ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ РЕСУРСОВ

УДК 631.171/.173

О.А. Леонов, доктор техн. наук **Н.И. Селезнёва**

Московский государственный агроинженерный университет имени В.П. Горячкина

ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ СОСТОЯНИЯ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ НА ПРЕДПРИЯТИЯХ ТЕХНИЧЕСКОГО СЕРВИСА В АГРОПРОМЫШЛЕННОМ КОМПЛЕКСЕ

Необходимость учета возможностей металлорежущего оборудования при назначении точности изготовления деталей отмечена во многих работах [1, 2]. В НИИ информации и технико-экономических исследований по инженерно-техническому обеспечению Министерства сельского хозяйства Российской Федерации был проведен анализ состояния технологического оборудования около 300 ремонтных заводов и специализированных предприя-

тий АПК РФ, который показал, что свыше 50% всего станочного парка не соответствует требованиям по точности обработки деталей.

Следует отметить, что в общем объеме технологического оборудования, необходимого ремонтным заводам для замены устаревшего, металлорежущие станки составляют 49%.

Наиболее высокая потребность в токарных (37,6%) и шлифовальных (20,4%) станках.

Проведенные обследования показали, что для финишной об-

работки восстановленных деталей на ремонтных заводах и специализированных ремонтно-технических предприятиях около половины станков используется свыше 10 лет, а в мастерских ремонтно-технических предприятий — более 40% станков эксплуатируется свыше 20 лет (табл. 1).

Доля станков со сроком использования до 10 лет в общем количестве металлорежущего оборудования с каждым годом уменьшается.

Таблица 1

Распределение металлообрабатывающего оборудования по длительности использования, %

Продириятия	Длительность использования, лет		
Предприятия		1020	свыше 20
Ремонтные заводы и специализированные предприятия	27,4	39,3	33,3
Мастерские ремонтно-технических предприятий	19,3	29,1	51,6
Мастерские коллективных хозяйств	6,8	3,0	70,2
Ремонтные участки перерабатывающих отраслей АПК	10,0	7,8	72,2

Особенно большие сроки использования шлифовальных и фрезерных станков зафиксированы, например, на Острогожском АРЗ Воронежской области. Для финишной обработки восстановленных деталей почти 84% шлифовальных станков эксплуатируются свыше 10 лет (табл. 2).

В Самарской области на таких же предприятиях более 60% металлорежущего оборудования работает свыше 20 лет. На перерабатывающих предприятиях Московской области количество станков для механической обработки деталей со сроком использования до 10 лет составляет не более 17% (табл. 3).

Для оценки технического уровня авторы провели сопоставительный анализ оборудования для финишной обработки, принятого к серийному производству с 1987 года и используемого в ремонтнообслуживающем производстве агропромышленного комплекса. Для этого применялась единая методика оценки технического уровня продукции машиностроения [3].

Оценка оборудования проводилась путем сопоставления комплексного показателя, а также отдельных показателей оцениваемого оборудования с соответствующими показателями аналога.

Комплексный показатель технического уровня определяли по формуле

$$K_{\text{Ty}} = \frac{\sum_{i=1}^{n} q_{i}}{n},$$

где $g_{\rm i}$ — относительный показатель; n — количество оценочных сопоставляемых показателей.

Таблица 2

Распределение станков для финишной обработки восстановленных деталей по длительности использования на Острогожском AP3 Воронежской области, %

Станки	Длительность использования, лет			
Станки	До 10	1020	Свыше 20	
Токарные	25,4	35,4	39,2	
Шлифовальные	16,1	31,9	52,0	
Расточные	18,8	57,0	24,2	
Фрезерные	20,0	19,6	60,4	

Таблица 3

Распределение металлорежущих станков по длительности использования на перерабатывающих предприятиях Московской области, %

Станки	Длительность использования, лет			
Станки	До 10	1020	Свыше 20	
Токарные	13,3	23,7	63,0	
Шлифовальные	11,8	30,0	58,2	
Расточные	16,0	24,0	60,0	
Фрезерные	16,8	23,3	59,9	

При определении относительного показателя, увеличение численного значения которого указывает на повышение технического уровня оборудования, использовали формулу

$$q_{\rm i} = \frac{P_{\rm i}}{P_{\rm ia}},$$

где $P_{\rm i}$ — абсолютное значение i-го показателя оцениваемого оборудования; $P_{\rm ia}$ — абсолютное значение i-го показателя аналога.

При определении относительного показателя, увеличение численного значения которого указывает на понижение качества оборудования, использовали формулу

$$q_{\rm i} = \frac{P_{\rm ia}}{P_{\rm i}}$$
.

Для сопоставления оцениваемого оборудования с аналогом были выбраны показатели назначения (производительность, масса, потребляемая мощность, шероховатость, допуск формы и размеры обрабатываемой поверхности) и надежности (безотказная наработка, срок службы и установленный ресурс станка по точности).

При оценке перспективности оборудования по комплексному показателю технического уровня применялась группировка значений комплексного показателя, использованная в работах Информагротех [4, 5]:

1...1,19 — неперспективное; 1,20...1,39 — малоперспективное;

1,40...1,59 — перспективное; более 1,6 — весьма перспективное.

