означает, что зачастую верхние горизонты огородных почв представлены искусственными почвогрунтам в которых остается «мало общего» с зональными почвами данной местности.

Литература

- [1] Борисов Б.А., Байбеков Р.Ф., Рогожин Д.О., О.Е. Ефимов. Изменение показателей состояния органического вещества и физических свойств чернозема южного при переходе от традиционной к нулевой обработке. Учредители: Общество с ограниченной ответственностью "Редакция журнала "Земледелие". ISSN: 0044-3913
- [2] Брокгауз, Ф. А. Энциклопедический словарь/ под ред. проф. И. Е. Андреевского. Санкт-Петербург: Ф. А. Брокгауз, И. А. Ефрон , 1890-1907 .- 24 см rus Т. 9: Гоа Гравер.- 1893 .- 474, 5 с. : ил., цв. ил. .
- [3] Володин Н.Д., Иванцова Г.В. Комплексное использование природных и промышленных средств для повышения садово-огородных и урбанизированных почв курганской области/Материалы VII всероссийской научно-практической заочной конференции молодых ученых. М: Курганская государственная сельскохозяйственная академия им. Т.С. Мальцева (Лесниково). 2015
- [4] Ганжара Н.Ф.,. Почвоведение. М.: Агроконсалт, 2001. 392 с.: ил. (Учебники и учебные пособия для студентов высших учебных заведений).
- [5] ГОСТ 26213-91. Государственный стандарт союза сср/Почвы/Методы определения органического вещества М.: Издательство стандартов, 1992
- [6] Терпелец В. И. Гумусное состояние чернозема выщелоченного в агроценозах Азово-Кубанской низменности: монография / В. И. Терпелец, Ю. С. Плитинь. Краснодар: КубГАУ, 2015. 127 с.
- [7] Ушакова Д.Н. Толковый словарь русского языка/Под ред. Д.Н. Ушакова. М.: Гос. ин-т "Сов. энцикл."; ОГИЗ; Гос. изд-во иностр. и нац. слов., 1935-1940. (4 т.)
- [8] Чурсин А.И., Кривцова И.Х. Современное развитие огородничества и садоводства в Пензенской области и в городе Пенза: проблемы и перспективы/ ФГБОУ ВПО «Пензенский государственный университет архитектуры и строительства». Международный журнал прикладных и фундаментальных исследований. − 2014. − № 1 (часть 2) − С. 187-189

СОДЕРЖАНИЕ, СОСТАВ И ОПТИЧЕСКИЕ СВОЙСТВА ЛАБИЛЬНЫХ ГУМУСОВЫХ ВЕЩЕСТВ АГРОЧЕРНОЗЕМА ТИПИЧНОГО КУРСКОЙ ОБЛАСТИ

Крылов Вадим Александрович аспирант кафедры почвоведения, геологии и

ландшафтоведения РГАУ-МСХА им. К.А.

Тимирязева

e-mail: kryloff.vadim2015@yandex.ru

аспирант кафедры почвоведения, геологии и ландшафтоведения РГАУ-МСХА им. К.А.

Тимирязева

Беляева Светлана Алексеевна

Черноземы представляют собой уникальный тип почвы по сравнению с другими почвами [3]. Их физические, химические, физико-химические свойства имеют оптимальные значения, что в большей степени позволяет сельскохозяйственным культурам раскрыть свой генетический потенциал. Наряду с этим, в черноземах активно протекают биологические процессы осуществляемые почвенными мезо- и микроорганизмами [6].

Лабильные гумусовые вещества особая группа органического вещества почвы, представляющая собой легко трансформируемые соединения [4]. Лабильная часть почв

является источниками элементов питания, энергии и физиологически активных веществ для растений и микроорганизмов, участвуют в формировании агрономически ценной структуры, также выступает «буфером» защищающим основную часть гумуса [2,9]. Изучение ЛГВ является диагностическим показателем в оценки плодородия почвы [5,8]. Полученные данные позволяют установить уровень применяемых агротехнологий в растениеводстве.

Несмотря на это содержание, состав и свойства лабильных гумусовых веществ почв остаются мало изучены, а имеющиеся данные иногда носят противоречивый характер [1,7]. Поэтому всестороннее изучение ЛГВ имеет важное значение для фундаментального почвоведения и сельскохозяйственного производства.

Цель исследования — изучить влияние экстенсивного типа землепользования на содержание, состав и оптические свойства ЛГВ агрочернозема типичного Курской области.

Объектом исследования служил чернозем типичный тяжелосуглинистый. Почвенные образцы отбирались в Центрально-Черноземном государственном биосферном заповеднике им. А.А. Алехина на участке целинной некосимой степи из гумусовоаккумулятивного горизонта А чернозема. Образцы пахотного чернозема типичного были отобраны на стационарном полевом опыте Курского НИИ АПП, заложенном в 1964 г. [4]. Изучались следующие варианты опыта: бессменная озимая пшеница без удобрений, бессменная кукуруза без удобрений, бессменный пар. Размер делянок — 296 м2. В 1998 г. 2/3 участка пара было оставлено под бессменное парование, а 1/3 участка отведена под залежь.

