МЕТОДИКА ОЦЕНКИ ПРИРАБОТКИ ОТРЕМОНТИРОВАННЫХ ДВИГАТЕЛЕЙ

Д. И. Петровский

ФГБОУ ВО «Российский государственный аграрный университет — MCXA имени К. А. Тимирязева», г. Москва, Российская Федерация

Аннотация. Изложены технологические рекомендации по организации обкатки двигателей на ремонтных предприятиях. Приведена методика оценки качества приработки рабочих поверхностей деталей по результатам обкатки двигателей.

Ключевые слова: обкатка, приработка, ускорение приработки, качество приработки.

A METHODICAL APPROACH TO ASSESSING ENGINE RUN-IN AFTER REPAIR

D. I. Petrovsky

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation

Annotation. Technological recommendations on the organization of engine running-in at repair facilities are outlined. A methodology for assessing the quality of running-in of the working surfaces of parts based on the results of engine running-in is presented.

Keywords: run-in, running in, run-in acceleration, run-in quality.

Обкатка является важной частью технологического процесса капитального ремонта двигателей. Во время обкатки происходит приработка трущихся рабочих поверхностей деталей.

Продолжительность и качество приработки зависят в значительной степени от качества сборки (соблюдение установленных в технической документации зазоров, параллельности осей и контактирующих поверхностей).

Нарушение технологической дисциплины при сборке приводит к необходимости увеличения продолжительности процесса приработки.

С учётом изложенного в задачи обкатки двигателей входит: получение высокого качества рабочих поверхностей деталей при минимальном их износе в процессе обкатки; завершение приработки при

минимальной продолжительности обкатки; формирование показателей надёжности отремонтированных двигателей [1].

Под качеством приработки рабочих поверхностей деталей подразумевается совокупность их физико-механических и геометрических свойств: шероховатость, микронеровности размера, остаточные напряжения и др.

Во время приработки трущихся поверхностей деталей двигателя происходит ряд важных изменений. Материал на поверхности деталей деформируется, изменяя свою пластичность и внутренние напряжения. Формируется особый микрорельеф, изменяется структура поверхностного слоя, и, что особенно важно, образуется упрочненный слой. Этот упрочненный слой играет ключевую роль в подготовке двигателя к работе под нагрузкой.

На качество приработки оказывают влияние следующие факторы: нагрузка на трущиеся поверхности; относительная скорость перемещения трущихся поверхностей; температура контактирующих поверхностей; эффективность смазки; ускоренные методы приработки [2, 3].

Одним из наиболее многообещающих направлений увеличения эффективности приработки деталей двигателя в процессе обкатки является применение ускоренных методов, основанных на использовании специализированных присадок. В зависимости от их физико-химического воздействия, приработочные присадки делятся на несколько категорий: поверхностно-активные вещества, химически-активные вещества и композиции, обеспечивающие избирательный перенос.

Принцип действия этих присадок базируется на усилении адгезионного взаимодействия прирабатываемых поверхностей трения. Наиболее результативными оказываются присадки, которые реализуют эффект избирательного переноса в процессе приработки деталей. Их применение улучшает антифрикционные, противоизносные и противозадирные свойства масел, ускоряет процесс обкатки двигателя, уменьшает износ поверхностей трения, увеличивает площадь приработки и снижает шероховатость трущихся поверхностей [4].

В условиях ремонтного производства отсутствуют рекомендации по прямому измерению качества приработки в процессе обкатки. На практике для оценки качества приработки обычно используют технико-экономические параметры (эффективная мощность, удельный расход топлива, расход масла на угар). Поэтому предложена методика

оценки качества притирка деталей двигателя по нижеприведенным показателям и параметрам:

1. Показатель, учитывающий шероховатость притертых сопряжений:

$$\Pi_{\text{III}} = \frac{L_{\text{rip}}^{\text{max}}}{L_{\text{or}}^{\text{max}}},$$
(1)

где $L_{\rm пp}^{\rm max}$ — наибольшая высота микронеровностей притертых плоскостей, мкм;

 $L_{\mbox{\scriptsize эт}}^{\mbox{\scriptsize max}}$ — наименьшая высота микронеровностей притертых плоскостей, взятых как эталон, мкм.

