МИКРОУДОБРЕНИЯ И РЕГУЛЯТОРЫ РОСТА – КАК ФАКТОРЫ ПОВЫШЕНИЯ УРОЖАЙНОСТИ ЯЧМЕНЯ

Бугаев П.Д., доцент кафедры растениеводства и луговых экосистем, $\Phi \Gamma EOV BO$ «Российский государственный аграрный университет — MCXA имени K.A. Тимирязева» E-mail: pdbugaev@gmail.com

Мельников В.Н., доцент кафедры растениеводства и луговых экосистем, ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева»

Абдельхамид С.Э.А., аспирант кафедры растениеводства и луговых экосистем, ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева»

Каменева И.А. магистр кафедры растениеводства и луговых экосистем, ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева»

эффективность Выявлена применения баковой смеси микроудобрения силиплант с инсектицидным протравителем Круйзер КС и микроудобрения силиплант с регуляторами роста, микро- и органоминеральными Установлено, что при обработке семян удобрениями. баковой смесью инсектицидным протравителем Круйзер,КС (0,5 л/т) с микроудобрением Силиплант (60 мл/т) энергия прорастания семян ячменя повышалась на 2,2%, лабораторная всхожесть — на 4.0% и сила роста — на 4.0% по сравнению с протравителем Круйзер,КС, а при обработке растений в фазе 3 листа силиплантом с эпином экстра была получена наибольшая прибавка урожая зерна ячменя сорта Mихайловский -0.35-0.41т/га. Эффективным оказалось применение силипланта с микроудобрением цитовит, где прибавка урожая составила 0,31силипланта с цирконом - прибавка урожая -0,33-0,36 т/га и силипланта с органоминеральным удобрением экофус, где прибавка урожая составила 0.24-0.34 m/га.

Ключевые слова: регуляторы роста, эпин экстра, циркон, микроудобрения силиплант, цитовит, органоминеральное удобрение экофус.

Кремний выполняет уникальную роль в жизни растений, и особенно он важен в стрессовых ситуациях, выполняя защитные функции в растениях. Исходя из многообразия ролей, которые играет кремний в растениях, сегодня мировые ученые признают, что еще далеки от разработки «единой теории» кремния в

биологии и сельском хозяйстве (E. Epstein). По словам американского ученого Ральфа Айлера - «Насколько вода является уникальной жидкостью, настолько и аморфный кремнезем уникален как твердое вещество. Они во многом схожи».

Кремниевое питание растений представляет не только научный интерес, но и имеет большое практическое значения в условиях роста дефицита продовольствия и необходимости увеличения продуктивности растений на фоне неблагоприятных воздействий окружающей среды. В таких условиях применение кремниевых удобрений может стать очень актуальным резервом повышения эффективности растениеводства (Бугаев, Абдельхамид; Abdelhamid, Bugaev). Этой проблеме и посвящена наша работа.

Исследования проводили в 2019 году на Полевой опытной станции РГАУ-МСХА имени К.А. Тимирязева, которая находится в типичных условиях района Нечерноземной Центрального зоны РΦ. Климат умеренноконтинентальный. Почвы ПО гранулометрическому легко-и среднесуглинистые. Содержание гумуса в пахотном слое от 2,1 подвижного фосфора и калия 163-173 и 80-120 мг/кг соответственно. Потребность почв в известковании слабая, рН водной вытяжки колеблется в пределах от 5,8 до 6,2. Опыт был заложен методом организованных повторений в четырёх кратной повторности. Учётная площадь делянки 21 м². Объект исследований – ячмень яровой пивоваренного направления, сорт Михайловский. Агротехника в опыте общепринятая для данной зоны. Норма высева ячменя 5,5 млн. всхожих семян на 1 га. Удобрения рассчитывали балансовым методом на планируемый урожай 50 ц/га и вносили весной под предпосевную культивацию. Перед посевом семена согласно схеме опыта обрабатывали инсектицидным протравителем Круйзер, КС 0,5 л/т и баковой смесью протравителя Круйзер, КС (0,5 л/т) и микроудобрения Силиплант (60 мл/т), норма расхода рабочей жидкости 10л/т. Для уничтожения широкого спектра двудольных сорняков, в том числе устойчивых к 2,4-Д и МЦПА, на посевах ячменя в фазе кущения применяли двухкомпонентный системный гербицид Балерина, КЭ из расчета 0,5 л/га.

Схема опыта включала следующие варианты:

- 1. Обработка семян: а) Контроль
 - б) Круйзер, КС (0,5 л/т);
 - в) Круйзер, КС (0.5 л/т) + Силиплант (60мл/т)

Обработку семян проводили за день до посева, расход рабочей жидкости 10 л/т семян.