Лабильные гумусовые вещества почвы были получены путем экстракции 0,1 н. раствором NaOH при соотношении почва : раствор, равном 1 : 20 и суточном настаивании. Полученную вытяжку центрифугировали при 8000 тыс. об/мин, обрабатывали катионитом КУ-23 в Н-форме и высушивали на водяной бане.

Как видно из полученных данных самое высокое содержание ЛГВ $-1708~\rm mr/100~\rm r$ присуще целинному чернозему. В их составе преобладают лабильные ГК о чем можно судить по величине отношения Сгк : Сфк равной 1,18. Под влиянием бессменной озимой пшеницы содержание ЛГВ уменьшилось на 582 мг/100 г или 1,52 раза. При этом содержание лабильных ГК уменьшилось на 299 мг/100 г, тогда как лабильных ФК на 283 мг/100 г или в 1,48 и 1,58 раза соответственно. В связи с этим величина отношения Сгк : Сфк несколько возросла и составила 1,26. Это обусловлено более активной минерализацией лабильных ФК по сравнению с более устойчивыми лабильными ГК, при этом не исключено, что какая-то часть фрагментов молекул ГК включается в группу лабильных ФК. Содержание лабильных гумусовых веществ, а также ГК и ФК в варианте бессменная кукуруза немного выше по сравнению с вариантом бессменная озимая пшеница на 32 мг/100 г 10 мг/100 г и 26 мг/100 г соответственн о . Однако, соотношение Сгк : Сфк в данном варианте меньше на 0,5 чем с озимой пшеницей и приближено к величине соотношения целинного чернозема.

Таблица 1 — Влияние различного использования пахотных почв на содержание, состав и оптические свойства ЛГВ агрочернозема типичного Курской области

Вариант	мг на 100 г почвы			Сгк	Q4/6		
	Слгв	Сгк	Сфк	Сфк	ЛГВ	гк	фк
Целина	1708	926	782	1,18	5,02	4,21	9,78
Бессменная озимая пшеница	1126	627	499	1,26	4,67	4,11	14,20
Бессменная кукуруза	1162	637	525	1,21	4,78	3,82	10,68
Бессменный пар	1015	589	426	1,38	4,52	3,73	10,85
Залежь	1078	615	463	1,33	4,69	4,06	9,53
HCP ₀₅	138	92	59	0,13	0,26	0,34	4,03

Самое низкое содержание ЛГВ установлено в варианте пар — 1015 мг/100г или на 59% ниже значений целинного чернозема. Одновременно с этим, в бессменном паре отмечается широкое соотношение Сгк: Сфк 1,38 по всему опыту, обусловленное активным процессом минерализации гумусовых веществ и отсутствием источников гумификации. Содержание углерода ГК и ФК в залежи выше по сравнению с бессменным паром на 26 мг/100г и 37 мг/100г, но ниже вариантов бессменного возделывания сельскохозяйственных культур. В результате перевода бессменного пара в залежь произошло увеличение доли ЛГВ с преобладанием ГК над ФК.

Самые высокие значения коэффициента Q4/6 ЛГВ и лабильных ГК присущи целинному чернозему -5.02 и 4.21 соответственно. Самая низкая величина Q4/6 -4.52 отмечается у ЛГВ варианта бессменный пар. Несколько более высокое значения коэффициент Q4/6 имеют варианты залежь и бессменное возделывания сельскохозяйственных 4.67 - 4.78 Под влиянием бессменной озимой пшеницы происходит усложнение структуры ЛГВ и лабильных ГК, о чем свидетельствует уменьшение значений Q4/6 до 4.67 и 4.11, т.е. в формировании их молекулярной структуры устойчивые циклические компоненты играют более значимую роль по сравнению с ЛГВ и лабильными ГК целинного чернозема. В случае возделывания бессменной кукурузы также возрастает роль ароматического ядра и в меньшей степени периферической части в построение молекул гумусовых кислот, о чем свидетельствует коэффициент цветности ЛГВ -4.78. В залежном черноземе Q4/6 ЛГВ составляет 4.69, что на 0.33 меньше значений целины. Отношение величин по ФК в этом же варианте имеют более низкие значение по сравнению с остальными пахотными почвами.

Таким образом, антропогенное воздействие на чернозем привело к значительной трансформации гумусовых веществ почвы. В результате сельскохозяйственного использования чернозема типичного в условиях экстенсивного уровня применения агротехнологий, снизилось содержание ЛГВ почти в два раза относительного эталонного варианта. Соотношение Сгк : Сфк в пахотных почвах пробрело более широкий интервал, а коэффициент цветности имеет меньшею величину отношений по сравнению с вариантом целинного чернозема. Отсутствие сбалансированного севооборота и удобрений способно привести к снижению плодородия почв с развитием деградационных процессов.

