 2,22-2,38 МДж и сенажах -3,46-4,37 МДж (табл. 2).

Таблица 2 Питательная ценность кормов из клевера и козлятника восточного

,	Вид корма						
Показатель	силос		сенаж				
	кормовая культура						
	клевер	козлятник восточный	клевер	козлятник восточный			
Содержится в 1 кг корма:							
сухого вещества, г	254	257	459	467			
ОЭ, МДж	2,22	2,38	3,46	4,37			
ЭКЕ	0,22	0,24	0,35	0,44			
сырого протеина, г	37,8	59,4	61,2	73,5			
переваримого протеина, г	23,8	40,3	37,6	45,8			
сырого жира, г	8,4	8,9	13,3	12,1			
сырой клетчатки, г	72,5	83,7	137,2	130,3			
БЭВ, г	139,1	162,4	198,7	183,4			
сахара, г	4,6	3,9	25,6	14,8			
кальция, г	3,4	1,8	4,7	4,1			
фосфора, г	0,7	0,5	1,1	0,9			
каротина, мг	31	24	34	32			

Наиболее ценными по содержанию обменной энергии и сырого протеина в 1 кг корма явились силос и сенаж из козлятника восточного. В 1 кг силоса из козлятника содержалось больше обменной энергии на 7,2 % и сырого протеина – на 57,1 % по сравнению с силосом из клевера. В 1 кг силоса клеверного содержание сахара составило 4,6 г, кальция – 3,4, фосфора – 0,7 г и каротина – 31 мг, что было на 17,9 %, 88,9, 40,0 и на 29,2 % больше по сравнению с силосом из козлятника восточного, соответственно.

В сенаже из козлятника восточного установлено высокое содержание сухого вещества, обменной энергии и сырого протеина и составило 467 г, 4,37 МДж и 73,5 г, что было выше на 1,7 %, 26,3 и 20,1 % по сравнению с сенажом клеверным, соответственно. Сенаж клеверный отличался высоким содержанием сырой клетчатки, сахара, кальция, фосфора и каротина.

Таким образом, зелёная масса козлятника восточного содержала больше обменной энергии, сырого протеина и каротина на 1,1 МДж, 26,3 % и 48,1 %, чем из клевера, соответственно. Из исследуемых объёмистых кормов наибольшая энергетическая и питательная ценность установлена у сенажа из козлятника восточного. Так, содержание обменной энергии составило 4,37 МДж, сухого вещества — 467 г, сырого протеина — 73,5 г, что было выше на 1,7 %, 26,3 и 20,1 % по сравнению с сенажом клеверным, соответственно.

Библиографический список

- 1. Буряков, Н.П. Рациональное кормление молочного скота / Н.П. Буряков, М.А. Бурякова. М.: Изд-во РГАУ МСХА, 2015. 314 с.
- 2. Буряков, Н.П. Молочная продуктивность и баланс азота у коров при разном уровне зерна люпина в составе комбикормов / Н.П. Буряков, Д.Е. Алешин // Зоотехния. -2018. -№ 1. C. 16 20.
- 3. Косолапов, В.М. Эффективность новых технологий приготовления кормов из трав / В.М. Косолапов, В.А. Бондарев, В.П. Клименко // Достижения науки и техники в АПК. -2009. -№ 7. C. 39 42.
- 4. Косолапов. В.М. Современное кормопроизводство основа успешного развития АПК и продовольственной безопасности России / В. М. Косолапов // Земледелие. 2009. № 6. С. 3 5.
- 5. Петухова, Е.А. Зоотехнический анализ кормов / Е.А. Петухова и др. М.: «Агропромиздат», 1989. 240 с.
- 6. Yunusova, O.Yu. Effectiveness of using hydrobarothermally treated winter wheat grain in ration of lactating cows / O.Yu. Yunusova, L.V. Sycheva, V.A. Sitnikov, A.N. Popov, A.I. Panyshev // Research Journal of Pharmaceutical, Biological and Chemical Sciences. January-February, 2016. 7 (1). P.2169 2174.