ОЦЕНКА БИОЛОГИЧЕСКОЙ ЭФФЕКТИВНОСТИ ИНСЕКТИЦИДОВ ПРОТИВ ЯБЛОННОГО ЦВЕТОЕДА

Дмитриева Светлана Валерьевна, аспирант кафедры защиты растений, $\Phi \Gamma EOV$ BO PГАУ-МСХА имени К. А. Тимирязева, s. v.dmitriyeva@yandex.ru

Проведена оценка биологической эффективности Аннотация: инсектииидов Кораген и Ланнат против яблонного иветоеда. По результатам исследования сделан вывод снижение пиотности популяции яблонного иветоеда обеспечивает применение nnenanama Кораген 82.9%. npenapam Ланнат показал более низкую биологическую эффективность 65,9%.

Ключевые слова: яблонный цветоео, инсектициоы, биологическая эффективность.

Яблонный цветоед (Anthonomus pomorum L.) (Insecta: Curculionidae) является опасным вредителем яблони и отчасти груши. При обработке инсектицидами яблони от этого вредителя предусматривает применения различных средств, максимально щадящих окружающую среду[2].

Исследования по биологической эффективности препаратов компании ООО «Дюпон науки и технологии» (кораген, кс, 0,2 л/га; ланнат, сп, 1,5 л/га) были проведены на Плодовой станции РГАУ - МСХА имени К.А. Тимирязева в 2017 году.

На сорте Антоновка инсектициды Кораген и Ланнат сравнивали препаратом Карбафосом.

Экспериментальные исследования проводили в соответствии с общепринятыми методиками [1,2].

Как показали наши наблюдения, биологическая эффективность инсектицидов была различной (таблица 1).

Таблица 1
Биологическая эффективность химической обработки против яблонного пветоеля (Плоловая станция РГАУ-МСХА имени К.А. Тимирязева)

цьстоеда (плодовая станция т т то тыслет имени к.л. т имирязева)										
Варианты опыта	Норма расхода препарата, мл/л и г/л	Поврежденность бутонов яблони, %	Биологическая эффективность,%							
Контроль (без обработки)	-	$50.14 \pm 13,3$	-							
Карбофос 500, КЭ 0,1%	0,1	$9,66 \pm 1,6$	80,7							
Кораген, КС 0,002%	0,02	$8,54 \pm 2,9$	82,9							
Ланнат, СП 0,15%	0,15	17,12 ±0,6	65,9							

 $P_{\text{фалич}}$. (22,71851285) < $F_{\text{критич}}$. (3,354131)

Существенное снижение плотности популяции яблонного цветоеда обеспечило применение препарата Кораген, КС (д.в. хлорантранилипрол, 200 г/л), 0,02 мл/л Карбофос 500, КЭ (д.в. мачатион, 500 г/л) 1 мл/л,: 82,9% и 80,7% соответственно. Препарат Ланнат, СП (д.в. метомил, 250 г/л), 1,5 г/л показал более низкую биологическую эффективность 65,9%. (таблица 1) Разница между вариантами опыта была существенная [F $\varphi_{\text{а1СТИЧ}}(22,71851285)$ < F критич (3,354131)] (таблица 2).

Таблица 2

Однофакторный дисперсионный анализ данных по оценке биологической эффективности инсектицидов Карбофос 500, 0,1% КЭ, Кораген, 002% КС, Ланнат, 0,15% СП применяемых против яблонного

цветоеда Anthonomus ротогит

			11111110110111	F								
Однофакт	горный дисперс	сионны	ій анализ									
ИТОГИ												
Группы	Счет	Сумма		Среднее			Дисперсия					
1	5	48,3		9.66			3,103					
2	5	42,7		8,54			10,828					
3	5	85,7		17,12			0.432					
Дисперси	Дисперсионный анализ											
Источник							F					
вариации	SS		MS		F	Р-Значение критич		ческое				
Между												
группами	217,537333	2	108,7686666		22,71851285	0,000083		3,885293835				
Внутри												
групп	57,452	12	4,7876666	66								
Итого	274,989333	14					<u> </u>					
	1	I	1		I	ı		1				

Библиографический список

- 1. Зинченко В.А. Химическая защита растений: средства, технология и экологическая безопасность. -М.: «КолосС», 2012. 127 с.
- 2. Попов С.Я. Основы химической защиты растений. Попов С.Я., Дорожкина Л.А., Калинин В.А./ Под ред. профессора С.Я Попова. М.: Арт-Лион, 2003. 208 с