материал, профессиональные кадры, и, в итоге, - суверенитет страны. Государственная селекция, базирующаяся на долгосрочной научной стратегии, успешно выживает: нерайонированный сорт — тоже успех, новый исходный материал.

Вавиловское «селекция - наука, искусство и отрасль сельскохозяйственного производства» - это о том, что отбросив внедрение, мы обнуляем возможности сорта, а не о том, что семеноводство – база для селекции. Оно вторично. Оно может существовать за счет иностранных сортов, но независимое государство – нет! Надо устранить перекос в планировании и повысить профессионализм = рост производительности труда, это деньги, соответственно – оснащенность и новые технологии в селекции.

Экологическую организацию селекции, концентрацию, специализацию, квалификацию кадров может обеспечить создание государственной корпорации. Четко государственной организации, как армия, так как речь идет о независимости страны. Госкорпорация должна охватить типовые этапы селекции от постановки задачи, до маточных семя, с подчинением всех селекционеров, независимо от их нынешней принадлежности.

Заключение. В Российской Федерации сохранилось желание и, в ряде НИИ, возможность проводить селекцию сортов, противостоящих мировым климатическим и цивилизационным вызовам. Для перехода на прорывной путь создания сортов и ускорение их внедрения нужно увеличить концентрацию и специализацию селекционной науки путем ее объединения под эгидой госкорпорации. Это даст рост профессионализма, производительности, качества, конкурентоспособности селекции, Обеспечит продовольственную безопасность, суверенитет страны, благосостояние населения.

Список литературы

- 1.Гуляев, Г.В. Дубинин, А.П. / Селекция и семеноводство полевых культур с основами генетики. М.: «Колос».1969. 487 С.
- 2. Жученко, А.А. / Адаптивное растениеводство. М.: ООО «Издательство Агрорус», 2009, т. 3, 960 С.
 - 3. Неттевич, Э.Д. / Рождение и жизнь сорта. 2-е изд. М.: «Московский рабочий». 1983. 174 С.
- 4.Пленарное заседание Совета Федерации 24 декабря 2021 года. Парламентская газета: https://www.pnp.ru/politics/matvienko-dala-neudovletvoritelnuyu-ocenku-tempam-razvitiya-semenovodstva.html.
- 5.ПРОГРАММА фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021 2030 годы), утвержденная распоряжением Правительства Российской Федерации от 31 декабря 2020 г. № 3684-р http://static.government.ru/media/acts/files/1202101090048.pdf
- 6.Скатова С.Е. Организация селекции зерновых культур как фактор ее эффективности и конкурентоспособности // «Владимирский земледелец», № 3 (81), 2017. —С.2-5.
- 7. Таланов В.В. Общий очерк успехов и перспектив селекции и семеноводства / «Селекция и семеноводство в СССР», 1924. -С. 6-12.

УДК 633.32:57.085.23

Особенности микроразмножения и сохранения в культуре in vitro трансгенных растений клевера лугового

<u>Любовь Андреевна Солодкая,</u> Людмила Ивановна Лапотышкина, Мария Николаевна Агафодорова

Федеральный научный центр кормопроизводства и агроэкологии имени В.Р. Вильямса, Московская область г.Лобня

Аннотация. В статье представлены результаты по сравнительному изучению морфобиологических параметров вегетативного потомства различных клонов вегетирующих трансгенных растений клевера лугового, полученных с помощью микроразмножения.

Ключевые слова: клевер луговой, трансгенные растения, пазушные почки, морфогенная ткань

Particularities of micropropagation and maintenance in culture in vitro of red clover transgenic plants

Lubov Andreevna Solodkaya, Ludmila Ivanovna Lapotishkina, Maria Nikolaevna Agafodorova

Federal Williams Research Center of Forage Production and Agroecology, Moscow region, Lobnya

Abstract. The results on comparative study of morphobiological parameters of vegetative progeny of different clones of transgenic red clover plants, created during micropropagation, are described.

Key words: red clover, transgenic plants, axillary buds, morphogenic tissue

Размножение и длительное поддержание традиционными методами ценных селекционных образцов клевера лугового (*Trifolium pratense L.*), в том числе создаваемых методом генетической инженерии, связано с рядом трудностей, обусловленных тем, что клевер луговой представляет собой самонесовместимый перекрестноопыляемый вид, который при самоопылении в естественных условиях, а также и в контролируемых скрещиваниях образует незначительное количество семян с высокой степенью гетерогенности признаков в последующих семенных поколениях (F_1 , F_2 , и т.д.).