Литература

- [1] Дедов А.А., Дедов А.В., Несмеянова М.А. Содержание лабильного органического вещества в севооборотах с бинарными посевами // Вестник Воронежского государственного аграрного университета. $-2018 \mathbb{N} \ 1 \ (56)$ С. 13-21.
- [2] Кирюшин В.И., Ганжара Н.Ф., Кауричев И.С., Орлов Д.С., Титлянова А.А., Фокин А.Д. Концепция оптимизации режима органического вещества почв в агроландшафтах. М.: Изд-во МСХА, 1993. 99 с.
- [3] Когут М.Б. Органическое вещество чернозема // Бюллетень Почвенного института имени В.В. Докучаева. 2017 Вып. 90 С. 39-55. DOI: 10.19047/0136-1694-2017-90-39-55
- [4] Мамонтов В.Г., Артемьева З.С., Лазарев В.И., Родионова Л.П., Крылов В.А., Ахмедзянова Р.Р. Сравнительная характеристика свойств целинного, пахотного и залежного чернозема типичного Курской области // Бюллетень Почвенного института имени В.В. Докучаева. 2020 (101). С. 182-201.
- [5] Мамонтов В.Г., Родионова Л.П., Бруевич О.М. Уровни содержания лабильных гумусовых веществ в пахотных почвах // Известия ТСХА. 2009 (4). С. 121-123.
- [6] Мишустин Е.Н. Микроорганизмы и продуктивность земледелия / Е.Н. Мишустин. М.: Наука, 1972. 344 с.

- [7] Черников В.А., Кончиц В.А., Пупонин А.И. Влияние различных способов и приемов обработки суглинистой дерново-подзолистой почвы на структуру гуминовых кислот и эмиссию парниковых газов // Известия ТСХА 2016 (1). С. 24-39.
- [8] Cheorghe Jigau Tofan Elena Blidari Anton. Ensuring the sustenability of arable chernozems through management of the humus formation process // Scientific Papers. Series A. Agronomy, Vol. LX, 2017. P 100-106.
- [9] Saljnikov, E., D. Cakmak, and S. Rahimgdieva. 2013 Soil organic matter stability as affected by land management in Steppe Ecosystem. INTECH Journals. 2013 Chapter 10, P.269- 310 http://dx.doi.org/10.5772/53557.

ХАРАКТЕРИСТИКА ГУМУСОВОГО СОСТОЯНИЯ ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВ 3 И 4 КВАРТАЛОВ ЛОД РГАУ-МСХА ИМЕНИ К.А. ТИМИРЯЗЕВА

Лосев Артем Иванович

аспирант кафедры почвоведения, геологии иландшафтоведения РГАУ-МСХА имени К.А. Тимирязева e-mail: trilleriv@gmail.com

В работе приведены результаты исследования гумусовых горизонтов дерновоподзолистых почв постоянных пробных площадей Лесной Опытной Дачи РГАУ-МСХА им. К.А. Тимирязева. В течение двух лет в сезонной динамике в верхних горизонтах почв под древостоями различного состава определяли мощность лесной подстилки, полевую влажность почв, содержание и групповой состав гумуса, актуальную, потенциальную, гидролитическую кислотность. Проведен анализ закономерностей изменения данных показателей в зависимости от состава древостоя.

Существующие работы, посвященные лесному почвообразованию и формированию гумусовых горизонтов в частности, сильно разнятся с точки зрения получаемых результатов. Исследователи до сих пор не пришли к общему мнению в понимании закономерностей сезонного и пространственного изменения многих характеристик почвенного профиля. В связи с присущей лесу сильной пестротой почвенного покрова, которой он обязан деятельностью древесного сообщества, теоретически прогнозируемые закономерности не всегда проявляются на практике. В связи с этим, для более полного и детального понимания проблемы, необходимо получить больше данных, сопоставляя которые в будущем можно будет сделать более конкретные выводы о многочисленных лесных процессах и том, какое отражение они находят в почвенном профиле. [1, 2, 4, 5, 6]

В перспективе эти знания потребуются для работ, направленных на сохранение лесов в условиях интенсивной урбанизации. Для лесомелиоративных и связанных с лесопосадками направлений. Для сельскохозяйственного освоения территорий, находящихся сейчас под покровом леса. Понимание процессов и закономерностей лесного почвообразования может повысить финансовую эффективность при проведении перечисленных работ, а также улучшить экологическую их составляющую.

Исследование проведено на Лесной Опытной Даче УНКЦ При РГАУ-МСХА им. К. А. Тимирязева.

Лесная опытная дача (далее ЛОД) располагается в Северном Административном округе г. Москва, в юго-западной части землепользования РГАУ-МСХА имени К.А. Тимирязева. Площадь Дачи представляет собой сложный вытянутый с северо-запада на юго-восток многоугольник максимальной длиной 2,8 км и шириной 1,6 км. ЛОД называют уникальной