- 2. Обработка растений: а) Контроль (обработка водой)
 - б) Силиплант (0,7 л/га)
 - в) Силиплант (0,7 л/га + Эпин Экстра (50 мл/га)
 - Γ) Силиплант (0,7 л/ Γ а) + Циркон (30 мл/ Γ а)
 - д) Силиплант (0,7 л/гa) + Цитовит (1 л/гa)
 - е) Силиплант (0,7 л/га) + Экофус (2л/га)

Обработку по вегетирующим растениям осуществляли в фазе 3-го листа из расчета 250 л/га рабочей жидкости.

Погодные условия вегетационного периода оказались неблагоприятными для роста и развития растений ячменя. Сухая и жаркая погода в начале вегетации сменилась прохладной и дождливой погодой второй половины вегетации, что негативно сказалось на величине урожая ячменя. Так в апреле месяце фактическая температура воздуха составила $8,1^{\circ}$ C, что на $1,4^{\circ}$ C выше нормы, а количество осадков выпало всего 23% от месячной нормы. Май и июнь месяцы характеризовались теплой и влажной погодой, тогда как июль и август месяцы отличались прохладной и влажной погодой, что привело к удлинению периода созревания зерна ячменя и поздней уборке.

Результаты и обсуждение. Качество семян является одним из важнейших факторов повышения урожайности и качества продукции. Установлено, что семена, прорастающие в первые три дня, как правило, дают на 30-38% выше урожай, чем все семена в целом, а прорастающие позже седьмого дня снижают его до 28% (Строна).

Обработка семенного материала — один из наиболее экономически выгодных приемов повышения качества семян и продуктивности сельскохозяйственных культур. В настоящее время наряду с препаратами, традиционно используемыми для борьбы с болезнями и вредителями, все чаще применяют биологически активные соединения, способные стимулировать рост растений, повышать их устойчивость к неблагоприятным факторам, увеличивать урожай и улучшать его качество.

Результаты наших исследований показали, что обработка инсектецидным протравителем Круйзер,КС (0,5 л/т) не ухудшала качество семян ячменя, энергия прорастания и лабораторная всхожесть были на уровне контроля, а сила роста повышалась на 1,0 % и 0,5 г по сравнению с контролем. Более существенное влияние на качество посевного материала оказала обработка семян баковой смесью инсектицидного протравителя Круйзер,КС (0,5 л/т) с микроудобрением Силиплант (60 мл/т). Такая обработка повышала энергию прорастания семян ячменя на 2,2%, лабораторную всхожесть – на 4,0% и силу роста – на 4,0% по сравнению с протравителем Круйзер,КС (табл.1).

Обработка семян баковой смесью микроудобрения силиплант (60 мл/т) и протравителя Круйзер, КС (0,5 л/га), уменьшая негативное воздействие протравителя, улучшала и морфологические показатели семян ячменя Михайловский. Масса ростков при этом повышалась на 1,5 г по сравнению с контролем и на 0,5г по сравнению с обработкой семян протравителем Круйзер КС, длина ростков - на 0,8 и 0,9 см, масса корешков – на 2,5 и 2,4 г и длина корешков – на 1,7 и 1,7 см соответственно (табл.1).

Улучшение посевных качеств сказалось и на величине полевой всхожести семян ячменя Михайловский. При обработке семян баковой смесью

микроудобрения Силиплант (60 мл/т) и протравителя Круйзер, КС (0,5 л/га) полевая всхожесть повышалась на 8,2% по сравнению с контролем и на 1,6% по сравнению с обработкой семян инсектицидным протравителем Круйзер, КС. При этом была обеспечена довольно высокая выживаемость растений к уборке, которая составила 96,3%, что на 3,8 и 2,4% выше, чем на контроле и при обработке семян инсектицидным протравителем Круйзер, КС соответственно.

Таблица1. Качество семян ячменя Михайловский перед посевом (2019 г)

Вариант	Энергия	Лаборатор	Сила роста	рості	ки	коре	шки	Полевая
(обработка	прораст	ная	Количество	Macca 100	Длина,	Macca,	Длина,	всхо-
семян)	ания, %	всхожесть	ростков, %	ростков, г	СМ	Γ	СМ	жесть,%
,		%						
Контроль	92,0	95,0	91,5	14,8	14,4	18,0	15,3	71,4
Круйзер	92,3	95,5	92,5	15,3	14,3	18,1	15,3	78,0
Круйзер +	94,5	99,5	96,5	16,3	15,2	20,5	17,0	
Силиплант								79,6

Предпосевная обработка семян, повышая энергию прорастания и всхожесть, повышала и урожайность ярового ячменя. Применение протравителя Круйзер, КС в среднем обеспечило повышение урожайности на 0,25 т/га, а при использовании баковой смеси силипланта с протравителем Круйзер, КС прибавка урожая достигла 0,35 т/га.

