ЭФФЕКТИВНЫЕ ТЕХНОЛОГИИ РЕЦИКЛИНГА РАСТИТЕЛЬНОГО СЫРЬЯ

Неменущая Людмила Алексеевна, ст. науч. сотрудник, E-mail:nela-21@mail.ru ФГБНУ «Росинформагротех»

Аннотация: В статье приведены характеристики различных видов сорбентов, изготовленных из растительных отходов с помощью технологий рециклинга, для устранения загрязнений от нефти, нефтепродуктов, составляющих сточных вод.

Ключевые слова: рециклинг, растительные отходы, сорбент, органические загрязнители

Введение. По данным Росприроднадзора, каждый год в стране появляется 5 млрд тонн отходов, из которых только около 7% перерабатываются [1]. Такая ситуация при постоянно ухудшающейся экологии недопустима, объем переработанных отходов необходимо увеличивать, чему будет способствовать внедрение технологий рециклинга. Это процесс - разновидность переработки отходов, заключающийся в повторном использовании сырья, подразумевающий возврат отходов производства и потребления в производственный цикл.

По определению ГОСТ Р 54098-2010: «отходы производства и потребления являются вторичными материальными ресурсами (BMP)», «вторичное сырье – материальные ресурсы», которые «вторичные при определенных технологических процессах могут повторно использоваться в качестве продукта». Также, к категории вторсырья можно отнести отработавшие продукты (отходы), но при этом следует исключить те продукты (отходы), которые образуются в основном технологическом процессе и которые целесообразно и возможно восстановить для дальнейшего использования в качестве сырья [2]. По происхождению вторичное сырьё делят на биологическое (древесина, пищевые отходы, сельскохозяйственные отходы, макулатура) и технологическое (всё остальное).

Цель. Цель исследований – выявление перспективных направлений рециклинга растительного сырья.

Материалы и методы исследования. Объектом исследования являлась технологическая обеспеченность переработки растительных отходов, вторичных материальных ресурсов, перспективные технологические решения, разработанные научными и производственными организациями.

Задачами исследования являлось: установить тенденции и перспективы рециклинга растительных отходов; обозначить основные характеристики сорбентов, изготовленных из растительных отходов; выбрать разработки производственных и научных учреждений в области рециклинга, позволяющие улучшить экологическую ситуацию в пищевой и перерабатывающей

промыщленности. В качестве материалов исследования были использованы информационные материалы и интернет-ресурсы профильных российских и зарубежных научных организаций и промышленных компаний. Исследование проводилось с помощью информационно аналитического мониторинга, анализа и обобщения открытых информационных источников о перспективных технологиях рециклинга растительных отходов.

Результаты и обсуждение. В статье проведен сравнительный анализ технологий рециклинга сельскохозяйственных растительных отходов с целью получения сорбентов органических загрязнителей, таких как нефть, нефтепродукты, составляющие сточных вод. Эффективные и экологически чистые методы очистки от них природных объектов очень актуальны. В рассматриваемых технологиях соединяются сразу несколько положительных для экологии моментов — перерабатываются отходы, очищаются загрязненные объекты, а сорбенты с поглощенными нефтепродуктами, после специальной обработки можно еще раз использовать в качестве топлива [3]. Среди методов реализации такого вида сорбции в основном применяются рассыпание сорбента на поверхности загрязнения, либо фильтрация загрязненного объекта через сорбент [4]. Рассмотрим основные виды и характеристики сорбентов из растительных отходов, которые показаны в таблице [3-8].

Таблица -Виды и характеристики перспективных сорбентов из растительных отходов

Название	Характеристика	Особенности
технологии		
Получение	Синтез сорбента из кукурузных	По результатам для скорости 6 мл/мин
сорбента для	початков и скорлупы грецкого	наиболее эффективно применение
очистки	ореха в режиме температуры	активированных углей и сорбентов из
сточной воды	400 и 500 0 C в интервале	скорлупы грецкого ореха (ГО).
от нефти	времени 30 и 60 мин.	Для скорости 15 мл/мин сорбентом из
Полоцкий	Исследования эффективности	ГО также достигается результат очистки
государствен	сорбентов оценивались для	ниже уровня ПДК. То есть
ный	воды, загрязненной нефтью с	эффективность сравнима с
университет	концентрацией 10,8 мг/л.	использованием эталонного
им. Е.		активированного угля марки БАУ,
Полоцкой,		очищающего загрязненную воду до
Г.		уровня ПДК (0,05 мг/л).
Новополоцк,		
Беларусь	Потительно	T
Получение	Получение сорбентов из	Тяжелые нефтепродукты (вакуумный
сорбентов для	околоплодника редьки	дистиллят) поглощается всеми
ликвидации	масличной, хвоща полевого,	образцами значительно эффективнее,
проливов нефтепродукт	шелухи гречихи, ячменя и арахиса. Полученные образцы	чем легкие (керосин). Сорбенты пригодны для сбора проливов нефти и
ов,	можно отнести к объемно-	нефтепродуктов как в необработанном
Полоцкий	пористым сорбентам, среди них	(нативном) виде, так и подвергнутые
государствен	наиболее развита пористость	обработке дистиллированной и
ный	поверхности шелухи ячменной.	водопроводной водой, слабым
университет	Наилучший температурный	раствором щелочи и замораживанием.
им. Е.	диапазон применения сорбентов	Экономически эффективная
Полоцкой г.	по отношению к исследуемой	сорбционная способность сорбентов в
1	нефти: -5-40 °С.	нативном состоянии установлена для