На рис. 1 показано распределение комплексного показателя технического уровня оцениваемого оборудования. Так, для финишной обработки восстановленных деталей принято к серийному производству и эксплуатируется лишь 7,69 % перспективного оборудования.

По комплексному показателю технического уровня свыше 20% оборудования находится ниже уровня зарубежных аналогов (рис. 2).

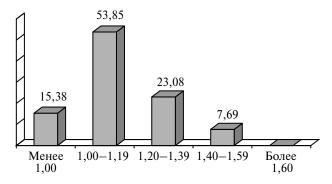


Рис. 1. Распределение комплексного показателя технического уровня оборудования для финишной обработки восстановленных деталей, %

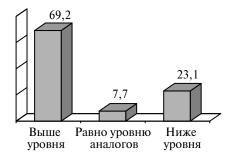


Рис. 2. Распределение оборудования для финишной обработки деталей по комплексному показателю в сравнении с зарубежными аналогами, %

По показателям технической характеристики большая часть оборудования, принятого к серийному производству, соответствует уровню старых образцов и практически не способствует повышению технического уровня ремонтно-обслуживающего производства. Так, по показателям надежности лишь 31,5% оборудования для финишной обработки восстановленных деталей имеют значение выше уровня отечественных аналогов.

В результате обследования ряда специализированных предприятий было выявлено, что 26% установленного металлорежущего оборудования не использовалось из-за неисправностей.

Большое влияние на уровень безотказности соединений машин оказывает качество финишных операций изготовления и восстановления деталей. Однако, как показал анализ, многие разработанные станки по показателям точности обработки деталей уступают аналогам. Так, допуск формы обработанной поверхности только у 23,1% ниже, чем у аналога.

Таким образом, новое оборудование, у которого допуск размера обработанной детали выше, чем у старых образцов, составляет свыше 30% (рис. 3).

Учитывая жесткие требования к станочному парку по точности обработки на финишных операциях, в 1975 г. в АПК Российской Федерации были начаты разработка и внедрение системы организации ремонта и технического обслуживания ремонтно-технического оборудования специализированных предприятий и РТП. Следует отметить, что до этого времени не существовало какой-либо системы,

Допуск формы Допуск размера обработанной поверхности обработанной поверхности

Рис. 3. Распределение оборудования для финишной обработки деталей по показателям точности в сравнении с отечественными аналогами, %

обеспечивающей поддержание оборудования в исправном состоянии. Численность рабочих, занятых ремонтом оборудования, была мала. В основном они занимались только устранением неисправностей. Из-за недостаточной квалификации работники не могли обслуживать вновь получаемое сложное технологическое оборудование: токарные станки повышенной точности, координатно-расточные, шлифовальные и др. В 1980-1985 гг. интенсивно создавались специализированные отделения по техническому обслуживанию и ремонту технологического оборудования, в том числе металлорежущего. Так, Пензенское спецотделение ежегодно проводило осмотр, мелкий, средний и капитальный ремонт свыше 330 станков (около 15% всех используемых в АПК области). Кроме того, специалисты отделения проводили проверку оборудования на технологическую точность один раз в год, а оборудование для финишных операций — один раз в полгода. Однако эффективно наладить эту работу не получилось. В настоящее время они практически прекратили работу [6].

Таким образом, станочный парк, используемый на ремонтных предприятиях АПК, физически устарел. Только около 50% станков соответствует требованиям по точности обработки. Анализ технического уровня оборудования для финишной обработки деталей свидетельствует, что лишь 7,7% от его общего количества являются перспективными образцами.

В этих условиях при назначении допусков на размеры восстановленных деталей следует учитывать точностные возможности оборудования для финишной обработки.

Список литературы

- 1. Файнштейн, Г.З. Вероятностные расчеты допусков с учетом технологической точности изготовления деталей. В кн.: Взаимозаменяемость и технические измерения в машиностроении / Г.З. Файнштейн. Л.: Машиностроение, 1972. Вып.6 С. 46—54.
- 2. Кутай, А.К. О математико-статистическом анализе точности в индивидуальном и мелкосерийном производстве и запасе точности. В кн.: Взаимозаменяемость и технические измерения в машиностроении / А.К. Кутай. Л.: Машиностроение, 1972. Вып. 6 С. 116—126.
- 3. Единая методика оценки технического уровня продукции машиностроения: утв. Постановлением ГКНТ СССР от 25.02.88 № 52. М.: Изд-во стандартов, 1988. 32 с.
- 4. Сиднина, Т.И. Технический уровень оборудования для восстановления деталей / Т.И. Сиднина, И.Г. Голубев // «Состояние и перспективы восстановления и упрочнения деталей машин: материалы конференции». Сб. 1. М.: ЦРДЗ, 1994. С. 13—14.
- 5. Буклагин, Д.С. Технический уровень сельскохозяйственной техники / Д.С. Буклагин. М.: НИИТЭИ-агропром, 1993. 112 с.
- 6. Кожаев, Н. Опыт работы Пензенского специализированного отделения по ремонту и техническому обслуживанию технологического оборудования / Н. Кожаев, В. Якушев, И.Г. Голубев // Экспресс-информ ЦНИИ-ТЭИ. 1982. № 9. 16 с.