РОЛЬ ОТДАЛЕННЫХ ЭКОЛОГО-ГЕОГРАФИЧЕСКИХ ФОРМ В СЕЛЕКЦИИ НА КАЧЕСТВО РИСА

Чухирь Николай Петрович, младший научный сотрудник группы исходного материала, E-mail: chukhir.nik@mail.ru ФГБНУ «Федеральный научный центр риса»

Аннотация: В статье приведены результаты скрещивания и изучения сортообразцов риса отечественной и зарубежной селекции разных эколого-географических групп.

Ключевые слова: рис, исходный материал, качество риса, экологические группы, гибридизация, гибридная комбинация.

Введение. Культура рис возделывается более чем в 115 странах мира, но главным центром рисоводства по-прежнему остаются Восточная, Юго-Восточная и Южная Азии, для народов которых рис - главная пища на столе, основа для приготовления множества блюд и одна из главных составляющих экспорта. В экономически развитых рисопроизводящих государствах, таких как Япония, Корея посев риса механизирован, однако в большинстве регионов мира эту культуру продолжают возделывать вручную. Одним из основных и важных направлений использования риса является производство крупы. Достижения в мировой селекции риса обусловлены национальными традициями стран и рыночной конъюнктурой, при этом во всех странах актуальна селекция на повышение качества зерна. Большую долю в общем объеме производства риса, выращиваемого как в России, так и в Краснодарском крае, долгие годы составляли короткозерные сорта. В последние годы в нашей стране отмечается спрос на рисовую крупу более высокого качества с разным типом зерна: крупнозерный и длиннозерный [1]. Для повышения конкурентоспособности отечественных сортов по сравнению с зарубежными, необходимо вести селекцию по направлениям: повышенная устойчивость к абиотическим и биотическим факторам среды, высокая урожайность, соответствие высшим стандартам качества (выход крупы, вкусовые и т.д.). Многие сорта иностранной селекции обладают высоким качеством и могут быть донорами ценных признаков. Поэтому актуальным является создание нового исходного материала для расширения генетической основы современных кубанских сортов риса, которые не будет уступать при этом зарубежным [1,3].

Признаки качества риса (технологические, биохимические) зависят от генетической природы сорта, почвенно-климатических условий, технологии выращивания и уборки, сроков уборки и ряда других внешних факторов. Селекция и генетика на современном этапе, обеспечивают широкие возможности создания высококачественного зерна. В селекции на качество

важным является генетическое разнообразие культуры, накопленный генофонд в УНУ "Коллекция ФНЦ риса» представлен генотипами *Oryza s.L.* различного эколого-географического происхождения индийского и японского подвидов. Настоящая работа направлена на создание исходных форм растений, сочетающих высокие технологические, биохимические признаки качества зерна (крупнозерность, длиннозерность, стекловидность, содержание амилозы) и оптимальный морфотип растения для юга России. Для решения этой задачи необходим поиск перспективных родительских форм различного эколого-географического происхождения и включение их в гибридизацию [3].

Цель исследований: на основе комплексной оценки подобрать родительские формы из коллекции происхождением: из европейской, азиатской и восточной экологических групп, включить в скрещивания и создать новый исходный материал с высоким качеством, различной формы, крупности зерна и типа метелки.

Материал и методы. С целью создания нового исходного материала в качестве родительских форм были выбраны коллекционные образцы из 10 рисосеющих стран с высоким потенциалом качества: Наутилус, Партнер, Urano, Mare, Belpatalif, AA33873/07JR, 92046-TR1431, Ipsala, WJ 1,WJ 16, Толмас, Tinmibyeo, JAP3127. Исследования были проведены на базе группы исходного материала в лабораторных условиях, в камерах искусственного климата. Гибридизация выполнена с помощью пневмокастрации и опыления «твел»методом, разработанным в «ФНЦ риса» [2,4, 5]. Выращивание родительских форм для гибридизации и процесс скрещивания проводили в камерах искусственного климата (КИК), где поддерживался температурный режим: днём + 28-30 °C, ночью + 24 °C, продолжительность фотопериода 12 часов, освещённость - 30 тыс. люксов. В период проведения скрещиваний утром, с 8 до 10 часов температуру воздуха понижали до + 20 °C. Этот температурный режим используется для того, чтобы высокая температура (+ 30 °C) не провоцировала цветение материнских форм во время кастрации цветков риса. Родительские формы высеваются в 3 - 4 срока, по 1/2-1 сосуду в каждый срок для правильной координации цветения. Выращивание, уход и фенологические наблюдения за растениями родительских форм проводили согласно Методике опытных работ по селекции и семеноводству [2].