Таблица 2. Урожайность ярового ячменя Михайловский при обработке растений баковой смесью микроудобрения силиплант с регуляторами роста, микроудобрениями и органоминеральным удобрением Экофус, т/га (2019 г.)

	nkpoj goopennimin in opi unominiepusibilbim j goopennem 3 korpe, 171 u (2015 1.)							
Вариант	Контроль	Круйзер, КС	Круйзер, КС +					
			Силиплант					
Контроль	3,32	3,56	3,67					
Силиплант	3,48	3,70	3,78					
Силиплант+Экофус	3,56	3,82	4,01					
Силиплант+Эпин Экстра	3,71	3,97	4,02					
Силиплант+Цитовит	3,68	3,93	3,98					
Силиплант+Циркон	3,65	3,92	4,01					
HCP 05	0,28							

Биологически активные соединения, влияя на биохимические процессы и гормональный баланс в тканях растений, регулируют интенсивность и направленность физиологических процессов и повышают урожай.

Обработка растений в фазе 3 листа силиплантом в смеси с эпином - экстра обеспечила наибольшую прибавку урожая зерна ячменя сорта Михайловский — 0,35-0,41т/га. Эффективным оказалось применение силипланта с микроудобрением цитовит, где прибавка урожая составила 0,31-0,37 т/га, силипланта с регулятором роста циркон - прибавка урожая -0,33-0,36 т/га и

силипланта с органоминеральным удобрением экофус, где прибавка урожая составила 0,24-0,34 т/га (табл. 3).

Таким образом, при возделывании ярового ячменя сорта Михайловский в условиях ЦРНЗ РФ для повышения устойчивости растений к неблагоприятным абиотическим и биотическим факторам среды и получения высоких урожаев зерна следует применять микроудобрение Силиплант для предпосевной обработки в норме 60 мл/т семян, а в течение вегетации в фазе начала кущения обрабатывать посевы ячменя баковой смесью Силипланта с Эпином Экстра в норме 0,7л/га+ 50 мл/га. Обработку следует совмещать с обработкой растений гербицидом.

Библиографический список

- 1. Бугаев, П.Д. Агротехнические приёмы повышения урожайности и качества зерна ярового ячменя / П.Д. Бугаев, С.Э.А. Абдельхамид // Кормопроизводство журнал. -2019.- N = 7 C.28-33.
- 2. Бугаев, П.Д. Влияние протравителя поларис и микроудобрения силиплант на фотосинтетическую активность и урожайность ярового ячменя / П.Д. Бугаев, С.Э.А. Абдельхамид // Плодородие журнал. -2019.- № 4(109) С.11-15.
 - 3. Abdelhamid, S.E.A. Effect of seed treatments on barley germination quality/ S.E.A. Abdelhamid, P.D. Bugaev // bioscience research, -2018. № 15 (4) C.4243-4247.
- 4. Abdelhamid, S.E.A. Influence of Environmental-Friendly Treatments on Spring Barley Productivity under Rain-Fed Conditions in Russia / S.E.A. Abdelhamid, P.D. Bugaev, Mohamed Hafez, H.M.A. El adrousy // Boreal environmen research. 2020 Vol. 25 (5), C.2-16.

Micro fertilizers and growth regulators - as factors of increasing barley yield Bugaev P.D., Associate Professor of the Department of Plant Growing and Meadow Ecosystems, Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev E-mail: pdbugaev@gmail.com

Melnikov V.N., Associate Professor of the Department of Plant Growing and Meadow Ecosystems, Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev

Abdelhamid S.E.A., Post-graduate student of the Department of Plant Growing and Meadow Ecosystems, Russian State Agrarian University – K.A. Timiryazev Agricultural Academy

Kameneva I.A. Master of the Department of Plant Growing and Meadow Ecosystems, Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev

Annotation: The effectiveness of the use of a tank mixture of siliplant micronutrient with insecticidal mordant Cruiser CS and siliplant micronutrient with

growth regulators, micro- and organomineral fertilizers has been revealed. It was found that when seeds were treated with a tank mixture with an insecticidal protectant Kruiser, KS (0.5 l/t) with micro-fertilization Siliplant (60 ml/t), the germination energy of barley seeds increased by 2.2%, laboratory germination – by 4.0% and growth strength – by 4.0% compared with the protectant Kruiser, KS, and when plants were treated in phase 3 with a siliplant with epin extra, the greatest increase in the yield of barley grain of the variety was obtained Mikhailovsky - 0.35-0.41 t/ha. The use of siliplant with cytovit micro-fertilization, where the yield increase was 0.31-0.37 t/ha, siliplant with zircon - yield increase -0.33-0.36 t/ha and siliplant with organomineral fertilizer ecofus, where the yield increase was 0.24-0.34 t/ha, proved to be effective.

Keywords: growth regulators, epin extra, zircon, micro fertilizers siliplant, cytovite, organomineral fertilizer ecofus.