. Микроразмножение в культуре *in vitro* обеспечивает получение генотипов клевера лугового в необходимом количестве и их длительное сохранение. Однако при размножении трансгенных растений таким способом возникли некоторые проблемы. В связи с тем, что питательная среда содержит уменьшенную вдвое концентрацию всех входящих в ее состав компонентов, наблюдается быстрая регенерация интактных растений с корнями, а морфогенная ткань, необходимая для длительного поддержания в культуре *in vitro* коллекции трансгенных растений клевера лугового, не образуется. Кроме того, размножение данным способом осуществляется на питательных средах, не содержащих селективный фактор – канамицин. Это значительно увеличивает риск получения в процессе размножения нетрансгенных растений. Нами разработан способ размножения трансгенных растений клевера лугового методом культуры почек *in vitro* (1).

Целью наших исследований является сравнительное изучение вегетативного потомства различных клонов вегетирующих трансгенных растений клевера лугового, полученного вышеназванным методом.

Материалы и методы. Проводили микроразмножение вегетирующих трансгенных растений клонов T_1 , T_2 , T_3 , T_4 клевера лугового, созданных с помощью генетических конструкций, содержащих маркерный ген канамицинустойчивости npt11 из сорта Топаз селекции ВНИИ кормов им. В.Р.Вильямса, и характеризующиеся повышенной кислотоустойчивостью.

Микроразмножение трансгенных растений клевера лугового осуществляли разработанным нами методом (1).

Результаты. В процессе разработки способа размножения трансгенных растений клевера лугового методом культуры почек *in vitro* нами определены оптимальные размеры эксплантов (почек). Так, 54,4% почек размером не менее 4 мм после 3 недель культивирования на питательной агаризованной среде Гамборга B_5 с 2,0 мг/л БАП и 50 мг/л селективного фактора канамицина оставались зелеными и увеличивались в размере в среднем до 6,2 мм. Тогда как число выживших почек размером менее 4 мм не превышало 9,2%, и из них только 0,1% оставались зелеными (1).

В связи с этим для размножения вегетирующих трансгенных растений клонов T_1 , T_2 , T_3 , T_4 использовали пазушные почки размером не менее 4 мм. При этом число выживших и инфицированных почек как в варианте без канамицина (контроль), так и с 50 мг/л

Таблица 1.Выживаемость почек трансгенных растений клевера лугового в культуре *in vitro*

	Состав питательной среды										
11	Гамборга B ₅ с 2,0 мг/л БАП					Гамборга B ₅ с 2,0 мг/л БАП и 50					
Число эксплантов	(контроль)					мг/л канамицина					
	T_1	T_2	T ₃	T_4	Средн.	T_1	T_2	T_3	T_4	Средн.	
Инфицированных	10,1	10,9	11,1	12,3	11,1	12,1	9,9	10,9	11,1	10,9	
Выживших	89,7	80,3	85,4	91,2	84,2	80,9	85,4	83,1	86,0	83,9	
Из них альбиносы	0	0	0	0	0	5,1	4,3	4,9	4,7	4,8	

канамицина существенно не различались (84,2%; 83,9% и 11,1%; 10,9%) (табл.1).

Для получения морфогенной ткани с зелеными побегами (устойчивыми к селективному фактору канамицину) на агаризованную питательную среду Гамборга B_5 с 2,0 мг/л БАП и 50 мг/л канамицина помещали зеленые почки не менее 4,0 мм и субкультивировали несколько пассажей на среде того же состава до получения морфогенной ткани с зелеными побегами. После 20 дней культивирования на агаризованной питательной среде Гамборга B_5 с 2,0 мг/л БАП и 50 мг/л канамицина образовалась морфогенная ткань только с зелеными побегами (табл.2). Во втором пассаже число культур со смешанными побегами (альбиносными и зелеными) варьировало от 39,2% до 46,5%, а число культур с зелеными побегами было больше и составляло от 53,5 до 60,8%.