2. Показатель, учитывающий примыкания притертых сопряжений:

$$\Pi_{\text{пр.пл.}} = \frac{W_{\text{факт}}}{W_{\text{reom}}},$$
(2)

где $W_{\phi a \kappa \tau}$ — фактическая площадь контактирующих притертых плоскостей, мм²;

 $W_{\text{геом}}$ — геометрическая (полная) площадь контактирующих притертых плоскостей, мм².

3. Показатель, учитывающий пластичность притертых сопряжений:

$$\Pi_{\Pi} = \frac{H_{\text{дет.}}^{\text{практ.}}}{H_{\text{лет.}}^{\text{Hom.}}},$$
(3)

где $H_{\text{дет.}}^{\text{практ.}}$ – пластическая твёрдость поверхности притертых сопряжений, МПа;

 $H_{\text{дет.}}^{\text{ном.}}$ – пластическая твёрдость поверхности непритертых сопряжений деталей новых или после восстановления, МПа.

4. Показатель, учитывающий износостойкость притертых сопряжений:

$$\Pi_{\text{износ.}} = \frac{\Delta W_{\text{практ.}}}{\Delta U_{\text{эталон}}} \,.$$
(4)

где $\Delta U_{\text{практ.}}$ – величина фактического износа поверхности за продолжительность притирания, мкм;

 $\Delta H_{\text{эталон}}$ — величина фактического износа эталонной поверхности за продолжительность притирания, мкм.

5. Показатель, учитывающий притёртость поверхностей деталей двигателя:

$$\Pi_{\text{прит.}} = \frac{M_{\text{трен.}}^{\text{практ.}}}{M_{\text{трен. эталон}}^{\text{практ.}}},$$
(5)

где $M_{\text{трен.}}^{\text{практ.}}$ – утрата мощности на трение в процессе притирания поверхностей трения, кВт;

 $M_{_{\mathrm{трен. 9 Taлoh}}}^{_{\mathrm{практ.}}}$ — утрата мощности на трение в процессе притирания эталонных поверхностей трения, кВт.

6. Показатель, учитывающий механические потери:

$$\Pi_{\text{мех.пот.}} = \frac{W_{\text{испыт.}}}{W_{\text{эталон}}},$$
(6)

где $w_{\text{испыт.}}$ – угловая скорость коленвала (на номинальном режиме) отремонтированного двигателя, рад/с;

 $w_{\text{эталон}}$ — угловая скорость коленвала (на номинальном режиме) нового двигателя, рад/с.

7. Показатель, учитывающий фактическую мощность:

$$\Pi_{\mathrm{M}} = \frac{H_{e_{\mathrm{IIDAKT.}}}}{H_{e_{\mathrm{MUNIUM}}}},$$
(7)

где $H_{e_{\text{практ.}}}$ — номинальная мощность отремонтированного двигателя, кВт;

 $H_{e_{\mbox{\tiny тапон}}}$ — номинальная мощность нового двигателя, кВт.

8. Показатель, учитывающий расход топлива на единицу мощности на номинальном режиме:

$$\Pi_{g_e} = \frac{p_{e_{\text{практ.}}}}{p_{e_{\text{эталон}}}},$$
(8)

где $p_{e_{\text{практ.}}}$ — расход топлива отремонтированного двигателя на единицу мощности на номинальном режиме, г/кВт·ч;

 $p_{e_{\mbox{\tiny уталон}}}$ — расход топлива нового двигателя на единицу мощности на номинальном режиме, г/кВт·ч.

9. Показатель, учитывающий давление масла:

$$\Pi_{\Lambda_{\rm M}} = \frac{\mathcal{A}_{\rm Mac, Ia_{\rm IIDakt.}}}{\mathcal{A}_{\rm Mac, Ia_{\rm STalloH}}},$$
(9)

где $\mathcal{A}_{\text{масла}_{\text{практ.}}}$ – давление масла отремонтированного двигателя на номинальном режиме, МПа;

 $\mathcal{A}_{_{\text{Масла}_{_{\text{эталон}}}}$ — давление масла нового двигателя на номинальном режиме, МПа.

10. Показатель, учитывающий расход масла на угар:

$$\Pi_{\text{Macлa}_{\text{yrap}}} = \frac{\Delta P_{\text{Macлa}_{\text{практ.}}}}{\Delta P_{\text{Macлa}_{\text{утапон}}}},$$
(10)

где $\Delta P_{_{\mathrm{Mасла}_{\mathrm{практ.}}}}$ — утрата угоревшего масла за десятичасовой период работы отремонтированного двигателя, кг/ч;

 $\Delta P_{_{{\rm Macлa}_{_{{
m 3ranon}}}}}$ — утрата угоревшего масла за десятичасовой период работы нового двигателя, кг/ч.

