- 4. Sofi F., Whittaker A., Cesari F. et al. Characterization of Khorasan wheat (Kamut) and impact of a replacement diet on cardiovascular risk factors: cross-over dietary intervention study. European Journal of Clinical Nutrition. 2013;67:190–195. https://doi.org/10.1038/ejcn.2012.206
- 5. Sofi F., Whittaker A., Gori AM., Cesari F., Surrenti E., Abbate R., Gensini GF., Benedettelli S., & Casini A. (2014). Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial. The British journal of nutrition. 2014;111(11):1992–1999. https://doi.org/10.1017/S000711451400018X
- 6. Trozzi C, Raffaelli F, Vignini A, Nanetti L, Gesuita R, Mazzanti L. Evaluation of antioxidative and diabetes-preventive properties of an ancient grain, KAMUT® khorasan wheat, in healthy volunteers. European Journal of Nutrition. 2019;58(1):151-161. doi: 10.1007/s00394-017-1579-8
- 7. Whittaker A., Sofi F., Luisi MLE., Rafanelli E., Fiorillo C., Becatti M., Abbate R., Casini A., Gensini GF. and Benedettelli S. An Organic Khorasan Wheat-Based Replacement Diet Improves Risk Profile of Patients with Acute Coronary Syndrome: A Randomized Crossover Trial. Nutrients 2015;7:3401-3415; doi:10.3390/nu7053401
- 8. Whittaker A., Dinu M., Cesari F. et al. A khorasan wheat-based replacement diet improves risk profile of patients with type 2 diabetes mellitus (T2DM): a randomized crossover trial. European Journal of Nutrition. 2017;56:1191–1200. https://doi.org/10.1007/s00394-016-1168-2

УДК 58.087

Физические свойства зерна мутантных форм ярового ячменя (Hordeum vulgare L.) <u>Денис Александрович Базюк</u>, Нина Анатольевна Боме, Белозерова Анна Алексеевна Тюменский государственный университет, г. Тюмень

Аннотация: Проведено изучение геометрических характеристик зерновок 13 мутантных форм, полученных на основе двух образцов ярового ячменя (*Hordeum vulgare* L.) различного эколого-географического происхождения. Отмечено статистически достоверное увеличение линейных размеров, площади и объема зерновок у большинства опытных вариантов по сравнению с исходным материалом.

Ключевые слова: линейные параметры зерновок, объем, площадь внешней поверхности, показатель сферичности, отношение объема зерна к площади внешней поверхности, масса 1000 семян

Physical properties of grain of mutant forms of spring barley (Hordeum vulgare L.) <u>Denis Aleksandrovich Bazyuk, Nina Anatol'evna Bome, Belozerova Anna Alekseevna</u> University of Tyumen, Tyumen, Russia

Abstract: The geometrical characteristics of grains of 13 mutant forms obtained from two samples of spring barley (*Hordeum vulgare* L.) of different ecological and geographical origin were studied. A statistically significant increase in the linear size, area and volume of grains in the majority of experimental variants compared to the original material was observed.

Key words: linear parameters of grains, volume, external surface area, sphericity index, ratio of grain volume to external surface area, weight of 1000 seeds

Введение. Яровой ячмень является важной продовольственной, технической и кормовой культурой, входит в рецептуру большинства комбикормов, используется для производства крупы, в пивоварении и спиртовой промышленности. Актуальной остается проблема повышения урожайности, что является важнейшим условием увеличения объемов зерна. Особую важность при этом имеет сортовая принадлежность и ее генетические особенности, что определяет потенциальную способность производства растением зерна с определенными показателями качества [4]. Так, показатели длины, ширины и толщины зерна вносят

существенный вклад в выравненность зерновой массы по крупности, связанной с потенциальным выходом муки и крупы, а также в выбор технологических процессов обработки зерна и транспортировку [6].

Цель работы: изучение геометрических характеристик зерновок мутантных форм ячменя, полученных на основе исходного материала различного эколого-географического происхождения.