Таблица 2. Влияние длительности культивирования на канамицинсодержащих средах на выход морфогенной ткани с зелеными побегами

Номер пассажа	Морфогенная ткань с побегами, %											
		C	мешаннь	ІМИ	зелеными							
	T_1	T ₂	T ₃	T ₄	Средн	T_1	T ₂	T ₃	T ₄	Средн.		
1	0	0	0	0	0	100	100	100	100	100		
2	43,1	39,2	46,5	40,4	42,3	56,9	60,8	53,5	59,6	57,7		
3	47,7	50,7	48,6	50,9	49,5	52,3	49,3	51,4	49,1	50,5		
4	9,2	10,1	4,9	8,7	8,2	90,8	89,9	95,1	91,3	91,8		

Несмотря на то, что для каждого последующего пассажа отбирали кусочки морфогенной ткани только с зелеными побегами, и в 3-м пассаже почти половина культур в среднем (49,5%) имела смешанные побеги, а число культур с зелеными побегами снизилось в среднем с 57,7% до 50,5% и только в 4-м пассаже это число выросло до 91,8%.

Таким образом, для получения растений-трансформантов клевера лугового использовали морфогенную ткань 4-го пассажа, культивируемую на питательной среде с канамицином.

Образующиеся из зеленых побегов растения-регенеранты с корнями не менее 50 мм высаживали в стаканчики с почвой, а затем по достижении фазы 5-6 настоящих тройчатых листьев в грунтовую теплицу при индивидуальном стоянии по 40 растений-регенерантов каждого клона (Т и Р) клевера лугового.

Сравнительное изучение морфобиологических показателей трансгенных растений и их вегетативного потомства (табл.3) не выявило существенных различий при 5%-ном уровне значимости по высоте растений, числу стеблей, цветков, семян в соцветии.

Поскольку размножаемые трансгенные растения клевера лугового обладали свойством кислотоустойчивости, то сохранение данного признака растениями вегетативного

Таблица 3. Сравнительное изучение морфобиологических показателей трансгенных растений (Т) и их вегетативного потомства (Р)

Геноти	Высота растений, см		Количество, шт.									
П			стеблей		соцветий		цветков в		семян в			
							соцветии		соцветии			
	средн	% к Т	средне	% к Т	сред	% к Т	средн	% к Т	сред	% к Т		
	RR		e		нее		ee		нее			
T	75,3	100,0	29,5	100,0	78,75	100,0	75,0	100,0	2,25	100,0		
P	74,8	99,3	29,25	99,2	82,5	104,8	75,5	100,7	2,5	111,1		
HCP ₀₅	9,48		3,46		2,01		3,01		1,71			

потомства важное условие при использовании разработанного нами способа (1).

В экспериментах по сравнительной оценке кислотоустойчивости трансгенных растений и их вегетативного потомства в агаризованную среду Гамборга B_5 с 2,0 мг/л БАП, 50,0 мг/л канамицина как для культивирования исходной морфогенной ткани, так и для полученной в процессе вегетативного размножения, добавляли 50 мг/л ионов алюминия (Al^{3+}) . Установлено, что между растениями изучаемых клонов различий по средней массе побегов и корней, средней длине побегов и корней не выявлено.

Таким образом, полученные результаты свидетельствуют о том, что разработанный способ размножения трансгенных растений клевера лугового методом культуры почек *in vitro* обеспечивает получение растений вегетативного потомства, сохраняющих селекционноценные признаки, в том числе кислотоустойчивость, исходных трансгенных растений.

В связи с высокой самостерильностью при самоопылении в изолированных условиях размноженные растения, также как и исходные, отличались низкой завязываемостью семян, что еще раз подтверждает актуальность разработки вышеназванного способа размножения трансформированных растений клевера лугового.

Кроме того, разработанный способ позволяет повторно вводить в культуру *in vitro* генетически трансформированные растения клевера лугового, получать и длительно культивировать морфогенную ткань трансформированных растений, проводить генетические исследования, изучать экспрессию генов в вегетативно размноженных растениях клевера лугового.

Список литературы:

1. Патент 2617944 Российской Федерации Способ размножения трансгенных растений клевера лугового методом культуры почек *in vitro*. / Солодкая Л.А., Агафодорова М.Н., Лапотышкина Л.И. - №2617944; заявлено 09.11.2015; Опубликовано 28.04.2017, бюл.№13.

УДК 633.11