шелухи ячменной.
кости исследуемых
упают показателям
ленных сорбентов на
нефтесорб - экстра»,
«Турбоджет»,
кограннефтеторф» и
xorpanneqreropq" n
в виде порошков
ивность в сборе
ряд адсорбентов в
печивает глубокую
нических примесей
их сточных вод,
ров органических
их смеси с воздухом.
рованный уголь из
анго обеспечил 98%
обность.
ъ воду от широкого
телей с высокой
о величины ПДК и
вают возможность
ых продуктов из
2,5 мг/л адсорбента
воды, сильно
органическими
пами, повысилась до
стки сточных вод
ющих и
цесс адсорбции с
ированного угля,
основе скорлупы
и миндаля при
,5 мг/л показал
ективность.
гидрофобностью и
кирной пленкой на
оды, происходит
тывание только жира.
рбент не требует
цию, после очистки
ыть использован в
кневых кормосмесей
очника клетчатки,
ксов и т. д.

Способ	Перерабатывают отходы с	Для генерации электрической и
переработки	размером фракции не более 1	тепловой энергии и получения
углеродсодер	MM.	углеродных сорбентов. Обеспечивает
жащих	Термическая переработка сырья	увеличение КПД переработки
отходов	при t 598÷602°C в течение 2 с	исходного сырья и повышение качества
растительног	без доступа кислорода в	жидких и газообразных продуктов.
0	вертикальном шнековом	
происхожден	реакторе.	
ия	Технология дополнительно	
ФГБОУ ВО	включает подачу сырья в	
Тверской	реактор пиролиза, очистку	
государствен	летучих продуктов с помощью	
ный	циклона. Термокаталитическая	
университет,	очистка проводится с	
г. Тверь	использованием катализатора на	
	основе кобальта,	
	импрегнированного в матрицу	
	цеолита ZSM-5 (содержание	
	кобальта - 2 мас.%).	

Заключение. Как показал анализ информационных источников, переработка растительных отходов в сорбенты перспективна, результаты исследований подтверждают конкурентоспособность и востребованность данной продукции. Производство сорбентов с использованием сельскохозяйственных растительных отходов, благодаря экологической чистоте, практически неограниченным высоким адсорбционным, ионообменным и фильтрационным свойствам, низкой стоимости, большому резерву работы позволит расширить ассортимент поглотителей различных органических загрязнений, снизить нагрузку на окружающую среду и получить значительный экономический эффект. Технологические характеристики сорбентов из растительных отходов дают возможность эффективного их применения для очистки природных объектов от широкого спектра загрязнителей и стимулируют дальнейшие исследования, направленные на получение новых адсорбционно-активных материалов из растительного сырья.

Библиографический список

- 1. Рециклинг: что это такое, какие методы используются, виды вторичного сырья, отличие от переработки и утилизации отходов. Электронный ресурс URL: https://cleanbin.ru/terms/recycling?ysclid=la0r0a9zc0233136134 (дата обращения: 30.09.2022).
- 2. Косенкова С.В., Уланова И.А., Васильев А.К., Чурсина М.Е., Нагайцева Ю.М. Рециклинг: методология перевода отхода производства в продукт (сырьё) // Интернет-журнал «Отходы и ресурсы», 2020. №1., Электронный ресурс URL: https://resources.today/PDF/13ECOR120.pdf (доступ свободный). Загл. с экрана. Яз. рус., англ. DOI:10.15862/13ECOR120 (дата обращения: 30.09.2022).
- 3. Майорова Е.И., Булавка Ю.А., Якубовский С.Ф. Модификация нефтяных сорбентов из растительного сырья // Современные технологии обеспечения гражданской обороны и ликвидации последствий чрезвычайных ситуаций. 2018. № 1 (9). С. 275-277.

- 4. Темирханов Б.А., Султыгова З.Х., Ужахова Л.Я. Синтез сорбентов из отходов растительного сырья с целью очистки сточных вод от нефти // Теоретические и прикладные аспекты современной науки. 2015. № 7-1. С. 77-81.
- 5. Мьинт С.В., Сое Н.Л., Мое 3., Тху М., Тху М.М., Нистратов А.В., Клушин В.Н. Термический рециклинг растительных отходов Мьянмы с получением углеродных адсорбентов // Башкирский химический журнал. 2020. Т.27. №1. С.61-67.
- 6. Убайдуллаева Н.Н., Салиханова Д.С., Дехконов Р.С. Исследование угольного адсорбента композиции на основе местного растительного сырья для очистки сточных вод // Universum: технические науки : электрон. научн. журн. 2022. 7(100). Электронный ресурс URL: https://7universum.com/ru/tech/archive/item/14070 (дата обращения: 30.09.2022).
- 7. Пирузян А.В., Боковикова Т.Н., Найденов Ю.В. Перспективный сорбент на основе отходов растительного сырья для очистки жиросодержащих сточных вод // Современные проблемы науки и образования. 2008. № 10.; Электронный ресурс URL: https://science-education.ru/ru/article/view?id=3859 (дата обращения: 03.11.2022).
- 8. Сульман Э.М., Луговой Ю.В., Чалов К.В., Тихонов Б.Б., Косивцов Ю.Ю., Молчанов В.П. Способ переработки углеродсодержащих отходов растительного происхождения // Патент на изобретение RU 2644895 C2, 14.02.2018. Заявка № 2016130700 от 27.07.2016.