Результаты исследований. В процесс гибридизации родительских форм были включены и изучены сортообразцы происхождением из стран: Россия – Наутилус, Партнер, Аметист, Патриот; Италия – Urano, Mare; Франция – Belpatalif; Таиланд – AA33873/07JR; Турция – 92046-TR1431, Ipsala; Вьетнам – WJ 1, WJ 16; Узбекистан – Толмас; Корея – Тіптівуео; Япония – JAP3127; Китай – Kendao 34, Longgeng 31, Hejang 20, Liaojing 168. К Восточной экологической группе относятся страны – Корея, Япония и Китай; к Европейской группе – Россия, Франция, Италия; к Азиатской группе – Вьетнам, Таиланд, Узбекистан. Родительские формы Турция, различались продолжительности вегетационного периода (таблица 1). По вегетационному периоду сорта дифференцированы от раннеспелых (от 103-105 дней) образец Longgeng 31 (Китай), до очень позднеспелых (141- 143 дня) образец AA33873/07JR (Таиланд).

Таблица 1-Характеристика родительских форм

Название сортообразца	сорта/	Регион происхождения	Вегетационный период в условиях Краснодарского края, дней
Наутилус		Россия	113-115
Партнёр		Россия	115-118
Аметист		Россия	123-125
Патриот		Россия	120-125
Urano		Италия	115-117
Mare		Италия	123-125
Belpatalif		Франция	118-120
AA33873/07JR		Таиланд	141-143
92046-TR1431		Турция	113-115
Ipsala		Турция	123-125
WJ 1		Вьетнам	133-135
WJ 16		Вьетнам	125-128
Толмас		Узбекистан	121-123
Tinmibyeo		Корея	134-136
JAP3127		Япония	118-120
Kendao 34		Китай	108-110
Longgeng 31		Китай	103-105
Hejang 20		Китай	114-118
Liaojing 168		Китай	126-129

Таблица 2 -Результаты внутривидовой гибридизации

№п/п	Название гибридной комбинации	Кол-во полученных зерновок, штук	Процент завязываемости	Кол-во прижившихся зерновок, штук
1	Urano / AA33873/07JR	12	24,0	7
2	Hayтилу c/ Belpatalif	5	12,5	5
3	Партнер / ЈАР3127	3	6,0	0
4	Наутилус /92046-TR1431	2	5,3	0
5	Партнер /92046-ТR1431	3	8,3	0
6	Наутилус / WJ 16	40	60,6	33
7	Партнер / WJ 1	21	65,5	15
8	Партнер / Ipsala	9	27,3	5
9	Толмас / Ipsala	11	27,5	4
10	Наутилус / Tinmibyeo	0	0	0
11	Mare / Belpatalif	33	55,0	30
12	Аметист / Kendao 34	15	37,5	11
13	Аметист / Longgeng 31	22	50,0	19
14	Наутилус / Hejang 20	18	37,5	14
15	Патриот / Liaojing 168	17	25,8	12
16	Hаутилус / Ipsala	35	70,0	29
17	Наутилус / ЈАР3127	6	30,0	0
18	Толмас / AA33873/07JR	12	17,9	5
19	Mare/ Ipsala	3	7,5	0

Из числа изучаемых образцов были составлены гибридные комбинации, 19 родительских пар, различающихся географическим происхождением и по нескольким признакам: вегетационный период, высота растения, тип метелки, крупности и стекловидность зерна. В результате гибридизации были получены гибридные зерновки у 18 гибридных комбинаций, процент завязываемости составил от 5,3 до 60,6 %

Заключение. Для скрещивания сортообразцов различного экологогеографического происхождения подобраны родительские пары, проведена внутривидовая гибридизация и получены гибридные зерновки по 18 гибридным комбинациям. Наибольший процент завязываемости получен при скрещивании отечественных сортов Партнер с вьетнамскими сортами, сорта Наутилус с вьетнамскими и турецкими сортами, сорта Аметист с китайскими сортами. Низкий процент завязываемости отмечен между сортами из России, Японии и Кореи.

Библиографический список

- 1. Папулова Э.Ю. Характеристика исходного материала на этапах селекционного процесса создания новых сортов под энергосбере гающие технологии / Э.Ю. Папулова, Н.Г. Туманян, Т.Б. Кумейко, .К.Ольховая, О.А. Москаленко // Colloguium-journal. 2019. №1-8(25). С.60-62
- 2. Сметанин, А.П. Методика опытных работ по селекции, семеноводству, семеноведению и контролю за качеством семян риса /А.П. Сметанин, В.А. Дзюба, А.И. Апрод. Краснодар, 1972. 186 с.
- 3. И.Н. Чухирь. Создание нового исходного материала на основе интродукционных образцов / Чухирь И.Н. Материалы Международной научнопрактической конференции «Приоритетные направления научного обеспечения отраслей агропромышленного комплекса России и стран СНГ»-Краснодар-2018г. С.130-132.
- 4. Чухирь И. Н. Количественные признаки риса контролирующие урожайность и их наследование / И.Н. Чухирь, Л.В. Есаулова, Н.П. Чухирь // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2019. № 151. С. 15-23.
- 5. Чухирь И. Н. К методике проведения гибридизации риса / И.Н.Чухирь, Л.В. Есаулова, Н.П. Чухирь // Материалы Международной научно-практической конференции с элементами школы молодых ученых «Научные приоритеты адаптивной интенсификации сельскохозяйственного производства». 2019. С. 77-80.