11. Эффективная мощность мотора в течение притирки сопряжений деталей:

$$H_e = \frac{M_{\text{круг.}} \cdot n}{9550},\tag{11}$$

где $M_{\text{крут.}}$ – развиваемый двигателем крутящий момент, Н·м; n – частота вращения c^{-1} .

12. Израсходование топлива по массе:

$$M_{\text{топлива}} = 3.6 \cdot \frac{G_{\text{топлива}}}{t}, \tag{12}$$

где $G_{\text{топлива}}$ – количество топлива, потраченного двигателем за период контроля, г;

t – время контролирования, с.

13. Масса израсходованного топлива, отнесенная к мощности:

$$g_e = \frac{1000 \cdot M_{\text{топлива}}}{H_e},\tag{13}$$

14. Крутящий момент:

$$M_{\text{крут.}} = \frac{9550 \cdot H_e}{n},\tag{14}$$

На практике применение методических рекомендаций оценки эффективности и качества притирки деталей двигателей по итогам стендовых испытаний даст возможность обоснованно подобрать оптимальные режимы обкатки, которые обеспечат требуемую степень приработки, при которой двигатель будет готов к приёмо-сдаточным испытаниям.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Технология ремонта машин / В. М. Корнеев, И. Н. Кравченко, В. С. Новиков и др. М. : РГАУ-МСХА, 2019. 266 с.
- 2. Некрасов, С. С. Послеремонтная обкатка двигателя / С. С. Некрасов, В. В. Стрельцов, П. И. Носихин // Агропромышленный комплекс России. 1989. №1. С. 38-39.
- 3. Крапенко, М. А. Интенсификация процесса приработки двигателей УМЗ применением присадок в масло с поверхностно-активными и химически-активными веществами: специальность 05.20.03 «Технологии и средства технического обслуживания в сельском хозяйстве»: автореф. дис. ... канд. техн. наук / М. А. Карпенко. Пенза, 2002. 18 с.
- 4. Повышение качества приработки дизелей в процессе обкатки с помощью присадок к топливу / Ю. А. Микутенок, А. М. Данилов, В. В. Сердюк, Л. А. Ашкинази // Двигателестроение. 2000. № 4. С. 25-26.
- 5. Математическая модель процесса сгорания и тепловыделения в цилиндре газового двигателя / М. Н. Ерохин, О. Н. Дидманидзе, Е. П. Парлюк, Р. Т. Хакимов // Чтения академика В.Н. Болтинского (115 лет со дня рождения): сборник статей семинара, Москва, 22-24 января 2019 года / Под редакцией М. Н. Ерохина. М.: ООО «Мегаполис», 2019. С. 19-28.
- 6. Патент № 2266527 С1 Российская Федерация, МПК G01L 3/24, G01M 15/00. Способ определения мощности двигателя внутреннего сгорания : № 2004122376/28 : заявл. 21.07.2004 : опубл. 20.12.2005 / Н. В. Щетинин, А. Г. Арженовский, Д. О. Мальцев [и др.] ; заявитель ФГОУ ВПО АЧГАА.
- 7. Чепурин, А. В. Организация фирменного сервиса отечественной сельскохозяйственной техники / А. В. Чепурин, Е. Л. Чепурина, Д. Л. Кушнарева // Сельский механизатор. -2023. -№ 4. C. 40-43. DOI 10.47336/0131-7393-2023-4-40-41-42-43.
- 8. Техническая диагностика тракторов / В. А. Чечет, В. В. Егоров, Н. А. Майстренко [и др.]. М. : Редакция журнала «Механизация и электрификация сельского хозяйства», 2018. 100 с.
- 9. Дидманидзе, О. Н. Основы работоспособности и надежность технических систем / О. Н. Дидманидзе, Е. П. Парлюк, Н. Н. Пуляев. М.: Учебно-методический центр «Триада», 2020. 232 с.

Об авторе:

Петровский Дмитрий Иванович, кандидат технических наук, доцент, ФГБОУ ВО «Российский государственный аграрный университет — MCXA имени К.А. Тимирязева, petrovsky@rgau-msha.ru.

About the author:

Dmitry I. Petrovsky, Cand. Sc. (Engineering), associate professor, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, petrovsky@rgau-msha.ru.