Материалы и методы. Объектом исследования послужили 13 мутантных форм ярового ячменя, созданных с использованием химического мутагена фосфемида на основе двух образцов - Зерноградский 813 (Россия) и Dz02-129 (Эфиопия), полученных из мировой коллекции Всероссийского института генетических ресурсов Н.И. Вавилова (ВИР). Исследование проведено в лаборатории биотехнологических и микробиологических исследований Института биологии на зерновках ячменя, выращенного на опытном полигоне по изучению генетического разнообразия культурных растений, биостанции расположенном ТюмГУ «Озеро Кучак» (Тюменская Нижнетавдинский район). Почва участка окультуренная дерново-подзолистая, супесчаная по гранулометрическому составу (содержание гумуса -3.67 %, pH -6.6). Вегетационный сезон 2022 г. по влаго- и теплообеспеченности характеризовался как влажный (ГТК=1,44) с неравномерным распределением осадков по отдельным месяцам (с избытком влаги в мае, и недобором осадков в июле на фоне повышенных температур).

Измерение линейных размеров зерновок (длина, ширина, толщина) проводили с помощью штангенциркуля, затем рассчитывали объем, площадь внешней поверхности, показатель сферичности и отношение объема зерна к площади внешней поверхности по методике, изложенной Г.А. Егоровым [5]. Объем выборки — 100 зерновок каждого исследуемого образца ячменя. Статистическая обработка данных осуществлялась по стандартным методикам [1, 5].

Результаты. Крупность — важная характеристика зерна, которая зависит от линейных размеров (формы), сорта и условий произрастания. В технологическом отношении крупное зерно является ценным в связи с более высоким содержанием эндосперма и потенциальным выходом муки или крупы [7], большим количеством крахмала и экстрактивностью [3], что дает больший выход пива [8]. Объем зерна тесно связан с зерновой массой и имеет значение для определения режима очистки и переработки, напрямую влияет на величину выхода готовой продукции [9]. Дополнительным показателем служит сферичность зерна, связанная с содержанием пленок и оболочек, при котором форма близкая к шару, обычно, свидетельствует о низкой пленчатости и низком содержании оболочек [7].

В нашем исследовании мутантные образцы, полученные на основе сорта Зерноградский 813, характеризовались более крупными зерновками, превосходя исходную форму по длине и/или ширине, что привело к увеличению объема зерновок на 8,97-24,1 %, площади внешней поверхности зерновки на 8,7-17,4 % и отношения объема к площади внешней поверхности зерновки на 1,79-7,14 %. По показателю сферичности отмечено снижение на 1,25 % (табл. 1).

Образец	Длина, 1	Ширина, а	Толщина, b	V, MM^3	₩	F , MM^2	V/F	Масса 1000 семян, г
Зерноградский 813	$8,5 \pm 0,39$	$3,3 \pm 0,08$	2,6 ± 0,08	39	0,80	69	0,56	32,7
P _{II2} (39) 0,002 %	$9,4 \pm 0,05*$	$3,2 \pm 0,03$	$2,7 \pm 0,03$	43	0,79	75	0,57	32,8
P ₁₉ (37) 0,002 %	$9,7 \pm 0.05*$	$3,5 \pm 0,02*$	$2,7 \pm 0.02$	48	0,79	81	0,60	32,0

Таблица 1 - Геометрические параметры зерновок ячменя

Dz02-129	$8,5 \pm 0,61$	$2,7 \pm 0,04$	$2,0 \pm 0,03$	24	0,77	52	0,46	23,0
Э _{III6} (54) 0,002 %	$9,6 \pm 0.07*$	$3,0 \pm 0,03*$	$2,2 \pm 0,02*$	32	0,76	64	0,50	33,1
Э _{III5} (55) 0,002 %	$8,9 \pm 0,08$	$3,0 \pm 0,03*$	$2,3 \pm 0,02*$	31	0,78	62	0,51	29,2
Э _{Ш9} (61) 0,002 %	$9,4 \pm 0,06$	$2,9 \pm 0,02*$	$2,1 \pm 0,02*$	30	0,76	61	0,49	29,0
∃ _{III11} (62) 0,002 %	$9,0 \pm 0,05$	$3,0 \pm 0,02*$	$2,1 \pm 0,02*$	30	0,77	61	0,50	30,1
Э _{III11} (63) 0,002 %	$8,4 \pm 0,08$	$2,9 \pm 0,02*$	$2,1 \pm 0,02*$	26	0,78	55	0,48	28,5
Э _{III11} (64) 0,002 %	$10,5 \pm 0,07*$	$3,0 \pm 0,02*$	$2,2 \pm 0,02*$	36	0,75	71	0,51	34,1
9 ₁₆ (1) 0,01 %	$8,0 \pm 0.07$	$2,7 \pm 0,02$	$2,0 \pm 0,02$	23	0,78	50	0,45	25,7
∃ _{II9} (2) 0,01 %	$8,9 \pm 0.06$	$2,8 \pm 0,02*$	$2,2 \pm 0,01$	28	0,77	58	0,49	22,1
Э _{П9} (3) 0,01 %	$7,6 \pm 0,06$	$2,7 \pm 0,02$	2,1 ±0,02*	22	0,79	49	0,46	23,8
Э _{IV4} (105) 0,01 %	$7,9 \pm 0,06$	$2,7 \pm 0,02$	$2,1 \pm 0,02$	24	0,79	51	0,47	21,9
Э17(107) 0,01 %	$9,0 \pm 0,06$	$2,8 \pm 0,02*$	$2,1 \pm 0,02*$	27	0,76	57	0,47	22,8
Значение по				20	0,76	35	0,45	20
обобщенным	7,0-14,6	2,0-5,0	1,4-4,5	20	0,76	33	0,43	20
литературным				40	0.92	-	0.65	- 55
данным [1,5]				40	0,83	60	0,65	55

Примечание: * — достоверные различия между мутантными формами и исходными образцами на уровне $P \ge 0.05$; V — объем зерна, Ψ — показатель сферичности зерна, F — площадь внешней поверхности зерна, V/F — отношение объема зерна к площади внешней поверхности зерна.

Масса 1000 семян показывает количество вещества, которое содержится в зерновке, положительно коррелирует с его крупностью. Отмечается, что в крупном зерне количество оболочек и масса зародыша по отношению эндосперму является наименьшим. Вместе с этим данный признак отражает качество семенного материала — крупные семена способны давать более мощные и более продуктивные растения [2, 4, 9]. Нами установлено, что по показателю массы 1000 семян мутантные формы, полученные на основе российского сорта, находились на уровне исходного материала ($P_{II2}(39)$ 0,002 %) или незначительно ему уступали на 2,2 % ($P_{I9}(37)$ 0,002 %).

Анализ параметров зерновок мутантных форм, полученных на основе Dz02-129, показал достоверно значимые различия с исходным образцом по ширине и толщине зерновки у шести мутантов, полученных при использовании фосфемида с концентрацией 0.02%, а также у одного варианта $9_{17}(107)$ с концентрацией 0.01%. Увеличение данных параметров привело к возрастанию объема зерновки на 8.3-50%, площади его внешней поверхности на 5.8-36.5%, а также отношению данных параметров на 4.4-10.9%. По массе 1000 семян большинство мутантов превосходили исходный образец на 3.5-48.3%.

Полученные нами результаты в целом согласуются с литературными данными [1,5], приведенными для зерновок ячменя, по большинству изученных показателей за исключением площади внешней поверхности зерновки, по которому исходный сорт Зерноградский 813 и его мутантные формы ($P_{II2}(39)$ 0,002 %, $P_{I9}(37)$ 0,002 %), а также мутанты $Э_{III6}(54)$ 0,002 %, $Э_{III5}(55)$ 0,002 %, $Э_{III9}(61)$ 0,002%, $Э_{III11}(62)$ 0,002 % и $Э_{III11}(64)$ 0,002 %, созданные на основе образца Dz02-129, превышали указанный диапазон на 1,67-35 %. Две мутантные формы $P_{II2}(39)$ 0,002 % и $P_{I9}(37)$ 0,002 % также имели более высокие значения по объему зерновок на 10,3-23,1 % по сравнению с данными, приведенными другими исследователями.

Выводы. В ходе исследования отмечено изменение физических свойств зерновок мутантных форм по сравнению с исходным материалом в сторону увеличения изученных параметров. Зерновки мутантов преимущественно имели более вытянутую форму, больший объем и площадь внешней поверхности, показатель сферичности и отношение объема к площади, что отражает наличие в исследованном семенном материале большего количества вещества, содержащегося в зерне. Образцы, полученные из российского исходного материала (Зерноградский 813), по массе 1000 семян превосходили большинство мутантных форм, созданных на основе Dz02-129 (Эфиопии).

Список литературы.

- 1. Доспехов, Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б.А. Доспехов Перепечатка с 5-го изд., доп. и перераб., 1985. М.: Альянс, 2014. 351 с.
- 2. Егоров, Г.А. Технологические свойства зерна / Г.А. Егоров М.: Агропромиздат, 1985. $334 \, \mathrm{c}$.
- 3. Ермолаев, С.В. Определение крупности пивоваренного ячменя ситовым анализом / С.В. Ермолаев, А.Ю. Сидоренко, А.Г. Кривовоз // Пиво и напитки. 2004. №3. С. 14.
- 4. Казаков, Е.Д. Зерноведение с основами растениеводства / Е. Д. Казаков Издание 2-е, переработанное и дополненное. Изд. «Колос», М., 1973. 288 с.
- 5. Лакин, Г.Ф. Биометрия // Г.Ф. Лакин 4-е изд., перераб. и доп. М.: Высш. шк., 1990. $352~\rm c.$
- 6. Osokina, N. M. Physical and mechanical properties and quality indicator of barley / N. M. Osokina, K. V. Kostetska // Вестник Уманского НУС. 2016. №2. С. 48-51.
- 7. Пилипюк, В.Л. Технология хранения зерна и семян / В. Л. Пилипюк Москва : Вузовский учеб., 2009. 455 с.
- 8. Сахибгареев, А.А. Ячмень яровой. Современные технологии возделывания в Республике Башкортостан (методические рекомендации) / А.А. Сахибгареев, Р.Л. Акчурин и др. Уфа, Мир печати, 2016. 64 с.
- 9. Фёдорова, Р.А. Биохимические особенности свойств зерна: Учеб.-метод. пособие. СПб.: Университет ИТМО, 2016. 41 с.

УДК 631.527:575:633

Основные результаты селекционно генетических исследований зренофуражных культур в Казахском НИИ земледелия и растениеводства

Аскар Жалгасбаевич Баймуратов, Бурубай Сариевич Сариев, Аюп Рашитович Искаков Казахский НИИ земледелия и растениеводства, Казахстан, Алматинская область, Карасайский район, п. Алмалыбак, e-mail: kazniizr@mail.ru

Ключевые слова: Зернофуражные, селекция, сорт, гибрид, коллекции.

Введение. Ячмень как культура разностороннего использования в Казахстане занимает второе место после пшеницы и площадь возделывания составляет более 2,1 млн.га. при ежегодном валовом сборе 3,0 - 3,3 млн.т. Посевная площадь под овсом составляет 200–250 тыс. га, валовой сбор — 150 - 182 тыс.т. ежегодно. В Казахстане зарегистрировано более 65 сортов ячменя, в том числе 45 сортов местной селекции, 24 сортов овса, из них 16 сортов казахстанской селекции.

Исследования по селекции ячменя в стране проводятся в 6 НИУ, среди которых ведущим является Казахский НИИ земледелия и растениеводства, который ведет селекцию по ячменю и овсу. Селекционные работы по ячменю ведутся по трем направлениям: кормовое, пищевое и пивоваренное, по овсу: кормовое и пищевое. Исследовательские работы ведутся в тесном сотрудничестве с учеными Всеросийского НИИ растениеводства им. Н.Вавилова (Россия), Центрального исследовательского института полевых культур (Турция), Института биологии и биотехнологии растений (Казахстан). На производстве возделываются более 25 сортов ячменя селекции этого института и занимают более 700 тысяч гектаров пашни в стране.

Целю селекционных исследований КазНИИЗиР является создание высокопродуктивных сортов ячменя с высокой устойчивостью и качеством зерна, обладающих конкурентоспособностью и экспортным потенциалом. Исследования проводятся с использованием мировой коллекции зернофуражных культур с целью выделение источников